Development of a Real-Time Radiation Exposure Estimation Method Using a Depth Camera for Radiation Protection Education
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. System Creation
2.1.1. Calculation of Scattered Radiation Distribution in an X-ray Room
2.1.2. Body Tracking of the Physician in the X-ray Room
2.1.3. Display of Scattered Radiation Distribution with an AR Marker
2.1.4. Creation of Functions
2.2. Verification of the Accuracy of MC Simulation
2.3. Verification of Position Detection Accuracy
2.4. Verification of Real-Time Performance
2.5. Verification of Dose Estimation Accuracy
3. Results
3.1. System Overview
3.2. Validation of MC Simulation Accuracy
3.3. Verification of Position Detection Precision
3.4. Verification of Real-Time Performance
3.5. Verification of Dose Estimation Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.P.; Miller, D.L. Minimising radiation exposure to physicians performing fluoroscopically guided cardiac catheterisation procedures: A review. Radiat. Prot. Dosim. 2009, 133, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Hizukuri, K.; Fujibuchi, T.; Arakawa, H. Directional Vector Visualization of Scattered Rays in Mobile C-arm Fluoroscopy. Radiol. Phys. Technol. 2024, 17, 288–296. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection (ICRP). Avoidance of Radiation Injuries from Medical Interventional Procedures; ICRP Publication 85; Pergamon: Oxford, UK, 2000; Volume 30. [Google Scholar]
- Dauer, L.T.; Thornton, R.H.; Solomon, S.B.; St Germain, J. Unprotected operator eye lens doses in oncologic interventional radiology are clinically significant: Estimation from patient kerma-area-product data. J. Vasc. Interv. Radiol. 2010, 21, 1859–1861. [Google Scholar] [CrossRef] [PubMed]
- Vano, E.; Gonzalez, L.; Fernandez, J.M.; Haskal, Z.J. Eye lens exposure to radiation in interventional suites: Caution is warranted. Radiology 2008, 248, 945–953. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Implications for Occupational Radiation Protection of the New Dose Limit for the Lens of the Eye; IAEA: Vienna, Austria, 2013; Volume 1731, pp. 1–34. [Google Scholar]
- Chida, T. What are useful methods to reduce occupational radiation exposure among radiological medical workers, especially for interventional radiology personnel? Radiol. Phys. Technol. 2022, 15, 101–115. [Google Scholar] [CrossRef]
- Chida, K.; Takahashi, B.T.; Ito, D.; Shimura, H.; Takeda, K.; Zuguchi, M. Clarifying and visualizing sources of staff-received scattered radiation in interventional procedures. AJR Am. J. Roentgenol. 2011, 197, W900–W903. [Google Scholar] [CrossRef]
- Haga, Y.; Chida, K.; Kaga, Y.; Sota, M.; Meguro, T.; Zuguchi, M. Occupational eye dose in interventional cardiology procedures. Sci. Rep. 2017, 7, 569. [Google Scholar] [CrossRef]
- Rodas, N.L.; Barrera, F.; Padoy, N. See It with your own eyes: Markerless mobile augmented reality for radiation awareness in the hybrid room. IEEE Trans. Biomed. Eng. 2017, 64, 429–440. [Google Scholar] [CrossRef]
- Nishi, K.; Fujibuchi, T.; Yoshinaga, T. Development and evaluation of the effectiveness of educational material for radiological protection that uses augmented reality and virtual reality to visualise the behaviour of scattered radiation. J. Radiol. Prot. 2022, 42, 011506. [Google Scholar] [CrossRef]
- Fujibuchi, T. Radiation protection education using virtual reality by visualization of scatter distribution in radiological examination. J. Radiol. Prot. 2021, 41, S317. [Google Scholar] [CrossRef]
- Fujibuchi, T.; Ueda, K.; Kadoyanagi, S.; Ueno, D.; Nakamura, C. Examination of application to radiation protection education by four-dimensional visualization of scatter distribution in radiological examination using virtual reality. Nihon Hoshasen Gijutsu Gakkai Zasshi 2019, 75, 1297–1307. [Google Scholar] [CrossRef] [PubMed]
- Süncksen, M.; Bott, O.J.; Dresing, K.; Teistler, M. Simulation of scattered radiation during intraoperative imaging in a virtual reality learning environment. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Kondo, H.; Yamamoto, M.; Shiraishi, K.; Kobayashi, T.; Furui, S.; Okamoto, T.; Oba, H.; Kotoku, J. Immersive Radiation Experience for Interventional Radiology with Virtual Reality Radiation Dose Visualization Using Fast Monte Carlo Dose Estimation. Interv. Radiol. 2020, 5, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Iwamoto, Y.; Hashimoto, S.; Ogawa, T.; Furuta, T.; Abe, S.I.; Kai, T.; Tsai, P.E.; Matsuda, N.; Iwase, H.; et al. Features of Particle and Heavy Ion Transport code System (PHITS). version 3.02. J. Nucl. Sci. Technol. 2018, 55, 684–690. [Google Scholar] [CrossRef]
- Hirayama, H.; Namito, Y.; Bielajew, A.F.; Wilderman, S.J.; Nelson, W.R. The EGS5 code system SLAC-R-730 and KEK Report 2005–8. Stanford (California) and Tsukuba: SLAC and KEK; 2005. J. Nucl. Sci. Technol. 2018, 55, 684–690. [Google Scholar] [CrossRef]
- PHOTX. Photon Interaction Cross-Section Library for 100 Elements Data Package DLC136/PHOTX; Radiation Shielding Information Center Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1995; Available online: https://www.oecd-nea.org/tools/abstract/detail/dlc-0136/ (accessed on 10 September 2024).
- Kato, H.; Fujii, S.; Shirakawa, S.; Suzuki, Y.; Nishii, Y. A Presumption Calculating Formula of the X-ray Spectrum Generated from a Molybdenum Target X-ray Tube. Jpn. J. Radiol. Technol. 2011, 67, 193–201. [Google Scholar] [CrossRef] [PubMed]
- ICRP Publication 74. Conversion coefficients for use in radiological protection against external radiation. Ann. ICRP 2016, 26, 3–4. [Google Scholar]
- GitHub Microsoft/Azure-Kinect-Samples. Available online: https://github.com/microsoft/Azure-Kinect-Samples (accessed on 19 May 2022).
- Hattori, K.; Inaba, Y.; Kato, T.; Fujisawa, M.; Yasuno, H.; Yamada, A.; Haga, Y.; Suzuki, M.; Zuguchi, M.; Chida, K. Evaluation of a New Real-Time Dosimeter Sensor for Interventional Radiology Staff. Sensors 2023, 23, 512. [Google Scholar] [CrossRef]
- Troville, J.; Rudin, S.; Bednarek, D.R. Estimating Compton scatter distributions with a regressional neural network for use in a real-time staff dose management system for fluoroscopic procedures. Proc. SPIE Int. Soc. Opt. Eng. 2021, 11595, 115950M. [Google Scholar] [CrossRef]
- Troville, J.; Dhonde, R.S.; Rudin, S.; Bednarek, D.R. Using a convolutional neural network for human recognition in a staff dose management software for fluoroscopic interventional procedures. Proc. SPIE Int. Soc. Opt. Eng. 2021, 11595, 115954E. [Google Scholar] [CrossRef]
- Rehani, M.M.; Ciraj-Bjelac, O.; Vañó, E.; Miller, D.L.; Walsh, S.; Giordano, B.D.; Persliden, J. Radiological Protection in Fluoroscopically Guided Procedures Outside the Imaging Department; Elsevier: Amsterdam, The Netherlands, 2010; Volume 40, pp. 1–102. [Google Scholar] [CrossRef]
- ICRP. Occupational radiological protection in interventional procedures. ICRP Publication 139. Ann. ICRP 2018, 47, 1–118. [Google Scholar] [CrossRef] [PubMed]
- ICRP. Education and Training in Radiological Protection for Diagnostic and Interventional Procedures; ICRP Publication 113. Ann. ICRP 2009, 39, 1–68. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Moritake, T.; Morota, K.; Nagamoto, K.; Nakagami, K.; Kuriyama, T.; Kunugita, N. Development and assessment of an educational application for the proper use of ceiling-suspended radiation shielding screens in angiography rooms using augmented reality technology. Eur. J. Radiol. 2021, 143, 109925. [Google Scholar] [CrossRef] [PubMed]
- Chida, K.; Kaga, Y.; Haga, Y.; Kataoka, N.; Kumasaka, E.; Meguro, T.; Zuguchi, M. Occupational dose in interventional radiology procedures. Am. J. Roentgenol. 2013, 200, 138–141. [Google Scholar] [CrossRef]
- Yashima, S.; Chida, K. Awareness of Medical Radiologic Technologists of Ionizing Radiation and Radiation Protection. Int. J. Environ. Res. Public Health 2022, 20, 497. [Google Scholar] [CrossRef]
Specifications | Models |
---|---|
Operation system | Windows 10 64-bit Education 16 GB |
Central processing unit | Intel Core i9-9980 |
Graphical processing unit | GeForce RTX 2080 |
Memory | 32 GB |
Depth camera | Microsoft Azure Kinect |
Software | Unity 2020.3.8.f1 Azure Kinect Sensor SDK 1.4.1 Azure Kinect Body Tracking SDK 1.1.0 OpenCV for Unity 2.5.4 |
Apron | Motion | Average FPS | |
---|---|---|---|
− | − | 10.9 ± 0.7 | |
− | + | 11.0 ± 0.7 | |
+ | − | 9.0 ± 0.5 | |
+ | + | 9.8 ± 0.4 |
(Simulated/Measured Dose) | |||
---|---|---|---|
Position | 1 | 2 | 3 |
Right eye | 0.94 | 0.93 | 0.98 |
Left eye | 1.04 | 1.01 | 1.00 |
Neck | 0.98 | 0.99 | 0.98 |
Chest | 0.72 | 0.72 | 0.78 |
Pelvis | 0.67 | 0.60 | 0.94 |
Right hand | 1.19 | 1.21 | 1.08 |
Left hand | 1.00 | 1.19 | 1.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujibuchi, T.; Arakawa, H.; Anam, C. Development of a Real-Time Radiation Exposure Estimation Method Using a Depth Camera for Radiation Protection Education. Radiation 2024, 4, 261-275. https://doi.org/10.3390/radiation4030021
Fujibuchi T, Arakawa H, Anam C. Development of a Real-Time Radiation Exposure Estimation Method Using a Depth Camera for Radiation Protection Education. Radiation. 2024; 4(3):261-275. https://doi.org/10.3390/radiation4030021
Chicago/Turabian StyleFujibuchi, Toshioh, Hiroyuki Arakawa, and Choirul Anam. 2024. "Development of a Real-Time Radiation Exposure Estimation Method Using a Depth Camera for Radiation Protection Education" Radiation 4, no. 3: 261-275. https://doi.org/10.3390/radiation4030021
APA StyleFujibuchi, T., Arakawa, H., & Anam, C. (2024). Development of a Real-Time Radiation Exposure Estimation Method Using a Depth Camera for Radiation Protection Education. Radiation, 4(3), 261-275. https://doi.org/10.3390/radiation4030021