Rheological and Stability Evaluation of Emulsions Containing Fenugreek Galactomannan—Xanthan Gum Mixtures: Effect of Microwave and Ultrasound Treatments
Abstract
:1. Introduction
2. Material and Methods
2.1. Raw Material and Chemical
2.2. Fenugreek Galactomannan Extraction
2.3. Xanthan Gum Extraction
2.4. Preparation of O/W Emulsions
2.5. Rheological Measurements
2.5.1. Steady Shear Flow Rheology
2.5.2. Dynamic Oscillatory Rheology
Strain Sweep
Frequency Sweep
2.6. Emulsion Stability (ES)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Steady Shear Flow Rheological Aspects
3.1.1. Fitting on Shear Stress—Shear Rate Based Models
3.1.2. Fitting on Apparent Viscosity—Shear Rate Based Model
3.2. Dynamic Rheological Aspects
3.2.1. Strain Sweep Test
3.2.2. Frequency Sweep Test
3.2.3. Emulsion Stability (ES)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vianna-Filho, R.; Oliveira, C.; Silveira, J. Rheological characterization of O/W emulsions incorporated with neutral and charged polysaccharides. Carbohydr. Polym. 2013, 93, 266–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Rezagholi, F. The effects of Plantago major seed gum on steady and dynamic oscillatory shear rheology of sunflower oil-in-water emulsions. J. Texture Stud. 2018, 49, 536–547. [Google Scholar] [CrossRef] [PubMed]
- Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Rezagholi, F. The hydrocolloid extracted from Plantago major seed: Effects on emulsifying and foaming properties. J. Dispers. Sci. Technol. 2019, 41, 667–673. [Google Scholar] [CrossRef]
- Saeidy, S.; Nasirpour, A.; Djelveh, G.; Ursa, A.; Delattre, C.; Pierre, G.; Michaud, P. Emulsion properties of Asafoetida gum: Effect of oil concentration on stability and rheological properties. Coll. Surf. A 2019, 560, 114–121. [Google Scholar] [CrossRef]
- Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Rezagholi, F. Barhang (Plantago major L.) seed gum: Ultrasound-assisted extraction optimization, characterization and biological activities. J. Food Process. Preserv. 2020, 44, e14750. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Alghooneh, A. Understanding the physics of hydrocolloids interaction using rheological, thermodynamic and functional properties: A case study on xanthan gum—Cress seed gum blend. Int. J. Biol. Macromol. 2020, 151, 1139–1153. [Google Scholar] [CrossRef]
- Niknam, R.; Mousavi, M.; Kiani, H. New studies on galactomannan extracted from Trigonella foenum—Graceum (fenugreek) seed: Effect of subsequent use of ultrasound and microwave on the physicochemical and rheological properties. Food Bioprocess Technol. 2020, 13, 882–900. [Google Scholar] [CrossRef]
- Mohite, A.M.; Chandel, D. Formulation of edible films from fenugreek mucilage and taro starch. SN Appl. Sci. 2020, 2, 1900. [Google Scholar] [CrossRef]
- Gupta, S.K.; Kalaiselvan, V.; Srivastava, S.; Saxena, R.; Agrawal, S.S. Trigonella foenum—Graecum (Fenugreek) protects against selenite—Induced oxidative stress in experimental cataractogenesis. Biol. Trace Elem. Res. 2010, 136, 533–542. [Google Scholar] [CrossRef]
- Ribeiro, A.; Estevinho, B.; Rocha, F. Edible films prepared with different biopolymers, containing polyphenols extracted from elderberry (Sambucus nigra L.), to protect food products and to improve food functionality. Food Bioprocess Technol. 2020, 13, 1742–1754. [Google Scholar] [CrossRef]
- Jo, W.; Bak, J.H.; Yoo, B. Rheological characterizations of concentrated binary gum mixtures with xanthan gum and galactomannans. Int. J. Biol. Macromol. 2018, 114, 263–269. [Google Scholar] [CrossRef]
- Shekarforoush, E.; Mirhosseini, H.; Amid, B.T.; Ghazali, H.; Muhammad, K.; Paykari, M. Rheological properties and emulsifying activity of gum Karaya (Sterculia urens) in aqueous system and oil in water emulsion: Heat treatment and microwave modification. Int. J. Food Prop. 2016, 19, 662–679. [Google Scholar] [CrossRef] [Green Version]
- Kumar, Y.; Roy, S.; Devra, A.; Dhiman, A.; Prabhakar, P. Ultrasonication of mayonnaise formulated with xanthan and guar gums: Rheological, modeling, effects on optical properties and emulsion stability. LWT 2021, 149, 111632. [Google Scholar] [CrossRef]
- Wu, Y.; Cui, W.; Eskin, N.A.M.; Goff, H.D. An investigation of four commercial galactomannans on their emulsion and rheological properties. Food Res. Int. 2009, 42, 1141–1146. [Google Scholar] [CrossRef]
- Razavi, S.M.A.; Alghooneh, A.; Behrouzian, F.; Cui, S.W. Investigation of the interaction between sage seed gum and guar gum: Steady and dynamic shear rheology. Food Hydrocoll. 2016, 60, 67–76. [Google Scholar] [CrossRef]
- Kennedy, J.R.M.; Kent, K.E.; Brown, J.R. Rheology of dispersions of xanthan gum, locust bean gum and mixed biopolymer gel with silicon dioxide nanoparticles. Mater. Sci. Eng. 2015, 48, 347–353. [Google Scholar] [CrossRef]
- Koop, H.S.; Praes, C.E.O.; Reicher, F.; Oliveira, C.; Silveira, J. Rheological behavior of gel of xanthan with seed galactomannan: Effect of hydroalcoholic—Ascorbic acid. Mater. Sci. Eng. 2009, 29, 559–563. [Google Scholar] [CrossRef]
- Tako, M.; Teruya, T.; Tamaki, Y.; Ohkawa, K. Co-gelation mechanism of xanthan and galactomannan. Coll. Polym. Sci. 2020, 288, 1161–1166. [Google Scholar] [CrossRef]
- Pinheiro, A.; Bourbon, A.I.; Rocha, C.; Maia, J.; Goncalves, M.P.; Teixeira, J.; Vicente, A. Rheological characterization of k-carrageenan/galactomannan and xanthan/galactomannan gels: Comparison of galactomannans from non-traditional sources with conventional galactomannans. Carbohydr. Polym. 2011, 83, 392–399. [Google Scholar] [CrossRef]
- Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Hamishehkar, H. Plantago major seed gum based biodegradable films: Effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polym. Test. 2019, 77, 105868. [Google Scholar] [CrossRef]
- Qiu, C.; Zhao, M.; McClements, D. Improving the stability of wheat protein-stabilized emulsions: Effect of pectin and xanthan gum addition. Food Hydrocoll. 2015, 43, 377–387. [Google Scholar] [CrossRef]
- Khouryieh, H.; Puli, G.; Williams, K.; Aramouni, F. Effects of xanthan—Locust bean gum mixtures on the physicochemical properties and oxidative stability of whey protein stabilized oil-in-water emulsions. Food Chem. 2015, 167, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Niknam, R.; Mousavi, M.; Kiani, H. A new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds: Extraction and comprehensive characterization. J. Food Process. Preserv. 2021, 45, e15774. [Google Scholar] [CrossRef]
- Ghashghaei, T.; Soudi, M.R.; Hoseinkhani, S. Optimization of Xanthan gum production from grape juice concentrate using placket-burman design and response surface methodology. Appl. Food Biotechnol. 2016, 3, 15–23. [Google Scholar]
- Chaharlang, M.; Samavati, V. Steady shear flow properties of Cordia myxa leaf gum as a function of concentration and temperature. Int. J. Biol. Macromol. 2015, 79, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Adeli, M.; Samavati, V. Studies on the steady shear flow behaviour and chemical properties of water—Soluble polysaccharide from Ziziphus lotus fruit. Int. J. Biol. Macromol. 2015, 72, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Salehi, F.; Kashaninejad, M.; Behshad, V. Effects of sugars and salts on rheological properties of Balangu seed (Lallemantia royleana) gum. Int. J. Biol. Macromol. 2014, 67, 16–21. [Google Scholar] [CrossRef]
- Costa, K.K.F.D.; Garcia, M.C.; Ribeiro, K.; Junior, M.S.; Caliari, M. Rheological properties of fermented rice extract with probiotic bacteria and different concentrations of waxy maize starch. LWT 2016, 72, 71–77. [Google Scholar] [CrossRef]
- Niknam, R.; Ghanbarzadeh, B.; Ayaseh, A.; Adun, P. Comprehensive study of intrinsic viscosity, steady and oscillatory shear rheology of Barhang seed hydrocolloid in aqueous dispersions. J. Food Process Eng. 2019, 42, e13047. [Google Scholar] [CrossRef]
- Niknam, R.; Mousavi, M.; Kiani, H. Intrinsic viscosity, steady and oscillatory shear rheology of a new source of galactomannan isolated from Gleditsia caspica (Persian honey locust) seeds in aqueous dispersions. Eur. Food Res. Technol. 2021, 247, 2579–2590. [Google Scholar] [CrossRef]
- Lorenzo, G.; Zaritzky, N.; Califano, A. Modeling rheological properties of low-in-fat o/w emulsions stabilized with xanthan/guar mixtures. Food Res. Int. 2008, 41, 487–494. [Google Scholar] [CrossRef]
- Chivero, P.; Gohtani, S.; Yoshii, H.; Nakamura, A. Effect of xanthan and guar gums on the formation and stability of soy soluble polysaccharide oil-in-water emulsions. Food Res. Int. 2015, 70, 7–14. [Google Scholar] [CrossRef]
- Gilbert, L.; Loisel, V.; Savary, G.; Grisel, M.; Picard, C. Stretching properties of xanthan, carob, modified guar and celluloses in cosmetic emulsions. Carbohydr. Polym. 2013, 93, 644–650. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, H.; Liu, W.; Zou, L.; McClements, J. A review of the rheological properties of dilute and concentrated food emulsions. J. Texture Stud. 2019, 51, 45–55. [Google Scholar] [CrossRef]
- McClements, D.J.; Jafari, S.M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Adv. Coll. Interface Sci. 2018, 251, 55–79. [Google Scholar] [CrossRef]
- Renou, F.; Petibon, O.; Malhiac, C.; Grisel, M. Effect of xanthan structure on its interaction with locust bean gum: Toward prediction of rheological properties. Food Hydrocoll. 2013, 32, 331–340. [Google Scholar] [CrossRef]
- Dickenson, E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 2009, 23, 1473–1482. [Google Scholar] [CrossRef]
- Domian, E.; Brynda-Kopytowska, A.; Oleksza, K. Rheological properties and physical stability of o/w emulsions stabilized by OSA starch with trehalose. Food Hydrocoll. 2015, 44, 49–58. [Google Scholar] [CrossRef]
- Niknam, R.; Mousavi, M.; Kiani, H. Effect of ultrasonication on rheological aspects and storage stability of O/W emulsions containing Gleditsia caspica galactomannan—Trigonella foenum—graceum galactomannan mixtures. Appl. Food Res. 2022, 2, 100109. [Google Scholar] [CrossRef]
- Niknam; Mousavi, M.; Kiani, H. Comprehensive evaluation of emulsifying and foaming properties of Gleditsia caspica seed galactomannan as a new source of hydrocolloid: Effect of extraction method. Food Hydrocoll. 2022, 131, 107758. [Google Scholar] [CrossRef]
Sample Name | Sample Type | Hydrocolloids |
---|---|---|
A | Control | 100FG |
B | Control | 100XG |
C | Control | 50FG50XG |
D | Control | 75FG25XG |
E | Control | 25FG75XG |
F | Microwave treated | 100FG |
G | Microwave treated | 100XG |
H | Microwave treated | 50FG50XG |
I | Microwave treated | 75FG25XG |
J | Microwave treated | 25FG75XG |
K | Ultrasound treated | 100FG |
L | Ultrasound treated | 100XG |
M | Ultrasound treated | 50FG50XG |
N | Ultrasound treated | 75FG25XG |
O | Ultrasound treated | 25FG75XG |
Samples | Power Law Model | Herschel—Bulkley Model | ||||||
---|---|---|---|---|---|---|---|---|
Kp (Pa.sn) | nP | R2 | RMSE | σ0 (Pa) | kH (Pa.sn) | R2 | RMSE | |
A | 2.70 ± 0.06 | 0.98 ± 0.12 | 0.99 | 0.00015 | 1.98 ± 0.37 | 2.30 ± 0.12 | 0.91 | 0.00185 |
B | 0.98 ±0.02 | 0.94 ± 0.08 | 0.98 | 0.00217 | 0.50 ± 0.29 | 0.72 ± 0.24 | 0.91 | 0.00415 |
C | 2.34 ± 0.22 | 0.96 ± 0.21 | 0.98 | 0.00219 | 1.64 ± 0.74 | 2.11 ± 0.31 | 0.90 | 0.00562 |
D | 2.98 ± 0.41 | 0.99 ± 0.47 | 0.99 | 0.00012 | 1.69 ± 0.39 | 2.25 ± 0.52 | 0.89 | 0.00985 |
E | 1.66 ± 0.18 | 0.95 ± 0.19 | 0.97 | 0.00326 | 0.85 ± 0.17 | 1.31 ± 0.09 | 0.90 | 0.00511 |
F | 4.60 ± 0.37 | 0.71 ± 0.05 | 0.99 | 0.00005 | 3.89 ± 0.18 | 4.12 ± 0.25 | 0.90 | 0.00489 |
G | 1.96 ± 0.11 | 0.76 ± 0.08 | 0.98 | 0.00036 | 0.81 ± 0.24 | 1.26 ± 0.31 | 0.88 | 0.00891 |
H | 3.78 ± 0.64 | 0.74 ± 0.15 | 0.99 | 0.00018 | 2.89 ± 0.16 | 3.32 ± 0.33 | 0.89 | 0.00745 |
I | 4.69 ± 0.09 | 0.67 ± 0.05 | 0.99 | 0.00069 | 3.95 ± 0.14 | 4.27 ± 0.18 | 0.90 | 0.00488 |
J | 2.98 ± 0.34 | 0.75 ± 0.05 | 0.98 | 0.00005 | 1.78 ± 0.34 | 2.37 ± 0.47 | 0.88 | 0.00811 |
K | 6.45 ± 0.14 | 0.48 ± 0.02 | 0.99 | 0.00041 | 6.04 ± 0.17 | 6.18 ± 0.29 | 0.89 | 0.00852 |
L | 3.92 ± 0.28 | 0.57 ± 0.05 | 0.99 | 0.00036 | 2.98 ± 0.11 | 3.41 ± 0.36 | 0.91 | 0.00325 |
M | 5.96 ± 0.45 | 0.52 ± 0.08 | 0.98 | 0.00215 | 4.85 ± 0.24 | 5.55 ± 0.47 | 0.91 | 0.00258 |
N | 6.61 ± 0.71 | 0.45 ± 0.12 | 0.99 | 0.00014 | 5.60 ± 0.14 | 6.26 ± 0.39 | 0.90 | 0.00333 |
O | 4.59 ± 0.15 | 0.55 ± 0.16 | 0.97 | 0.00145 | 3.84 ± 0.11 | 4.18 ± 0.27 | 0.88 | 0.00774 |
Samples | Carraeu Model | m | |||
---|---|---|---|---|---|
η0 (Pa.s) | γc (s−1) | R2 | RMSE | ||
A | 212.30 | 3.3723 | 0.4725 | 0.9815 | 0.03756 |
B | 75.60 | 4.4546 | 0.5325 | 0.9917 | 0.07496 |
C | 150.31 | 3.6937 | 0.4817 | 0.9836 | 0.06347 |
D | 250.25 | 3.1641 | 0.3919 | 0.9914 | 0.00364 |
E | 98.36 | 4.2162 | 0.5117 | 0.9736 | 0.00147 |
F | 587.50 | 2.3515 | 0.2547 | 0.9855 | 0.04866 |
G | 103.26 | 3.9519 | 0.4950 | 0.9841 | 0.01833 |
H | 351.78 | 2.8125 | 0.3476 | 0.9936 | 0.02256 |
I | 695.36 | 1.9663 | 0.1826 | 0.9925 | 0.08856 |
J | 303.25 | 3.0149 | 0.3715 | 0.9911 | 0.00963 |
K | 887.96 | 1.7583 | 0.1537 | 0.9900 | 0.07458 |
L | 400.21 | 2.6925 | 0.3125 | 0.9815 | 0.08633 |
M | 795.38 | 1.3818 | 0.1154 | 0.9836 | 0.07745 |
N | 951.45 | 1.3563 | 0.1037 | 0.9874 | 0.00963 |
O | 491.74 | 2.4871 | 0.2811 | 0.9872 | 0.00854 |
Samples | G′ (Pa) | G″ (Pa) | Tanδ | γL (Pa) | γf (Pa) |
---|---|---|---|---|---|
(Storage Modulus) | (Loss Modulus) | (Yield Strain) | (Flow Point Strain) | ||
A | 50.32 ± 0.37 | 53.74 ± 0.22 | 1.0679 ± 0.0025 | 0.216 ± 0.003 | 0.317 ± 0.003 |
B | 46.24 ± 0.19 | 50.36 ± 0.25 | 1.0891 ± 0.0014 | 0.147 ± 0.015 | 0.216 ± 0.045 |
C | 48.79 ± 0.25 | 51.49 ± 0.08 | 1.0553 ± 0.0085 | 0.317 ± 0.048 | 0.464 ± 0.345 |
D | 52.36 ± 0.58 | 54.56 ± 0.79 | 1.0420 ± 0.0018 | 0.317 ± 0.002 | 0.464 ± 0.065 |
E | 47.98 ± 0.45 | 50.18 ± 0.06 | 1.0558 ± 0.0076 | 0.216 ± 0.004 | 0.317 ± 0.008 |
F | 53.69 ± 0.68 | 51.48 ± 0.18 | 0.9588 ± 0.0086 | 0.317 ± 0.065 | 0.464 ± 0.041 |
G | 49.98 ± 0.28 | 48.85 ± 0.49 | 0.9773 ± 0.0049 | 0.216 ± 0.009 | 0.317 ± 0.031 |
H | 51.18 ± 0.38 | 48.64 ± 0.17 | 0.9503 ± 0.0036 | 0.464 ± 0.014 | 0.682 ± 0.014 |
I | 55.18 ± 0.24 | 51.94 ± 0.06 | 0.9412 ± 0.0019 | 0.464 ± 0.065 | 0.682 ± 0.025 |
J | 50.22 ± 0.76 | 48.85 ± 0.18 | 0.9727 ± 0.0038 | 0.317 ± 0.005 | 0.464 ± 0.047 |
K | 63.38 ± 0.74 | 58.84 ± 0.26 | 0.9288 ± 0.0014 | 0.682 ± 0.087 | 1.005 ± 0.052 |
L | 52.87 ± 0.26 | 48.19 ± 0.49 | 0.9314 ± 0.0008 | 0.464 ± 0.007 | 0.682 ± 0.002 |
M | 58.25 ± 0.38 | 53.98 ± 0.07 | 0.9266 ± 0.0004 | 1.005 ± 0.014 | 1.478 ± 0.032 |
N | 65.14 ± 0.17 | 59.86 ± 0.76 | 0.9189 ± 0.0015 | 1.478 ± 0.068 | 2.160 ± 0.074 |
O | 57.65 ± 0.22 | 53.25 ± 0.04 | 0.9286 ± 0.0087 | 1.001 ± 0.008 | 1.478 ± 0.024 |
Samples | G′ (Pa) | G″ (Pa) | Tanδ | η* (Pa.s) | Slope of η*—f |
---|---|---|---|---|---|
A | 38.54 ± 0.22 | 42.85 ± 0.10 | 1.1118 ± 0.0025 | 15.37 ± 0.12 | −0.61 ± 0.03 |
B | 30.25 ± 0.14 | 40.37 ± 0.27 | 1.3345 ± 0.0014 | 12.11 ± 0.46 | −0.54 ± 0.25 |
C | 38.95 ± 0.15 | 43.11 ± 0.15 | 1.1068 ± 0.0016 | 16.49 ± 0.33 | −0.65 ± 0.71 |
D | 42.25 ± 0.18 | 44.25 ± 0.24 | 1.0473 ± 0.0075 | 18.11 ± 0.59 | −0.68 ± 0.42 |
E | 31.77 ± 0.48 | 40.88 ± 0.16 | 1.2867 ± 0.0036 | 15.22 ± 0.19 | −0.60 ± 0.32 |
F | 72.36 ± 0.28 | 61.44 ± 0.09 | 0.8490 ± 0.0018 | 18.35 ± 0.26 | −0.67 ± 0.11 |
G | 66.85 ± 0.56 | 58.26 ± 0.42 | 0.8715 ± 0.0052 | 15.60 ± 0.17 | −0.59 ± 0.24 |
H | 76.36 ± 0.38 | 64.79 ± 0.37 | 0.8484 ± 0.0036 | 19.88 ± 0.24 | −0.70 ± 0.85 |
I | 79.71 ± 0.03 | 66.25 ± 0.03 | 0.8311 ± 0.0078 | 21.35 ± 0.07 | −0.72 ± 0.41 |
J | 73.08 ± 0.34 | 62.57 ± 0.14 | 0.8561 ± 0.0096 | 17.85 ± 0.14 | −0.68 ± 0.30 |
K | 83.11 ± 0.09 | 69.77 ± 0.07 | 0.8394 ± 0.0014 | 22.34 ± 0.41 | −0.71 ± 0.55 |
L | 79.22 ± 0.18 | 68.11 ± 0.75 | 0.8597 ± 0.0035 | 19.95 ± 0.17 | −0.66 ± 0.47 |
M | 90.90 ± 0.27 | 75.37 ± 0.14 | 0.8291 ± 0.0028 | 25.33 ± 0.78 | −0.74 ± 0.15 |
N | 93.58 ± 0.14 | 76.11 ± 0.24 | 0.8133 ± 0.0051 | 30.14 ± 0.22 | −0.79 ± 0.03 |
O | 82.04 ± 0.17 | 72.18 ± 0.07 | 0.8798 ± 0.0049 | 24.11 ± 0.28 | −0.70 ± 0.17 |
Samples | First Day | After 7 Days (%) | After 14 Days (%) | After 21 Days (%) | After 28 Days (%) |
---|---|---|---|---|---|
A | 97.25 ± 0.32 | 93.25 ± 0.11 | 71.36 ± 0.06 | 56.24 ± 0.26 | 40.32 ± 0.14 |
B | 97.12 ± 0.45 | 91.48 ± 0.74 | 68.11 ± 0.35 | 48.32 ± 0.11 | 35.98 ± 0.22 |
C | 98.11 ± 0.12 | 95.32 ± 0.66 | 75.89 ± 0.14 | 60.35 ± 0.25 | 46.14 ± 0.66 |
D | 98.65 ± 0.37 | 95.88 ± 0.03 | 78.96 ± 0.12 | 64.88 ± 0.31 | 48.25 ± 0.19 |
E | 97.85 ± 0.28 | 93.48 ± 0.19 | 72.65 ± 0.48 | 59.08 ± 0.15 | 42.36 ± 0.77 |
F | 98.26 ± 0.07 | 94.11 ± 0.25 | 77.35 ± 0.64 | 63.11 ± 0.19 | 45.34 ± 0.21 |
G | 97.55 ± 0.64 | 92.13 ± 0.07 | 73.65 ± 0.11 | 52.30 ± 0.05 | 38.11 ± 0.45 |
H | 98.85 ± 0.18 | 96.11 ± 0.09 | 79.25 ± 0.48 | 67.25 ± 0.16 | 49.37 ± 0.33 |
I | 98.97 ± 0.09 | 96.85 ± 0.14 | 81.58 ± 0.79 | 69.88 ± 0.91 | 51.25 ± 0.87 |
J | 98.08 ± 0.34 | 95.90 ± 0.26 | 77.25 ± 0.56 | 61.25 ± 0.48 | 45.22 ± 0.54 |
K | 99.25 ± 0.74 | 95.92 ± 0.24 | 81.65 ± 0.55 | 70.35 ± 0.05 | 50.37 ± 0.18 |
L | 98.90 ± 0.18 | 93.25 ± 0.78 | 75.88 ± 0.07 | 61.95 ± 0.18 | 40.55 ± 0.26 |
M | 99.49 ± 0.52 | 97.77 ± 0.01 | 83.11 ± 0.91 | 71.54 ± 0.47 | 56.75 ± 0.28 |
N | 99.97 ± 0.05 | 97.98 ± 0.63 | 87.12 ± 0.15 | 78.35 ± 0.26 | 60.37 ± 0.19 |
O | 99.21 ± 0.36 | 95.98 ± 0.44 | 81.34 ± 0.36 | 70.11 ± 0.09 | 52.36 ± 0.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niknam, R.; Soudi, M.R.; Mousavi, M. Rheological and Stability Evaluation of Emulsions Containing Fenugreek Galactomannan—Xanthan Gum Mixtures: Effect of Microwave and Ultrasound Treatments. Macromol 2022, 2, 361-373. https://doi.org/10.3390/macromol2030023
Niknam R, Soudi MR, Mousavi M. Rheological and Stability Evaluation of Emulsions Containing Fenugreek Galactomannan—Xanthan Gum Mixtures: Effect of Microwave and Ultrasound Treatments. Macromol. 2022; 2(3):361-373. https://doi.org/10.3390/macromol2030023
Chicago/Turabian StyleNiknam, Rasoul, Mohammad Reza Soudi, and Mohammad Mousavi. 2022. "Rheological and Stability Evaluation of Emulsions Containing Fenugreek Galactomannan—Xanthan Gum Mixtures: Effect of Microwave and Ultrasound Treatments" Macromol 2, no. 3: 361-373. https://doi.org/10.3390/macromol2030023
APA StyleNiknam, R., Soudi, M. R., & Mousavi, M. (2022). Rheological and Stability Evaluation of Emulsions Containing Fenugreek Galactomannan—Xanthan Gum Mixtures: Effect of Microwave and Ultrasound Treatments. Macromol, 2(3), 361-373. https://doi.org/10.3390/macromol2030023