Application of Chlorella vulgaris Beijerinck as a Biostimulant for Growing Cucumber Seedlings in Hydroponics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Chlorella vulgaris Suspension and Strain Used in This Study
2.2. Preparation of Chlorella vulgaris Suspension
2.3. Preparation of Cucumber Seeds and Simple Hydroponic System
2.4. Analysis of Experimental Results
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marfá, O. Los cultivos sin suelo desde una perspectiva mediterránea. In Recirculación en Cultivos Sin Suelo; Ediciones de Horticultura: Reus, Spain, 2000; pp. 11–20. [Google Scholar]
- Sowmya, R.S.; Warke, V.G.; Mahajan, G.B.; Raut, M.R.; Annapure, U.S. Hydroponics: An Intensified Agriculture Practice to Improve Food Production. Rev. Agric. Sci. 2022, 10, 101–114. [Google Scholar]
- Ellis, N.K.; Jensen, M.; Larsen, J.; Oebker, N. Nutriculture Systems—Growing Plants Without Soil. In Station Bulletin-Dept. of Agricultural Economics; Purdue University, Agricultural Experiment Station: Lafayette, India, 1974; p. 44. [Google Scholar]
- Sardare, M.D.; Admane, S.V. A review on plant without soil. Int. J. Res. Eng. Technol. 2013, 2, 299–304. [Google Scholar]
- Beibel, J.P. Hydroponics; The Science of Growing Crops Without Soil; Florida Department of Agric. Bull: Tallahassee, FL, USA, 1960; p. 180. [Google Scholar]
- Butler, J.D.; Oebker, N.F. Hydroponics as a Hobby—Growing Plants without Soil; Circular 844; Information Office, College of Agriculture, University of Illinois: Urbana, IL, USA, 2006. [Google Scholar]
- Macwan, J.; Pandya, D.; Pandya, H. Review on soilless method of cultivation: Hydroponics. Int. J. Recent Sci. Res. 2020, 11, 37122–37127. [Google Scholar]
- Orsini, F.; Kahane, R.; Nono-Womdim, R.; Gianquinto, G. Urban agriculture in the developing world: A review. Agron. Sustain. Dev. 2013, 33, 695–720. [Google Scholar] [CrossRef]
- Khan, S.; Purohit, A.; Vadsaria, N. Hydroponics: Current and future state of the art in farming. J. Plant Nutr. 2020, 44, 1515–1538. [Google Scholar] [CrossRef]
- Hershey, D.R. Solution Culture Hydroponics: History & Inexpensive Equipment. Am. Biol. Teach. 1994, 56, 111–118. [Google Scholar] [CrossRef]
- Baudoin, W.O.; Winsor, G.W.; Schwarz, M. Soilless Culture for Horticultural Crop Production; FAO Plant Production and Protection Paper; FAO: Rome, Italy, 1990; Volume 101, 202p. [Google Scholar]
- Araghian, S.; Bagherzadeh, A.; Sadrabadi, R. Effect of brown algae and vermicompost application on some cherry tomato traits in hydroponic system. Agroecol. J. 2015, 10, 77–83. [Google Scholar]
- Schwarz, D.; Krienitz, L. Do Algae Cause Growth-Promoting Effects on Vegetables and Growth Hydroponically; International Potash Institute: Beijing, China, 2004; pp. 161–170. [Google Scholar]
- Zhang, J.; Wang, X.; Zhou, Q. Co-cultivation of Chlorella spp and tomato in a hydroponic system. Biomass Bioenergy 2016, 97, 132–138. [Google Scholar] [CrossRef]
- Ördög, V. Beneficial effects of microalgae and cyanobacteria in plant/soil-systems, with special regard to their auxin- and cytokinin-like activity. In Proceedings of the International Workshop and Training Course on Microalgal Biology and Biotechnology, Mosonmagyaròvàr, Hungary, 13–26 June 1999; p. 43. [Google Scholar]
- Van Staden, J. Occurrence and Potential Physiological Effects of Algal Plant Growth Regulators. In Proceedings of the International Workshop and Training Course on Microalgal Biology and Biotechnology, Mosonmagyarovar, Hungary, 13–26 of June 1999; p. 40. [Google Scholar]
- Mazur, H.; Konop, A.; Synak, R. Indole-3-acetic acid in the culture medium of two axenic green microalgae. J. Appl. Phycol. 2001, 13, 35–42. [Google Scholar] [CrossRef]
- Tarakhovskaya, E.R.; Maslov, Y.I.; Shishova, M.F. Phytohormones in algae. Russ. J. Plant Physiol. 2007, 54, 163–170. [Google Scholar] [CrossRef]
- Stirk, W.; Bálint, P.; Tarkowská, D.; Novák, O.; Strnad, M.; Ördög, V.; van Staden, J. Hormone profiles in microalgae: Gibberellins and brassinosteroids. Plant Physiol. Biochem. 2013, 70, 348–353. [Google Scholar] [CrossRef]
- Stirk, W.A.; Ördög, V.; Novák, O.; Rolèík, J.; Strnad, M.; Bálint, P.; Staden, J. Auxin and cytokinin relationships in 24 microalgal strains. J. Phycol. 2013, 49, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xu, J. Phytohormones in microalgae: A new opportunity for microalgal biotechnology? Trends Plant Sci. 2015, 20, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Kapoore, R.V.; Wood, E.E.; Llewellyn, C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef] [PubMed]
- Addy, M.M.; Kabir, F.; Zhang, R.; Lu, Q.; Deng, X.; Current, D.; Griffith, R.; Ma, Y.; Zhou, W.; Chen, P.; et al. Co-cultivation of microalgae in aquaponic systems. Bioresour. Technol. 2017, 245, 27–34. [Google Scholar] [CrossRef]
- Borowitzka, M.A. Microalgae as sources of pharmaceutical and other biologically active compounds. J. Appl. Phycol. 1995, 7, 3–15. [Google Scholar] [CrossRef]
- Ravina, I.; Paz, E.; Sofer, Z.; Marm, A.; Schischa, A.; Sagi, G.; Yechialy, Z.; Lev, Y. Control of clogging in drip irrigation with stored treated municipal sewage effluent. Agric. Water Manag. 1997, 33, 127–137. [Google Scholar] [CrossRef]
- Huizebos, E.M.; Adema, D.M.M.; Dirven-van Breemen, E.M.; Henzen, L.; van Dis, W.A.; Herbold, H.A.; Hoekstra, J.A.; Baerselman, R.; van Gestel, C.A.M. Phytotoxicity studies with Latuca sativa in soil and nutrient solution. Environ. Toxicol. Chem. 1993, 12, 1079–1094. [Google Scholar] [CrossRef]
- Gonzales, L.E.; Canizares, R.O.; Baena, S. Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorealla vulgaris and Scenedesmus. Bioresour. Technol. 1997, 60, 259–262. [Google Scholar] [CrossRef]
- Yamaguchi, K. Recent advances in microalgal bioscience in Japan, with special reference to utilization of biomass and metabolites: A review. J. Appl. Phycol. 1996, 8, 487–502. [Google Scholar] [CrossRef]
- Lee, K.; Lee, C.-G. Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol. Bioprocess Eng. 2001, 6, 194–199. [Google Scholar] [CrossRef]
- Jeon, J.K. Effect of Chlorella addition on the quality of processed cheese. J. Korean Soc. Food. Sci. Nutr. 2006, 35, 373–377. [Google Scholar]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isamber, A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Barrow, C.; Shahidi, F. Marine Nutraceuticals and Functional Foods; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2007; pp. 1–196. [Google Scholar]
- Sheih, I.-C.; Fang, T.J.; Wu, T.-K.; Lin, P.-H. Anticancer and Antioxidant Activities of the Peptide Fraction from Algae Protein Waste. J. Agric. Food Chem. 2009, 58, 1202–1207. [Google Scholar] [CrossRef]
- Beheshtipour, H.; Mortazavian, A.M.; Mohammadi, R.; Sohrabvandi, S.; Khosravi-Darani, K. Supplementation of Spirulina platensis and Chlorella vulgaris Algae into Probiotic Fermented Milks. Compr. Rev. Food Sci. Food Saf. 2013, 12, 144–154. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.-Y.; Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Coronado-Reyes, J.A.; Salazar-Torres, J.A.; Juárez-Campos, B.; González-Hernández, J.C. Chlorella vulgaris, a microalgae important to be used in Biotechnology: A review. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Leng, S.; Jiao, H.; Liu, T.; Pan, W.; Chen, J.; Chen, J.; Huang, H.; Peng, H.; Wu, Z.; Leng, L.; et al. Co-liquefaction of Chlorella and soybean straw for production of bio-crude: Effects of reusing aqueous phase as the reaction medium. Sci. Total Environ. 2022, 820, 153348. [Google Scholar] [CrossRef] [PubMed]
- Gitau, M.M.; Farkas, A.; Balla, B.; Ördög, V.; Futó, Z.; Maróti, G. Strain-Specific Biostimulant Effects of Chlorella and Chlamydomonas Green Microalgae on Medicago truncatula. Plants 2021, 10, 1060. [Google Scholar] [CrossRef]
- Bertoldi, F.C.; Sant’Anna, E.; Barcelos-Oliveira, J.L. Chlorella Vulgaris Cultivated in Hydroponic Wastewater. Acta Hortic. 2009, 843, 203–210. [Google Scholar] [CrossRef]
- Yousif, Y.I.D.; Mohamed, E.S.; El-Gendy, A.S. Using chlorella vulgaris for nutrient removal from hydroponic wastewater: Experimental investigation and economic assessment. Water Sci. Technol. 2022, 85, 3240–3258. [Google Scholar] [CrossRef] [PubMed]
- Žunić, V.; Jafari, T.H.; Grabić, J.; Đurić, S.; Stamenov, D. Hydroponic systems: Exploring the balance between co-cultivation of Chlorella vulgaris and Swiss chard (Beta vulgaris L. subsp. cicla). J. Appl. Phycol. 2022, 34, 903–913. [Google Scholar] [CrossRef]
- Dasgan, H.Y.; Kacmaz, S.; Arpaci, B.B.; Ikiz, B.; Gruda, N.S. Biofertilizers Improve the Leaf Quality of Hydroponically Grown Baby Spinach (Spinacia oleracea L.). Agronomy 2023, 13, 575. [Google Scholar] [CrossRef]
- Fimbres-Acedo, Y.E.; Servín-Villegas, R.; Garza-Torres, R.; Endo, M.; Fitzsimmons, K.M.; Emerenciano, M.G.C.; Magal-lón-Servín, P.; López-Vela, M.; Magallón-Barajas, F.J. Hydroponic horticulture using residual waters from Oreochromis niloticus aquaculture with biofloc technology in photoautotrophic conditions with Chlorella microalgae. Aquacult. Res. 2020, 51, 4340–4360. [Google Scholar] [CrossRef]
- Ergun, O.; Dasgan, H.; Isık, O. Effects of microalgae Chlorella vulgaris on hydroponically grown lettuce. Acta Hortic. 2020, 1273, 169–176. [Google Scholar] [CrossRef]
- Mallick, P.K. Evaluating Potential Importance of Cucumber (Cucumis sativus L.—Cucurbitaceae): A Brief Review. Int. J. Appl. Sci. Biotechnol. 2022, 10, 12–15. [Google Scholar] [CrossRef]
- Mikherjee, P.K.; Neema, N.K.; Maity, N.; Sarkar, B.K. Phytochemical and Therapeutic Potential of Cucumber; Elsevier: Amsterdam, The Netherlands, 2013; Volume 84, pp. 227–236. [Google Scholar]
- Tatlioglu, T. 13—Cucumber: Cucumis sativus L. In Genetic Improvement of Vegetable Crops; Kalloo, G., Bergh, B.O., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 197–234. [Google Scholar]
- Sharma, V.; Sharma, L.; Sandhu, K.S. Cucumber (Cucumis sativus L.). In Antioxidants in Vegetables and Nuts—Properties and Health Benefits; Nayik, G.S., Gull, A., Eds.; Springer: Singapore, 2020; pp. 333–340. [Google Scholar]
- Wilcox, G.L.; Offer, U.S.; Omojola, J.T. Profitability of Cucumber (Cucumis sativa L.) Production in local Government Area of River State, Nigeria. J. Adv. Stud. Agric. Biol. Environ. Sci. 2016, 2, 1–6. [Google Scholar]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. Evid.-Based Complement. Altern. Med. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Beijerinck, M.W. Culturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen. Ztg. Bot. 1890, 45, 725–785. [Google Scholar]
- Guiry, M.D.; Guiry, G.M.; AlgaeBase. World-Wide Electronic Publication, National University of Ireland, Galway. 28 January 2022. Available online: https://www.algaebase.org (accessed on 20 March 2023).
- Bischoff, H.W.; Bold, H.C. Phycological Stydies IV. Some Soil Algae from Enchanted Rock and Related Algal Species; University of Texas: Austin, TX, USA, 1963. [Google Scholar]
- Bold, H.C. The cultivation of algae. Bot. Rev. 1942, 8, 69–138. [Google Scholar] [CrossRef]
- Abdulganieva, D.I.; Bombina, L.K.; Nazarova, M.D.; Khalfina, T.N. On the occasion of the 140th anniversary of the birth of the Professor N.K. Goryaev. Russ. J. Hematol. Transfusiol. 2016, 61, 164–166. [Google Scholar]
- Webster, R. Statistics to support soil research and their presentation. Eur. J. Soil Sci. 2001, 52, 331–340. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, L.; Dixon, M. An upper limit for elevated root zone dissolved oxygen concentration for tomato. Sci. Hortic. 2007, 113, 162–165. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of student’s t-test, analysis of variance, and co-variance. Ann. Card. Anaesth. 2019, 22, 407. [Google Scholar] [CrossRef] [PubMed]
- Leskovar, D.I.; Stofella, P.J. Vegetable Seedling Root Systems: Morphology, Development, and Importance. HortScience 1995, 30, 1153–1159. [Google Scholar] [CrossRef]
- Yang, C.; Yang, L.; Yang, Y.; Ouyang, Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric. Water Manag. 2004, 70, 67–81. [Google Scholar] [CrossRef]
- Samejima, H.; Kondo, M.; Ito, O.; Nozoe, T.; Shinano, T.; Osaki, M. Characterization of root systems with respect to morphological traits and nitrogen-absorbing ability in new plant type of tropical rice lines. J. Plant Nutr. 2005, 28, 845–850. [Google Scholar] [CrossRef]
- Wang, H.; Inukai, Y.; Yamauchi, A. Root development and nutrient uptake. Crit. Rev. Plant Sci. 2006, 25, 279–301. [Google Scholar] [CrossRef]
- Yang, L.X.; Wang, Y.L.; Kobayashi, K.; Zhu, J.G.; Huang, J.Y.; Yang, H.J.; Wang, Y.X.; Dong, G.C.; Liu, G.; Han, Y.; et al. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on growth, morphology and physiology of rice root at three levels of nitrogen fertilization. Glob. Chang. Biol. 2008, 14, 1–10. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Zhang, J. Root Morphology and Physiology in Relation to the Yield Formation of Rice. J. Integr. Agric. 2012, 11, 920–926. [Google Scholar] [CrossRef]
- Barber, S.A.; Silberbush, M. Plant root morphology and nutrient uptake. In Roots, Nutrient and Water Influx, and Plant Growth; Barber, S.A., Bouldin, D.R., Eds.; ASA, CSSA, and SSSA: Madison, WI, USA, 1984; pp. 65–85. [Google Scholar]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 110, pp. 251–331. [Google Scholar]
- Gregory, P.J. Root growth and activity. In Physiology and Determination of Crop Yield; Peterson, G.A., Ed.; ASA, CSSA, and SSSA: Madison, WI, USA, 1994; pp. 65–93. [Google Scholar]
- Uyar, G.E.; Mısmıl, N. Symbiotic association of microalgae and plants in a deep water culture system. PeerJ 2022, 10, e14536. [Google Scholar] [CrossRef] [PubMed]
- Martini, F.; Beghini, G.; Zanin, L.; Varanini, Z.; Zamboni, A.; Ballottari, M. The potential use of Chlamydomonas reinhardtii and Chlorella sorokiniana as biostimulants on maize plants. Algal Res. 2021, 60, 102515. [Google Scholar] [CrossRef]
- Bumandalai, O. Effect of Chlorella vulgaris as a biofertilizer on germination of tomato and cucumber seeds. Int. J. Aquat. Biol. 2019, 7, 95–99. [Google Scholar] [CrossRef]
- Supraja, K.V.; Behera, B.; Balasubramanian, P. Performance evaluation of hydroponic system for co-cultivation of microalgae and tomato plant. J. Clean. Prod. 2020, 272, 122823. [Google Scholar] [CrossRef]
- Barone, V.; Baglieri, A.; Stevanato, P.; Broccanello, C.; Bertoldo, G.; Bertaggia, M.; Cagnin, M.; Pizzeghello, D.; Moliterni, V.M.C.; Mandolino, G.; et al. Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). J. Appl. Phycol. 2017, 30, 1061–1071. [Google Scholar] [CrossRef]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Dvoretsky, D.; Dvoretsky, S.; Temnov, M.; Markin, I.; Akulinin, E.; Golubyatnikov, O.; Ustinskaya, Y.; Eskova, M. Experimental research into the antibiotic properties of Chlorella vulgaris algal exometabolites. Chem. Eng. Trans. 2019, 74, 1429–1434. [Google Scholar]
- Almalki, M.A.; Khalifa, A.Y.; Alkhamis, Y.A. In vitro Antibiosis of Chlorella vulgaris Extract against the Phytopathogen, Stenotrophomonas maltophilia. J. Pure Appl. Microbiol. 2022, 16, 630–638. [Google Scholar] [CrossRef]
- Schwarz, D.; Gross, W. Algae affecting lettuce growth in hydroponic systems. J. Hortic. Sci. Biotechnol. 2004, 79, 554–559. [Google Scholar] [CrossRef]
- Burja, A.M.; Tamagnini, P.; Bustard, M.T.; Wright, P.C. Identification of the green alga, Chlorella vulgaris (SDC1), using cyanobacteria-derived 16S rDNA primers: Targeting the chloroplast. FEMS Microbiol. Lett. 2001, 202, 195–203. [Google Scholar] [CrossRef]
- Xu, J.; Hu, H. Screening high oleaginous Chlorella strains from different climate zones. Bioresour. Technol. 2013, 144, 637–643. [Google Scholar] [CrossRef] [PubMed]
- Sakarika, M.; Kornaros, M. Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: Effect of different nutrient limitation strategies. Bioresour. Technol. 2017, 243, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Lakaniemi, A.-M.; Intihar, V.M.; Tuovinen, O.H.; Puhakka, J.A. Growth of Chlorella vulgaris and associated bacteria in photobioreactors. Microb. Biotechnol. 2011, 5, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Mócsai, R.; Figl, R.; Troschl, C.; Strasser, R.; Svehla, E.; Windwarder, M.; Thader, A.; Altmann, F. N-glycans of the microalga Chlorella vulgaris are of the oligomannosidic type but highly methylated. Sci. Rep. 2019, 9, 331. [Google Scholar] [CrossRef]
- Matho, C.; Schwarzenberger, K.; Eckert, K.; Keshavarzi, B.; Walther, T.; Steingroewer, J.; Krujatz, F. Bio-compatible flotation of Chlorella vulgaris: Study of zeta potential and flotation efficiency. Algal Res. 2019, 44, 101705. [Google Scholar] [CrossRef]
- Oleinikova, D.V.; Sukhanova, N.V. The use of Chlorella vulgaris Beijer. suspension as a growth stimulator of greenhouse crops. Modern aspects of the study of plant ecology. In Proceedings of the VII International Youth Competition-Conference, M. Akmullah Bashkir State Pedagogical University, Ufa, Russia, 16–18 April 2019; pp. 67–72. [Google Scholar]
- Müller, J.; Friedl, T.; Hepperle, D.; Lorenz, M.; Day, J.G. Distinction between multiple isolates of Chlorella vulgaris (Chlorophyta, Trebouxiophyceae) and testing for conspecificity using amplified fragment length polymorphism and its rDNA sequences. J. Phycol. 2005, 41, 1236–1247. [Google Scholar] [CrossRef]
Variant of Experiment | Xmin | Xmax | X ± S | σ | Me | CV, % | t |
---|---|---|---|---|---|---|---|
Shoots length, cm | |||||||
Knop medium | 8.00 | 15.20 | 11.30 ± 0.18 | 1.77 | 11.30 | 15.66 | - |
Chlorella suspension | 4.80 | 13.50 | 8.15 ± 0.19 | 1.92 | 8.15 | 23.44 | 12.07 * |
Roots length, cm | |||||||
Knop medium | 8.00 | 27.10 | 16.41 ± 0.38 | 3.80 | 16.05 | 23.09 | - |
Chlorella suspension | 4.40 | 19.90 | 10.59 ± 0.34 | 3.44 | 10.35 | 32.51 | 11.38 * |
Shoots dry biomass, g | |||||||
Knop medium | 0.28 | 0.77 | 0.50 ± 0.01 | 0.11 | 0.49 | 21.00 | - |
Chlorella suspension | 0.36 | 0.90 | 0.53 ± 0.01 | 0.11 | 0.49 | 21.72 | 1.48 |
Roots dry biomass, g | |||||||
Knop medium | 0.001 | 0.12 | 0.04 ± 0.003 | 0.03 | 0.04 | 59.60 | - |
Chlorella suspension | 0.02 | 0.11 | 0.05 ± 0.002 | 0.02 | 0.05 | 37.02 | 2.31 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vildanova, G.I.; Allaguvatova, R.Z.; Kunsbaeva, D.F.; Sukhanova, N.V.; Gaysina, L.A. Application of Chlorella vulgaris Beijerinck as a Biostimulant for Growing Cucumber Seedlings in Hydroponics. BioTech 2023, 12, 42. https://doi.org/10.3390/biotech12020042
Vildanova GI, Allaguvatova RZ, Kunsbaeva DF, Sukhanova NV, Gaysina LA. Application of Chlorella vulgaris Beijerinck as a Biostimulant for Growing Cucumber Seedlings in Hydroponics. BioTech. 2023; 12(2):42. https://doi.org/10.3390/biotech12020042
Chicago/Turabian StyleVildanova, Galiya I., Rezeda Z. Allaguvatova, Dina F. Kunsbaeva, Natalia V. Sukhanova, and Lira A. Gaysina. 2023. "Application of Chlorella vulgaris Beijerinck as a Biostimulant for Growing Cucumber Seedlings in Hydroponics" BioTech 12, no. 2: 42. https://doi.org/10.3390/biotech12020042
APA StyleVildanova, G. I., Allaguvatova, R. Z., Kunsbaeva, D. F., Sukhanova, N. V., & Gaysina, L. A. (2023). Application of Chlorella vulgaris Beijerinck as a Biostimulant for Growing Cucumber Seedlings in Hydroponics. BioTech, 12(2), 42. https://doi.org/10.3390/biotech12020042