Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm
Abstract
:1. Introduction
2. IVF-Based Production of Gene-Engineered Animals
3. IVF vs. AI
4. SMGT-AI-Mediated Genome Editing (SMGT-AI-GE)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAV | Adeno-associated viruses |
ABEs | Adenine BEs |
AI | Artificial insemination |
AIMAs | Anti-inhibin monoclonal antibodies |
AIS | Anti-inhibin serum |
ART | Assisted reproduction technologies |
BDD-hFVIII cDNA | Human clotting factor VIII cDNA with B-domain deleted |
BE | Base editing (or editor) |
BSA | Bovine serum albumin |
Cas9 | CRISPR-associated protein 9 |
CBEs | Cytosine BEs |
CRISPR | Clustered regularly interspaced short palindromic repeats |
Dmd | Duchenne muscular dystrophy |
DMSO | Dimethyl sulfoxide |
DSBs | Double-strand breaks |
dsDNA | Double-stranded DNA |
EFM | Electrolyte-free medium |
EGFP | Enhanced green fluorescent protein |
EP | Electroporation |
eSpCas9 | Enhanced specificity Streptococcus pyogenes-derived Cas9 |
ET | Egg transfer |
evopreQ1 | Structured RNA motifs |
GE | Genome-edited |
GFP | Green fluorescent protein |
GONAD | Genome editing via oviductal nucleic acid delivery |
gRNA | Guide RNA |
hCG | Human chorionic gonadotropin |
HDR | Homology-directed repair |
hLF | Human lactoferrin |
Hoxd13 | Homeobox D13 |
HTF | Human tubular fluid |
IASe | AIS and equine chorionic gonadotropin |
i-GONAD | Improved GONAD |
IOTS | Intraoviductal transfer of spermatozoa |
indels | Nucleotide insertions or deletions |
ITS | Intrabursal transfer of sperm |
IVF | In vitro fertilization |
mAb C | Monoclonal antibody C |
mNSET™ | Non-Surgical Embryo and Sperm Transfer™ |
KO | Knockout |
MBCD | Methyl β-cyclodextrin |
MBCD-SMGT | Methyl β-cyclodextrin-sperm-mediated gene transfer |
MagNPs | Magnetic nanoparticles |
MI | Microinjection |
nCas9 | Cas9 nickase |
NHEJ | Nonhomologous end-joining |
PAM | Protospacer adjacent motif |
PE | Primer editing |
pegRNA | Prime editing guide RNA |
PMSG | Pregnant mare’s serum gonadotropin |
REMI | Restriction enzyme-mediated insertion |
REMI-SMGT | Restriction enzyme mediated integration SMGT |
RNP | Ribonucleoprotein |
ROS | Reactive oxygen species |
SMGT-AI | SMGT-based AI |
SMGT-AI-GE | SMGT-AI-mediated genome editing |
TALENs | Transcription activator-like effector nucleases |
Tg | Transgenic |
Tyr | Tyrosinase |
ZFNs | Zinc-finger nucleases |
ZIF-8 | Zeolitic imidazolate framework-8 |
ZP | Zona pellucida |
References
- Ménoret, S.; Fontanière, S.; Jantz, D.; Tesson, L.; Thinard, R.; Rémy, S.; Usal, C.; Ouisse, L.-H.; Fraichard, A.; Anegon, I. Generation of Rag1-knockout immunodeficient rats and mice using engineered meganucleases. FASEB J. 2013, 27, 703–711. [Google Scholar] [CrossRef]
- Geurts, A.M.; Cost, G.J.; Freyvert, Y.; Zeitler, B.; Miller, J.C.; Choi, V.M.; Jenkins, S.S.; Wood, A.; Cui, X.; Meng, X.; et al. Knockout rats via embryo microinjection of zinc-finger nucleases. Science 2009, 325, 433. [Google Scholar] [CrossRef]
- Meyer, M.; de Angelis, M.H.; Wurst, W.; Kühn, R. Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc. Natl. Acad. Sci. USA 2010, 107, 15022–15026. [Google Scholar] [CrossRef]
- Carbery, I.D.; Ji, D.; Harrington, A.; Brown, V.; Weinstein, E.J.; Liaw, L.; Cui, X. Targeted genome modification in mice using zinc-finger nucleases. Genetics 2010, 186, 451–459. [Google Scholar] [CrossRef]
- Sander, J.D.; Cade, L.; Khayter, C.; Reyon, D.; Peterson, R.T.; Joung, J.K.; Yeh, J.-R.J. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 2011, 29, 697–698. [Google Scholar] [CrossRef]
- Tesson, L.; Usal, C.; Ménoret, S.; Leung, E.; Niles, B.J.; Remy, S.; Santiago, Y.; Vincent, A.I.; Meng, X.; Zhang, L.; et al. Knockout rats generated by embryo microinjection of TALENs. Nat. Biotechnol. 2011, 29, 695–696. [Google Scholar] [CrossRef]
- Carlson, D.F.; Tan, W.; Lillico, S.G.; Stverakova, D.; Proudfoot, C.; Christian, M.; Voytas, D.F.; Long, C.R.; Whitelaw, C.B.A.; Fahrenkrug, S.C. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. USA 2012, 109, 17382–17387. [Google Scholar] [CrossRef]
- Clark, J.F.; Dinsmore, C.J.; Soriano, P. A most formidable arsenal: Genetic technologies for building a better mouse. Genes. Dev. 2020, 34, 1256–1286. [Google Scholar] [CrossRef]
- Galichet, C.; Lovell-Badge, R. Applications of genome editing on laboratory animals. Lab. Anim. 2022, 56, 13–25. [Google Scholar] [CrossRef]
- Kurosaki, T.; Maquat, L.E. Nonsense-mediated mRNA decay in humans at a glance. J. Cell Sci. 2016, 129, 461–467. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Maruyama, T.; Dougan, S.K.; Truttmann, M.C.; Bilate, A.M.; Ingram, J.R.; Ploegh, H.L. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 2015, 33, 538–542. [Google Scholar] [CrossRef]
- Chu, V.T.; Weber, T.; Wefers, B.; Wurst, W.; Sander, S.; Rajewsky, K.; Kühn, R. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 2015, 33, 543–548. [Google Scholar] [CrossRef]
- Aoshima, T.; Kobayashi, Y.; Takagi, H.; Iijima, K.; Sato, M.; Takabayashi, S. Modification of improved-genome editing via oviductal nucleic acids delivery (i-GONAD)-mediated knock-in in rats. BMC Biotechnol. 2021, 21, 63. [Google Scholar] [CrossRef]
- Kantor, A.; McClements, M.E.; MacLaren, R.E. CRISPR-Cas9 DNA base-editing and prime-editing. Int. J. Mol. Sci. 2020, 21, 6240. [Google Scholar] [CrossRef]
- Caso, F.; Davies, B. Base editing and prime editing in laboratory animals. Lab. Anim. 2021, 56, 35–49. [Google Scholar] [CrossRef]
- Kim, K.; Ryu, S.M.; Kim, S.T.; Baek, G.; Kim, D.; Lim, K.; Chung, E.; Kim, S.; Kim, J.-S. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 2017, 35, 435–437. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, G. Current advancement in the application of prime editing. Front. Bioeng. Biotechnol. 2023, 11, 1039315. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; He, S.; Huang, S.; Li, C.; Chen, Y.; Liu, Z.; Huang, X.; Wang, X. Efficient generation of mouse models with the prime editing system. Cell Discov. 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Wang, D.; Niu, W.; Shi, Z.; Wu, M.; Zhao, D.; Li, J.; Gao, X.; Zhang, Z.; Lai, L.; et al. Development of a highly efficient prime editor system in mice and rabbits. Cell Mol. Life Sci. 2023, 80, 346. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, H.; Shivalila, C.S.; Dawlaty, M.M.; Cheng, A.W.; Zhang, F.; Jaenisch, R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 2013, 153, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, H.; Shivalila, C.S.; Cheng, A.W.; Shi, L.; Jaenisch, R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 2013, 154, 1370–1379. [Google Scholar] [CrossRef] [PubMed]
- Mashiko, D.; Fujihara, Y.; Satouh, Y.; Miyata, H.; Isotani, A.; Ikawa, M. Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA. Sci. Rep. 2013, 3, 3355. [Google Scholar] [CrossRef] [PubMed]
- Fujii, W.; Kawasaki, K.; Sugiura, K.; Naito, K. Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease. Nucleic Acids Res. 2013, 41, e187. [Google Scholar] [CrossRef] [PubMed]
- Shen, B.; Zhang, J.; Wu, H.; Wang, J.; Ma, K.; Li, Z.; Zhang, X.; Zhang, P.; Huang, X. Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013, 23, 720–723. [Google Scholar] [CrossRef] [PubMed]
- Horii, T.; Arai, Y.; Yamazaki, M.; Morita, S.; Kimura, M.; Itoh, M.; Abe, Y.; Hatada, I. Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci. Rep. 2014, 4, 4513. [Google Scholar] [CrossRef] [PubMed]
- Yen, S.T.; Zhang, M.; Deng, J.M.; Usman, S.J.; Smith, C.N.; Parker-Thornburg, J.; Swinton, P.G.; Martin, J.F.; Behringer, R.R. Somatic mosaicism and allele complexity induced by CRISPR/Cas9 RNA injections in mouse zygotes. Dev. Biol. 2014, 393, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, T.; Sakuma, T.; Yamamoto, T.; Mashimo, T. Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci. Rep. 2014, 4, 6382. [Google Scholar] [CrossRef]
- Hashimoto, M.; Takemoto, T. Electroporation enables the efficient mRNA delivery into the mouse zygotes and facilitates CRISPR/Cas9-based genome editing. Sci. Rep. 2015, 5, 11315. [Google Scholar] [CrossRef]
- Qin, W.; Dion, S.L.; Kutny, P.M.; Zhang, Y.; Cheng, A.W.; Jillette, N.L.; Malhotra, A.; Geurts, A.M.; Chen, Y.-G.; Wang, H. Efficient CRISPR/Cas9-mediated genome editing in mice by zygote electroporation of nuclease. Genetics 2015, 200, 423–430. [Google Scholar] [CrossRef]
- Chen, S.; Lee, B.; Lee, A.Y.; Modzelewski, A.J.; He, L. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 2016, 291, 14457–14467. [Google Scholar] [CrossRef] [PubMed]
- Tröder, S.E.; Ebert, L.K.; Butt, L.; Assenmacher, S.; Schermer, B.; Zevnik, B. An optimized electroporation approach for efficient CRISPR/Cas9 genome editing in murine zygotes. PLoS ONE 2018, 113, e0196891. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.; Py, B.F.; Bosc, C.; Laubreton, D.; Moutin, M.J.; Marvel, J.; Flamant, F.; Markossian, S. Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing. Sci. Rep. 2018, 8, 474. [Google Scholar] [CrossRef]
- Chen, S.; Sun, S.; Moonen, D.; Lee, C.; Lee, A.Y.; Schaffer, D.V.; He, L. CRISPR-READI: Efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep. 2019, 27, 3780–3789.e4. [Google Scholar] [CrossRef]
- Miyasaka, Y.; Uno, Y.; Yoshimi, K.; Kunihiro, Y.; Yoshimura, T.; Tanaka, T.; Ishikubo, H.; Hiraoka, Y.; Takemoto, N.; Tanaka, T.; et al. CLICK: One-step generation of conditional knockout mice. BMC Genom. 2018, 19, 318. [Google Scholar] [CrossRef]
- Yoshimi, K.; Kunihiro, Y.; Kaneko, T.; Nagahora, H.; Voigt, B.; Mashimo, T. ssODN-mediated knock-in with CRISPRCas for large genomic regions in zygotes. Nat. Commun. 2016, 7, 10431. [Google Scholar] [CrossRef] [PubMed]
- Yoshimi, K.; Oka, Y.; Miyasaka, Y.; Kotani, Y.; Yasumura, M.; Uno, Y.; Hattori, K.; Tanigawa, A.; Sato, M.; Oya, M.; et al. Combi-CRISPR: Combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats. Hum. Genet. 2021, 140, 277–287. [Google Scholar] [CrossRef]
- Remy, S.; Chenouard, V.; Tesson, L.; Usal, C.; Ménoret, S.; Brusselle, L.; Heslan, J.-M.; Nguyen, T.H.; Bellien, J.; Merot, J.; et al. Generation of gene-edited rats by delivery of CRISPR/Cas9 protein and donor DNA into intact zygotes using electroporation. Sci. Rep. 2017, 7, 16554. [Google Scholar] [CrossRef]
- Honda, A.; Tachibana, R.; Hamada, K.; Morita, K.; Mizuno, N.; Morita, K.; Asano, M. Efficient derivation of knock-out and knock-in rats using embryos obtained by in vitro fertilization. Sci. Rep. 2019, 9, 11571. [Google Scholar] [CrossRef]
- Tanihara, F.; Takemoto, T.; Kitagawa, E.; Rao, S.; Do, L.T.K.; Onishi, A.; Yamashita, Y.; Kosugi, C.; Suzuki, H.; Sembon, S.; et al. Somatic cell reprogramming-free generation of genetically modified pigs. Sci. Adv. 2016, 2, e1600803. [Google Scholar] [CrossRef]
- Tanihara, F.; Hirata, M.; Nguyen, N.T.; Le, Q.A.; Hirano, T.; Takemoto, T.; Nakai, M.; Fuchimoto, D.-I.; Otoi, T. Generation of a TP53-modified porcine cancer model by CRISPR/Cas9-mediated gene modification in porcine zygotes via electroporation. PLoS ONE 2018, 13, e0206360. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, F.; Hirata, M.; Nguyen, N.T.; Le, Q.A.; Wittayarat, M.; Fahrudin, M.; Hirano, T.; Otoi, T. Generation of CD163-edited pig via electroporation of the CRISPR/Cas9 system into porcine in vitro-fertilized zygotes. Anim. Biotechnol. 2021, 32, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Jin, H.; Akasaka, E.; Miyoshi, M. In vitro electroporation in the presence of CRISPR/Cas9 reagents as a safe and useful method for producing biallelic knock out porcine embryos. OBM Genet. 2021, 5, 123. [Google Scholar] [CrossRef]
- Haraguchi, S.; Dang-Nguyen, T.Q.; Kikuchi, K.; Somfai, T. Electroporation-mediated genome editing in vitrified/warmed porcine zygotes obtained in vitro. Mol. Reprod. Dev. 2024, 91, e23712. [Google Scholar] [CrossRef]
- Takahashi, G.; Gurumurthy, C.B.; Wada, K.; Miura, H.; Sato, M.; Ohtsuka, M. GONAD: Genome-editing via Oviductal Nucleic Acids Delivery system: A novel microinjection independent genome engineering method in mice. Sci. Rep. 2015, 5, 11406. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuka, M.; Sato, M.; Miura, H.; Takabayashi, S.; Matsuyama, M.; Koyano, T.; Arifin, N.; Nakamura, S.; Wada, K.; Gurumurthy, C.B. i-GONAD: A robust method for in situ germline genome engineering using CRISPR nucleases. Genome Biol. 2018, 19, 25. [Google Scholar] [CrossRef]
- Lavitrano, M.; Camaioni, A.; Fazio, V.M.; Dolci, S.; Farace, M.G.; Spadafora, C. Sperm cells as vectors for introducing foreign DNA into eggs: Genetic transformation of mice. Cell 1989, 57, 717–723. [Google Scholar] [CrossRef]
- Brinster, R.L.; Sandgren, E.P.; Behringer, R.R.; Palmiter, R.D. No simple solution for making transgenic mice. Letters to the editor. Cell 1989, 59, 239–241. [Google Scholar] [CrossRef]
- Spadafora, C. Sperm cells and foreign DNA: A controversial relation. BioEssays 1998, 20, 955–964. [Google Scholar] [CrossRef]
- Smith, K.R. Sperm cell mediated transgenesis: A review. Anim. Biotechnol. 1999, 10, 1–13. [Google Scholar] [CrossRef]
- Sciamanna, I.; Spadafora, C. Models of transgene integration and transmission. In Sperm-Mediated Gene Transfer: Concepts and Controversies; Smith, K.R., Ed.; Bentham Science Publishers: Sharjah, United Arab Emirates, 2012; pp. 117–124. [Google Scholar]
- Osada, T.; Toyoda, A.; Moisyadi, S.; Akutsu, H.; Hattori, M.; Sakaki, Y.; Yanagimachi, R. Production of inbred and hybrid transgenic mice carrying large (>200 kb) foreign DNA fragments by intracytoplasmic sperm injection. Mol. Reprod. Dev. 2005, 72, 329–335. [Google Scholar] [CrossRef]
- Feitosa, W.B.; Mendes, C.M.; Milazzotto, M.P.; Rocha, A.M.; Martins, L.F.; Simões, R.; Paula-Lopes, F.; Visintin, J.; Assumpção, M. Exogenous DNA uptake by bovine spermatozoa does not induce DNA fragmentation. Theriogenology 2010, 74, 563–568. [Google Scholar] [CrossRef]
- Eghbalsaied, S.; Ghaedi, K.; Laible, G.; Hosseini, S.M.; Forouzanfar, M.; Hajian, M.; Oback, F.; Nasr-Esfahani, M.H.; Oback, B. Exposure to DNA is insufficient for in vitro transgenesis of live bovine sperm and embryos. Reproduction 2013, 145, 97–108. [Google Scholar] [CrossRef]
- Kang, J.H.; Hakimov, H.; Ruiz, A.; Friendship, R.M.; Buhr, M.; Golovan, S.P. The negative effects of exogenous DNA binding on porcine spermatozoa are caused by removal of seminal fluid. Theriogenology 2008, 70, 1288–1296. [Google Scholar] [CrossRef]
- Chang, K.; Qian, J.; Jiang, M.; Liu, Y.H.; Wu, M.C.; Chen, C.D.; Lai, C.-K.; Lo, H.-L.; Hsiao, C.-T.; Brown, L.; et al. Effective generation of transgenic pigs and mice by linker-based sperm-mediated gene transfer. BMC Biotechnol. 2002, 2, 5. [Google Scholar] [CrossRef]
- Zi, X.D.; Chen, S.W.; Liang, G.N.; Chen, D.W.; Zhang, D.W.; Yin, R.H. The effect of retroviral vector on uptake of human lactoferrin DNA by Yak (Bos Grunniens) spermatozoa and their fertilizability in vitro. Anim. Biotechnol. 2009, 20, 247–251. [Google Scholar] [CrossRef]
- Shen, W.; Li, L.; Pan, Q.; Min, L.; Dong, H.; Deng, J. Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method. Mol. Reprod. Dev. 2006, 73, 589–594. [Google Scholar] [CrossRef]
- Kim, T.S.; Lee, S.H.; Gang, G.T.; Lee, Y.S.; Kim, S.U.; Koo, D.B.; Shin, M.; Park, C.; Lee, D. Exogenous DNA uptake of boar spermatozoa by a magnetic nanoparticle vector system. Reprod. Domest. Anim. 2010, 45, e201–e206. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Du, W.; Liu, J.; Chen, W.; Sun, C.; Cui, B.; Zeng, Z.; Shen, Y.; Gao, F.; et al. Production of transgenic mice through sperm-mediated gene transfer using magnetic nano-carriers. J. Biomed. Nanotechnol. 2017, 13, 1673–1681. [Google Scholar] [CrossRef]
- Al-Shuhaib, M.; Al-Saadi, A.; Ewadh, M.J.; Noor, M. The efficiency of transgenesis by restriction enzyme mediated integration-sperm mediated gene transfer (REMI-SMGT). J. Biol. Agric. Health 2013, 3, 100–116. [Google Scholar]
- Sameni, M.; Moradbeigi, P.; Hosseini, S.; Ghaderian, S.M.H.; Jajarmi, V.; Miladipour, A.H.; Basati, H.; Abbasi, M.; Salehi, M. ZIF-8 nanoparticle: A valuable tool for improving gene delivery in sperm-mediated gene transfer. Biol. Proc. Online 2024, 26, 4. [Google Scholar] [CrossRef]
- Moradbeigi, P.; Hosseini, S.; Salehi, M.; Mogheiseh, A. Methyl β-cyclodextrin-sperm-mediated gene editing (MBCD-SMGE): A simple and efficient method for targeted mutant mouse production. Biol. Proced. Online 2024, 26, 3. [Google Scholar] [CrossRef]
- Kurd, S.; Hosseini, S.; Fathi, F.; Jajarmi, V.; Salehi, M. Dimethyl sulphoxide and electrolyte-free medium improve exogenous DNA uptake in mouse sperm and subsequently gene expression in the embryo. Zygote 2018, 26, 403–407. [Google Scholar] [CrossRef]
- Sato, M.; Nakamura, S. Possible production of genome-edited animals using gene-engineered sperm. In Gene Editing—Technologies and Applications; Chen, Y.-C., Chen, S.-J., Eds.; InTechOpen: Rijeka, Croatia, 2019; pp. 1–35. [Google Scholar] [CrossRef]
- Stone, B.J.; Steele, K.H.; Fath-Goodin, A. A rapid and effective nonsurgical artificial insemination protocol using the NSETTM device for sperm transfer in mice without anesthesia. Transgenic Res. 2015, 24, 775–781. [Google Scholar] [CrossRef]
- Nakagata, N. Production of normal young following insemination of frozen-thawed mouse spermatozoa into Fallopian tubes of pseudopregnant females. Jikken Dobutsu 1992, 41, 519–522. [Google Scholar] [CrossRef]
- De Repentigny, Y.; Kothary, R. An improved method for artificial insemination of mice: Oviduct transfer of spermatozoa. Trends Genet. 1996, 12, 44–45. [Google Scholar] [CrossRef]
- Sato, M.; Nagashima, A.; Watanabe, T.; Kimura, M. Comparison of intrabursal transfer of spermatozoa, a new method for artificial insemination in mice, with intraoviductal transfer of spermatozoa. J. Assist. Reprod. Genet. 2002, 19, 523–530. [Google Scholar] [CrossRef]
- Sato, M.; Kimura, M. Intrabursal transfer of spermatozoa (ITS): A new route for artificial insemination in mice. Theriogenology 2001, 55, 1881–1890. [Google Scholar] [CrossRef]
- Sato, M.; Tanigawa, M.; Watanabe, T. Effect of time of ovulation on fertilization after intrabursal transfer of spermatozoa (ITS): Improvement of a new method for artificial insemination in mice. Theriogenology 2004, 62, 1417–1429. [Google Scholar] [CrossRef]
- Leckie, P.A.; Watson, J.G.; Chaykin, S. An improved method for the artificial insemination of the mouse (Mus musculus). Biol. Reprod. 1973, 9, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.J. Nonsurgical embryo transfer protocol for use with the NSET™ device. Methods Mol. Biol. 2020, 2066, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Steele, K.H.; Hester, J.M.; Stone, B.J.; Carrico, K.M.; Spear, B.T.; Fath-Goodin, A. Nonsurgical embryo transfer device (NSET) is less stressful than surgery for embryo transfer in mice. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 17–21. [Google Scholar]
- De Repentigny, Y.; Kothary, R. Surgical artificial insemination in mice. Cold Spring Harb. Protoc. 2018, 707–710. [Google Scholar] [CrossRef]
- Behringer, R.; Gertsenstein, M.; Nagy, K.V.; Nagy, A. Manipulating the Mouse Embryo: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2014. [Google Scholar]
- Walton, E.A.; Evans, G.; Armstrong, D.T. Ovulation response and fertilization failure in immature rats induced to superovulate. J. Reprod. Fertil. 1983, 67, 91–96. [Google Scholar] [CrossRef]
- Van der Auwera, I.; Pijnenborg, R.; Koninckx, P.R. The influence of in-vitro culture versus stimulated and untreated oviductal environment on mouse embryo development and implantation. Hum. Reprod. 1999, 14, 2570–2574. [Google Scholar] [CrossRef]
- Park, S.J.; Kim, T.S.; Kim, J.M.; Chang, K.T.; Lee, H.S.; Lee, H.-S. Repeated superovulation via PMSG/hCG administration induces 2-Cys peroxiredoxins expression and overoxidation in the reproductive tracts of female mice. Mol. Cells 2015, 38, 1071–1078. [Google Scholar] [CrossRef]
- Sato, M.; Ohtsuka, M.; Nakamura, S. Intraoviductal instillation of a solution as an effective route for manipulating preimplantation mammalian embryos in vivo. In New Insights into Theriogenology; Payan-Carreira, R., Ed.; InTechOpen: Rijeka, Croatia, 2018; pp. 135–150. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Aoshima, T.; Ito, R.; Shinmura, R.; Ohtsuka, M.; Akasaka, E.; Sato, M.; Takabayashi, S. Modification of i-GONAD suitable for production of genome-edited C57BL/6 inbred mouse strain. Cells 2020, 9, 957. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, A.; Mochida, K.; Inoue, H.; Noda, Y.; Endo, T.; Watanabe, G.; Ogura, A. High-yield superovulation in adult mice by anti-inhibin serum treatment combined with estrous cycle synchronization. Biol. Reprod. 2016, 94, 21. [Google Scholar] [CrossRef]
- Hasegawa, A.; Mochida, K.; Nakamura, A.; Miyagasako, R.; Ohtsuka, M.; Hatakeyama, M.; Ogura, A. Use of anti-inhibin monoclonal antibody for increasing the litter size of mouse strains and its application to in vivo-genome editing technology. Biol. Reprod. 2022, 107, 605–618. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.; Bulian, D.; Scherb, H.; Hrabé de Angelis, M.; Schmidt, J.; Mahabir, E. Emergency prevention of extinction of a transgenic allele in a less-fertile transgenic mouse line by crossing with an inbred or outbred mouse strain coupled with assisted reproductive technologies. Reprod. Fertil. Dev. 2007, 19, 984–994. [Google Scholar] [CrossRef]
- Sankai, T.; Tsuchiya, H.; Ogonuki, N. Short-term nonfrozen storage of mouse epididymal spermatozoa. Theriogenology 2001, 55, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Takeo, T.; Tsutsumi, A.; Omaru, T.; Fukumoto, K.; Haruguchi, Y.; Kondo, T.; Nakamuta, Y.; Takeshita, Y.; Matsunaga, H.; Tsuchiyama, S.; et al. Establishment of a transport system for mouse epididymal sperm at refrigerated temperatures. Cryobiology 2012, 65, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Ishikawa, A.; Nagashima, A.; Watanabe, T.; Tada, N.; Kimura, M. Prolonged survival of mouse epididymal spermatozoa stored at room temperature. Genesis 2001, 31, 147–155. [Google Scholar] [CrossRef]
- Sato, M.; Ishikawa, A. Room temperature storage of mouse epididymal spermatozoa: Exploration of factors affecting the sperm survival. Theriogenology 2004, 61, 1455–1469. [Google Scholar] [CrossRef]
- Varisli, O.; Agca, C.; Agca, Y. Short-term storage of rat sperm in the presence of various extenders. J. Am. Assoc. Lab. Anim. Sci. 2013, 52, 732–737. [Google Scholar] [PubMed]
- Nakao, S.; Ito, K.; Sugahara, C.; Watanabe, H.; Kondoh, G.; Nakagata, N.; Takeo, T. Synchronization of the ovulation and copulation timings increased the number of in vivo fertilized oocytes in superovulated female mice. PLoS ONE 2023, 18, e0281330. [Google Scholar] [CrossRef]
- Sperandio, S.; Lulli, S.V.; Bacci, M.L.; Forni, M.; Maione, B.; Spadafora, C.; Lavitrano, M. Sperm-mediated DNA transfer in bovine and swine species. Anim. Biotechnol. 1996, 7, 59–77. [Google Scholar] [CrossRef]
- Yonezawa, T.; Furuhata, Y.; Hirabayashi, K.; Suzuki, M.; Yamanouchi, K.; Nishihara, M. Protamine-derived synthetic peptide enhances the efficiency of sperm-mediated gene transfer using liposome-peptide-DNA complex. J. Reprod. Dev. 2002, 48, 281–286. [Google Scholar] [CrossRef]
- Yina, J.; Zhang, J.J.; Shic, G.G.; Xied, S.F.; Wange, X.F.; Wang, H.L. Sperm mediated human coagulation factorVIII gene transfer and expression in transgenic mice. Swiss Med. Wkly. 2009, 139, 364–372. [Google Scholar] [CrossRef]
- Sakurai, T.; Watanabe, S.; Kamiyoshi, A.; Sato, M.; Shindo, T. A single blastocyst assay optimized for detecting CRISPR/Cas9 system-induced indel mutations in mice. BMC Biotechnol. 2014, 14, 69. [Google Scholar] [CrossRef]
- Choi, Y.H.; Toyoda, Y. Cyclodextrin removes cholesterol from mouse sperm and induces capacitation in a protein-free medium. Biol. Reprod. 1998, 59, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Mehravar, M.; Shirazi, A.; Nazari, M.; Banan, M. Mosaicism in CRISPR/Cas9-mediated genome editing. Dev. Biol. 2019, 445, 156–162. [Google Scholar] [CrossRef] [PubMed]
- DeWitt, M.A.; Corn, J.E.; Carroll, D. Genome editing via delivery of Cas9 ribonucleoprotein. Methods 2017, 121-122, 9–15. [Google Scholar] [CrossRef]
Methods Used for SMGT or Reagents | Exogenous Nucleic Acids | Animals | Outcome | References |
---|---|---|---|---|
Linker-based SMGT (LB-SMGT) | pSEAP-2 | Mice, pigs | Monoclonal antibody C (mAb C) is capable of binding to the surface antigen of sperm from all species, and exogenous DNA was used as a linker protein between the sperm and exogenous DNA. When this system was applied to porcine and mouse eggs, Tg offspring were obtained at efficiencies of 38% and 33%, respectively. | Chang et al. (2002) [56] |
DMSO-SMGT | pEGFP-N1 | Mice, rabbits | Mouse sperm were incubated in a solution containing 3% DMSO and 20 ng/µL of plasmid DNA for 10–15 min at 4 °C prior to IVF. The resulting embryos (42%) showed bright EGFP. | Shen et al. (2006) [58] |
Retroviral vector-mediated SMGT | PLNCX2 carrying hLF DNA | Yak | The complex of PLNCX2-hLF + FuGene 6 complex was used to generate transduced yak spermatozoa. Oocytes inseminated with these sperm successfully developed to the blastocyst stage, suggesting the possible generation of Tg yaks. | Zi et al. (2009) [57] |
MagNPs | pCX-EGFP/Neo | Boar | When boar sperm were incubated in the presence of 0.5% (v/v) MagNPs and plasmid DNA in a magnetic field for 90 min, and the magnetofected sperm were subjected to IVF with normal oocytes, the resulting fertilized eggs expressed EGFP. | Kim et al. (2010) [59] |
REMI-SMGT | pEGFP | Rabbits | The AI of sperm incubated with Bam HI-digested plasmid DNA which had been complexed with liposomes or DMSO resulted in the generation of 14 newborn babies, of which 3 (one by restriction enzyme—liposome treatment and two by restriction enzyme—DMSO treatment) were found to be Tg. | Al-Shuhaib et al. (2013) [61] |
MagNPs | pEGFP | Mice | Exogenous plasmid DNA loaded onto Fe3O4 magnetic nanocarriers (MagNPs) were delivered to mouse sperm cells under a magnetic field. IVF with these transfected sperms successfully led to the generation of Tg mice. | Wang et al. (2017) [60] |
EFM DMSO | pEGFP-N1 | Mice | When mouse sperm were incubated in electrolyte-free medium (EFM) or human tubular fluid (HTF) in the presence of DNA/DMSO, EFM was more effective for SMGT than HTF. | Kurd et al. (2018) [64] |
ZIF-8 | pCAG-eCAS9-GFP-U6-gRNA(pgRNA-Cas9) | Mice | When a mixture of ZIF-8 (60 ng/µL) and GFP-expressing plasmid (20 ng/µL) made by 15 min incubation was exposed to sperm for an additional 30 min incubation, and then IVF was carried out, the resulting blastocysts exhibited EGFP-derived fluorescence. | Sameni et al. (2024) [62] |
MBCD | pgRNA-Cas9 | Mice | When mouse sperm were incubated in IVF medium with 2 mM MBCD in the presence of 20 ng/µL plasmid DNA for 30 min and then the sperm suspension was subjected to IVF, the resulting blastocysts exhibited GFP expression with efficiencies of over 80%. | Moradbeigi et al. (2024) [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sato, M.; Inada, E.; Saitoh, I.; Morohoshi, K.; Nakamura, S. Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm. BioTech 2024, 13, 45. https://doi.org/10.3390/biotech13040045
Sato M, Inada E, Saitoh I, Morohoshi K, Nakamura S. Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm. BioTech. 2024; 13(4):45. https://doi.org/10.3390/biotech13040045
Chicago/Turabian StyleSato, Masahiro, Emi Inada, Issei Saitoh, Kazunori Morohoshi, and Shingo Nakamura. 2024. "Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm" BioTech 13, no. 4: 45. https://doi.org/10.3390/biotech13040045
APA StyleSato, M., Inada, E., Saitoh, I., Morohoshi, K., & Nakamura, S. (2024). Artificial Insemination as a Possible Convenient Tool to Acquire Genome-Edited Mice via In Vivo Fertilization with Engineered Sperm. BioTech, 13(4), 45. https://doi.org/10.3390/biotech13040045