Screening and Characterization of Sialic Acid-Binding Variable Lymphocyte Receptors from Hagfish
Abstract
:1. Introduction
2. Methodology
2.1. Synthesis of Sialoglycoconjugate
2.2. ELISA Screening of VLRB Library
2.3. Cloning and Expression of VLRBs in HEK293F Cells
2.4. Determination of Relative Dissociation Constant
2.5. Competitive Inhibition Assays and IC50 Determination
2.6. Western and Dot Blot Assays Using Ccombody Candidates
2.7. Molecular Docking of Ccombody Candidates Using Neu5Ac and Neu5Gc as Ligands
3. Results
3.1. Verification of Conjugation
3.2. Antibody Titration and Dissociation Constant
3.3. Competitive Inhibition and Western Blot Assays
3.4. Dot Blot Assay Using Sialoglycoproteins
3.5. Binding Interactions Between Sialic Acid and Ccombodies
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrin, B.R.; Cooper, M.D. Variable Lymphocyte Receptors; Elsevier: Amsterdam, The Netherlands, 2010; pp. 145–148. [Google Scholar] [CrossRef]
- Bajoghli, B.; Guo, P.; Aghaallaei, N.; Hirano, M.; Strohmeier, C.; McCurley, N.; Bockman, D.E.; Schorpp, M.; Cooper, M.D.; Boehm, T. A thymus candidate in lampreys. Nature 2011, 470, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Boehm, T.; Holland, S.J.; Rast, J.P.; Fontenla-Iglesias, F.; Morimoto, R.; Valadez, J.G.; Heimroth, R.D.; Hirano, M.; Cooper, M.D. Evolution of two distinct variable lymphocyte receptors in lampreys: VLRD and VLRE. Cell Rep. 2023, 42, 112933. [Google Scholar] [CrossRef] [PubMed]
- Hirano, M.; Guo, P.; McCurley, N.; Schorpp, M.; Das, S.; Boehm, T.; Cooper, M.D. Evolutionary implications of a third lymphocyte lineage in lampreys. Nature 2013, 501, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Pancer, Z.; Amemiya, C.T.; Ehrhardt, G.R.A.; Ceitlin, J.; Gartland, G.L.; Cooper, M.D. Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 2004, 430, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Im, S.P.; Lee, J.S.; Lazarte, J.M.S.; Kim, S.W.; Jung, J.W.; Kim, J.Y.; Kim, Y.R.; Lee, S.; Kim, G.J.; et al. Globular-shaped variable lymphocyte receptors B antibody multimerized by a hydrophobic clustering in hagfish. Sci. Rep. 2018, 8, 10801. [Google Scholar] [CrossRef]
- Collins, B.C.; Gunn, R.J.; McKitrick, T.R.; Cummings, R.D.; Cooper, M.D.; Herrin, B.R.; Wilson, I.A. Structural Insights into VLR Fine Specificity for Blood Group Carbohydrates. Structure 2017, 25, 1667–1678.e4. [Google Scholar] [CrossRef]
- Lajoie, J.M.; Katt, M.E.; Waters, E.A.; Herrin, B.R.; Shusta, E.V. Identification of lamprey variable lymphocyte receptors that target the brain vasculature. Sci. Rep. 2022, 12, 6044. [Google Scholar] [CrossRef]
- Saupe, F.; Reichel, M.; Huijbers, E.J.M.; Femel, J.; Markgren, P.O.; Andersson, C.E.; Deindl, S.; Danielson, U.H.; Hellman, L.T.; Olsson, A.K. Development of a novel therapeutic vaccine carrier that sustains high antibody titers against several targets simultaneously. FASEB J. 2016, 31, 1204–1214. [Google Scholar] [CrossRef]
- Umlauf, B.J.; Clark, P.A.; Lajoie, J.M.; Georgieva, J.V.; Bremner, S.; Herrin, B.R.; Kuo, J.S.; Shusta, E.V. Identification of variable lymphocyte receptors that can target therapeutics to pathologically exposed brain extracellular matrix. Sci. Adv. 2019, 5, eaau4245. [Google Scholar] [CrossRef]
- Im, S.P.; Kim, J.; Lee, J.S.; Kim, S.W.; Jung, J.W.; Lazarte, J.M.S.; Kim, J.Y.; Kim, Y.R.; Lee, J.H.; Chong, R.S.M.; et al. Potential Use of Genetically Engineered Variable Lymphocyte Receptor B Specific to Avian Influenza Virus H9N2. J. Immunol. 2018, 201, 3119–3128. [Google Scholar] [CrossRef]
- Velásquez, A.C.; Nomura, K.; Cooper, M.D.; Herrin, B.R.; He, S.Y. Leucine-rich-repeat-containing variable lymphocyte receptors as modules to target plant-expressed proteins. Plant Methods 2017, 13, 29. [Google Scholar] [CrossRef] [PubMed]
- Bela-Ong, D.B.; Kim, J.; Thompson, K.D.; Jung, T.S. Leveraging the biotechnological promise of the hagfish variable lymphocyte receptors: Tools for aquatic microbial diseases. Fish Shellfish Immunol. 2024, 150, 109565. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Lee, J.S.; Kim, J.; Im, S.P.; Kim, S.W.; Lazarte, J.M.S.; Kim, Y.R.; Chun, J.H.; Ha, M.W.; Kim, H.S.; et al. Characterization of Hagfish (Eptatretus burgeri) Variable Lymphocyte Receptor–Based Antibody and Its Potential Role in the Neutralization of Nervous Necrosis Virus. J. Immunol. 2020, 204, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Lazarte, J.M.S.; Kim, Y.R.; Lee, J.S.; Chun, J.H.; Kim, S.W.; Jung, J.W.; Kim, J.; Kayansamruaj, P.; Thompson, K.D.; Kim, H.; et al. Passive Immunization with Recombinant Antibody VLRB-PirAvp/PirBvp—Enriched Feeds against Vibrio parahaemolyticus Infection in Litopenaeus vannamei Shrimp. Vaccines 2021, 9, 55. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, J.; Im, S.P.; Kim, S.W.; Lazarte, J.M.S.; Jung, J.W.; Gong, T.W.; Kim, Y.R.; Lee, J.H.; Kim, H.J.; et al. Generation and characterization of hagfish variable lymphocyte receptor B against glycoprotein of viral hemorrhagic septicemia virus (VHSV). Mol. Immunol. 2018, 99, 30–38. [Google Scholar] [CrossRef]
- Valverde, P.; Martínez, J.D.; Cañada, F.J.; Ardá, A.; Jiménez-Barbero, J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. ChemBioChem 2020, 21, 2999–3025. [Google Scholar] [CrossRef]
- Varki, A. Biological roles of glycans. Glycobiology 2016, 27, 3–49. [Google Scholar] [CrossRef]
- Diniz, F.; Coelho, P.; Duarte, H.O.; Sarmento, B.; Reis, C.A.; Gomes, J. Glycans as Targets for Drug Delivery in Cancer. Cancers 2022, 14, 911. [Google Scholar] [CrossRef]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Cobb, B.A. Glycans in Immunologic Health and Disease. Annu. Rev. Immunol. 2021, 39, 511–536. [Google Scholar] [CrossRef]
- Ghosh, S. Sialic Acid and Biology of Life: An Introduction; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–61. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, G.; Guan, F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor. Cells 2020, 9, 273. [Google Scholar] [CrossRef] [PubMed]
- Cheeseman, J.; Kuhnle, G.; Spencer, D.I.; Osborn, H.M. Assays for the identification and quantification of sialic acids: Challenges, opportunities and future perspectives. Bioorganic Med. Chem. 2021, 30, 115882. [Google Scholar] [CrossRef] [PubMed]
- Gray, B.M. ELISA methodology for polysaccharide antigens: Protein coupling of polysaccharides for adsorption to plastic tubes. J. Immunol. Methods 1979, 28, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Abuknesha, R.A.; Jeganathan, F.; Wu, J.; Baalawy, Z. Labeling of biotin antibodies with horseradish peroxidase using cyanuric chloride. Nat. Protoc. 2009, 4, 452–460. [Google Scholar] [CrossRef] [PubMed]
- AAT Bioquest, Inc. Quest Graph™ Four Parameter Logistic (4PL) Curve Calculator; AAT Bioquest: Pleasanton, CA, USA, 2024. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Jakubec, D.; Skoda, P.; Krivak, R.; Novotny, M.; Hoksza, D. PrankWeb 3: Accelerated ligand-binding site predictions for experimental and modelled protein structures. Nucleic Acids Res. 2022, 50, W593–W597. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2023 update. Nucleic Acids Res. 2022, 51, D1373–D1380. [Google Scholar] [CrossRef]
- Murail, S.; De Vries, S.J.; Rey, J.; Moroy, G.; Tuffery, P. SeamDock: An Interactive and Collaborative Online Docking Resource to Assist Small Compound Molecular Docking. Front. Mol. Biosci. 2021, 8. [Google Scholar] [CrossRef]
- Meng, E.C.; Goddard, T.D.; Pettersen, E.F.; Couch, G.S.; Pearson, Z.J.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci. 2023, 32, e4792. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. J. Chem. Inf. Model. 2011, 51, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
- Grant, O.C.; Smith, H.M.K.; Firsova, D.; Fadda, E.; Woods, R.J. Presentation, presentation, presentation! Molecular-level insight into linker effects on glycan array screening data. Glycobiology 2013, 24, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ryu, C.; Ha, J.; Lee, J.; Kim, D.; Ji, M.; Park, C.; Lee, J.; Kim, D.; Kim, H. Structural and Quantitative Characterization of Mucin-Type O-Glycans and the Identification of O-Glycosylation Sites in Bovine Submaxillary Mucin. Biomolecules 2020, 10, 636. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Franc, V.; Heck, A.J.R. Similar Albeit Not the Same: In-Depth Analysis of Proteoforms of Human Serum, Bovine Serum, and Recombinant Human Fetuin. J. Proteome Res. 2018, 17, 2861–2869. [Google Scholar] [CrossRef]
- Rawitch, A.; Pollock, H.; Yang, S. Thyroglobulin Glycosylation: Location and Nature of the N-Linked Oligosaccharide Units in Bovine Thyroglobulin. Arch. Biochem. Biophys. 1993, 300, 271–279. [Google Scholar] [CrossRef]
- Yang, Y.; Barendregt, A.; Kamerling, J.P.; Heck, A.J.R. Analyzing Protein Micro-Heterogeneity in Chicken Ovalbumin by High-Resolution Native Mass Spectrometry Exposes Qualitatively and Semi-Quantitatively 59 Proteoforms. Anal. Chem. 2013, 85, 12037–12045. [Google Scholar] [CrossRef]
- Padra, M.; Adamczyk, B.; Benktander, J.; Flahou, B.; Skoog, E.C.; Padra, J.T.; Smet, A.; Jin, C.; Ducatelle, R.; Samuelsson, T.; et al. Helicobacter suis binding to carbohydrates on human and porcine gastric mucins and glycolipids occurs via two modes. Virulence 2018, 9, 898–918. [Google Scholar] [CrossRef]
- Neelima, N.; Sharma, R.; Rajput, Y.S.; Mann, B. Chemical and functional properties of glycomacropeptide (GMP) and its role in the detection of cheese whey adulteration in milk: A review. Dairy Sci. Technol. 2013, 93, 21–43. [Google Scholar] [CrossRef]
- Marie, A.L.; Ray, S.; Ivanov, A.R. Highly-sensitive label-free deep profiling of N-glycans released from biomedically-relevant samples. Nat. Commun. 2023, 14, 1618. [Google Scholar] [CrossRef]
- Ward, E.M.; Kizer, M.E.; Imperiali, B. Strategies and Tactics for the Development of Selective Glycan-Binding Proteins. ACS Chem. Biol. 2021, 16, 1795–1813. [Google Scholar] [CrossRef]
- Sonnenburg, J.L.; Van Halbeek, H.; Varki, A. Characterization of the Acid Stability of Glycosidically Linked Neuraminic Acid. J. Biol. Chem. 2002, 277, 17502–17510. [Google Scholar] [CrossRef] [PubMed]
- Gillmann, K.M.; Temme, J.S.; Marglous, S.; Brown, C.E.; Gildersleeve, J.C. Anti-glycan monoclonal antibodies: Basic research and clinical applications. Curr. Opin. Chem. Biol. 2023, 74, 102281. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, C.; Wang, X. Fabrication of Bio-function-Preserved Saccharide Microarray Chips with Cyanuric Chloride as a Rotatable Linker. Methods Mol. Biol. 2016, 29–42. [Google Scholar] [CrossRef]
- Liu, C.; Li, C.; Niu, Q.; Cai, C.; Li, G.; Yu, G. Fabrication of carbohydrate microarrays on poly(2-hydroxyethyl methacrylate)-cyanuric chloride-modified substrates for the analysis of carbohydrate–lectin interactions. New J. Chem. 2019, 43, 9145–9151. [Google Scholar] [CrossRef]
- Sato, D.; Wu, Z.; Fujita, H.; Lindsey, J. Design, Synthesis, and Utility of Defined Molecular Scaffolds. Organics 2021, 2, 161–273. [Google Scholar] [CrossRef]
- Compostella, F.; Pitirollo, O.; Silvestri, A.; Polito, L. Glyco-gold nanoparticles: Synthesis and applications. Beilstein J. Org. Chem. 2017, 13, 1008–1021. [Google Scholar] [CrossRef]
- Hoffmann, M.; Hayes, M.R.; Pietruszka, J.; Elling, L. Synthesis of the Thomsen-Friedenreich-antigen (TF-antigen) and binding of Galectin-3 to TF-antigen presenting neo-glycoproteins. Glycoconj. J. 2020, 37, 457–470. [Google Scholar] [CrossRef]
- Valverde, P.; Ardá, A.; Reichardt, N.C.; Jiménez-Barbero, J.; Gimeno, A. Glycans in drug discovery. MedChemComm 2019, 10, 1678–1691. [Google Scholar] [CrossRef]
- Hong, X.Z.M.; Gildersleeve, J.C.; Chowdhury, S.; Barchi, J.J.; Mariuzza, R.A.; Murphy, M.B.; Mao, L.; Pancer, Z. Sugar-Binding Proteins from Fish: Selection of High Affinity “Lambodies” That Recognize Biomedically Relevant Glycans. ACS Chem. Biol. 2012, 8, 152–160. [Google Scholar] [CrossRef]
- Ward, E.M.; Zamora, C.Y.; Schocker, N.S.; Ghosh, S.; Kizer, M.E.; Imperiali, B. Engineered Glycan-Binding Proteins for Recognition of the Thomsen–Friedenreich Antigen and Structurally Related Disaccharides. ACS Chem. Biol. 2022, 18, 70–80. [Google Scholar] [CrossRef]
- McKitrick, T.R.; Eris, D.; Mondal, N.; Aryal, R.P.; McCurley, N.; Heimburg-Molinaro, J.; Cummings, R.D. Antibodies from Lampreys as Smart Anti-Glycan Reagents (SAGRs): Perspectives on Their Specificity, Structure, and Glyco-genomics. Biochemistry 2020, 59, 3111–3122. [Google Scholar] [CrossRef] [PubMed]
- Varki, A. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. Am. J. Phys. Anthropol. 2001, 116, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Yehuda, S.; Padler-Karavani, V. Glycosylated Biotherapeutics: Immunological Effects of N-Glycolylneuraminic Acid. Front. Immunol. 2020, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shewell, L.K.; Day, C.J.; Jennings, M.P. N-glycolylneuraminic acid as a carbohydrate cancer biomarker. Transl. Oncol. 2023, 31, 101643. [Google Scholar] [CrossRef] [PubMed]
- Tommasone, S.; Allabush, F.; Tagger, Y.K.; Norman, J.; Köpf, M.; Tucker, J.H.R.; Mendes, P.M. The challenges of glycan recognition with natural and artificial receptors. Chem. Soc. Rev. 2019, 48, 5488–5505. [Google Scholar] [CrossRef]
- Zeng, F.; Gabius, H. Sialic Acid-Binding Proteins: Characterization, Biological Function and Application. Z. Naturforschung C 1992, 47, 641–653. [Google Scholar] [CrossRef]
- Soares, C.O.; Grosso, A.S.; Ereño-Orbea, J.; Coelho, H.; Marcelo, F. Molecular Recognition Insights of Sialic Acid Glycans by Distinct Receptors Unveiled by NMR and Molecular Modeling. Front. Mol. Biosci. 2021, 8, 727847. [Google Scholar] [CrossRef]
- Shilova, N.V.; Galanina, O.E.; Polyakova, S.M.; Nokel, A.Y.; Pazynina, G.V.; Golovchenko, V.V.; Patova, O.A.; Mikshina, P.V.; Gorshkova, T.A.; Bovin, N.V. Specificity of widely used lectins as probed with oligosaccharide and plant polysaccharide arrays. Histochem. Cell Biol. 2024, 162, 495–510. [Google Scholar] [CrossRef]
- Sterner, E.; Flanagan, N.; Gildersleeve, J.C. Perspectives on Anti-Glycan Antibodies Gleaned from Development of a Community Resource Database. ACS Chem. Biol. 2016, 11, 1773–1783. [Google Scholar] [CrossRef]
Candidate | Relative KD | Hill Coefficient |
---|---|---|
2D8 | 0.055 | 0.806 |
5G11 | 0.074 | 0.750 |
6D2 | 0.099 | 0.777 |
4A1 | 0.120 | 0.777 |
4A7 | 0.122 | 0.941 |
1H9 | 0.190 | 0.950 |
1A6 | 2.204 | 1.207 |
5E7 | 2.890 | 1.234 |
2C6 | 7.840 | 1.219 |
5F6 | 14.103 | 1.290 |
5F8 | 22.014 | 1.863 |
Candidate | IC50, mM | |
---|---|---|
Neu5Ac | Neu5Gc | |
4A1 | 7.02 | 8.12 |
2D8 | 9.26 | 12.07 |
6D2 | 10.26 | 10.10 |
5G11 | 17.06 | 13.91 |
Ccombody | Sialic Acid | Affinity (kcal/mol) | Hydrogen Bonding | Hydrophobic Interactions |
---|---|---|---|---|
2D8 | Neu5Ac | −4.9 | Asp-80, Hsd-58 | Tyr-60, Hsd-84, Arg-104, Tyr-106, Tyr-136, Ser-142 |
Neu5Gc | −5.0 | Gln-36, Tyr-60, Tyr-106, Ser-142 | Gln-34, Hsd-58, Hsd-84, Arg-104, Tyr-136 | |
4A1 | Neu5Ac | −5.3 | Gln-34, Gln-36, Ser-58, Hsd-60, Tyr-82, Tyr-84, Ala-112 | Tyr-113, Gly-114 |
Neu5Gc | −5.1 | Gln-34, Tyr-82, Tyr-84 | Gln-36, Ser-58, Hsd-60, Ala-112, Tyr-113, Gly-114 | |
5G11 | Neu5Ac | −5.6 | Arg-61, Trp-82, Tyr-106, Gly-161 | Hsd-108, Trp-130, Tyr-162, Tyr-163 |
Neu5Gc | −5.9 | Arg-61, Ser-84, Trp-130, Gly-161, Tyr-163 | Glu-58, Asp-60, Trp-82, Tyr-106, Hsd-108, Tyr-162 | |
6D2 | Neu5Ac | −5.2 | Asn-84, Tyr-106, Tyr-108, Val-136 | Tyr-36, Tyr-58, Tyr-137, Gly-138 |
Neu5Gc | −5.3 | Tyr-32, Asn-34, Tyr-36, Tyr-106, Tyr-108 | Tyr-58, Asn-84, Gly-138 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelia, M.R.N.; Rodelas-Angelia, A.J.D.; Yang, C.; Park, S.; Jeong, S.p.; Jang, H.; Bela-ong, D.B.; Jang, H.; Thompson, K.D.; Jung, T. Screening and Characterization of Sialic Acid-Binding Variable Lymphocyte Receptors from Hagfish. BioTech 2024, 13, 46. https://doi.org/10.3390/biotech13040046
Angelia MRN, Rodelas-Angelia AJD, Yang C, Park S, Jeong Sp, Jang H, Bela-ong DB, Jang H, Thompson KD, Jung T. Screening and Characterization of Sialic Acid-Binding Variable Lymphocyte Receptors from Hagfish. BioTech. 2024; 13(4):46. https://doi.org/10.3390/biotech13040046
Chicago/Turabian StyleAngelia, Mark Rickard N., Abigail Joy D. Rodelas-Angelia, Cheolung Yang, Sojeong Park, Seung pyo Jeong, Hyeok Jang, Dennis Berbulla Bela-ong, Hobin Jang, Kim D. Thompson, and Taesung Jung. 2024. "Screening and Characterization of Sialic Acid-Binding Variable Lymphocyte Receptors from Hagfish" BioTech 13, no. 4: 46. https://doi.org/10.3390/biotech13040046
APA StyleAngelia, M. R. N., Rodelas-Angelia, A. J. D., Yang, C., Park, S., Jeong, S. p., Jang, H., Bela-ong, D. B., Jang, H., Thompson, K. D., & Jung, T. (2024). Screening and Characterization of Sialic Acid-Binding Variable Lymphocyte Receptors from Hagfish. BioTech, 13(4), 46. https://doi.org/10.3390/biotech13040046