High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.1.1. Strains
2.1.2. Probiotic Supplements
2.2. Microbiological Methods
2.2.1. S. boulardii Reference Strains
2.2.2. Sporulation Test
Procedure of Sporulation Induction
Cells’ Ziehl-Neelsen Staining
2.2.3. The Mixtures of Lactic Acid Bacteria and Yeast Cells
2.3. MALDI-TOF Mass Spectrometry
2.4. Total Genomic DNA Extraction Procedures
2.4.1. Total Genomic DNA Isolation from Yeast Culture
2.4.2. Total Genomic DNA Isolation from Dietary Supplements and Microbial Mixtures
2.5. Quantitative Real-Time PCR—High-Resolution Melting Analysis (qPCR–HRM)
2.5.1. Applied Primer Pairs
2.5.2. qPCR Protocol
2.5.3. HRM Analysis
2.6. Statistical Analysis
3. Results
3.1. Characteristic of Saccharomyces cerevisiae var. boulardii Reference Strains
3.2. Differentiation of Saccharomyces cerevisiae Strains Using Interspecies Primer Pairs in qPCR-HRM Analysis
3.3. Differentiation of Saccharomyces cerevisiae Strains Using Intragenus Primer Pairs in qPCR-HRM Analysis
3.4. Identification of Probiotic Yeast in Dietary Supplements with qPCR-HRM Based on a Verified Set of Primer Pairs
3.5. Identification of Probiotic Yeasts in Microbial Mixtures with qPCR-Based HRM Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert Consensus Document: The International Scientific Association for Probiotics and Prebiotics Consensus Statement on the Scope and Appropriate Use of the Term Probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Fijan, S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef] [PubMed]
- Łukaszewicz, M. Saccharomyces Cerevisiae Var. Boulardii—Probiotic Yeast. In Probiotics; InTech Press: Las Vegas, NV, USA, 2012. [Google Scholar] [CrossRef]
- Fietto, J.L.R.; Araújo, R.S.; Valadão, F.N.; Fietto, L.G.; Brandão, R.L.; Neves, M.J.; Gomes, F.C.O.; Nicoli, J.R.; Castro, I.M. Molecular and Physiological Comparisons between Saccharomyces cerevisiae and Boulardii. Can. J. Microbiol. 2004, 50, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Czerucka, D.; Piche, T.; Rampal, P. Review article: Yeast as Probiotics—Saccharomyces boulardii. Aliment. Pharmacol. Ther. 2007, 26, 767–778. [Google Scholar] [CrossRef]
- Cesaro, S.; Chinello, P.; Rossi, L.; Zanesco, L. Saccharomyces cerevisiae Fungemia in a Neutropenic Patient Treated with Saccharomyces boulardii. Support. Care Cancer 2000, 8, 504–505. [Google Scholar] [CrossRef]
- Thygesen, J.B.; Glerup, H.; Tarp, B. Saccharomyces boulardii Fungemia Caused by Treatment with a Probioticum. BMJ Case Reports 2012, 27, bcr0620114412. [Google Scholar] [CrossRef]
- Santino, L.; Alari, A.; Bono, S.; Tetp, E.; Bernardini, A.; Magrini, L.; Di Somma, S.; Teggi, A. Saccharomyces cerevisiae fungemia, a possible consequence of the treatment of Clostridium difficile colitis with a probioticum. Int. J. Immunopathol. Pharmacol. 2014, 27, 143–146. [Google Scholar] [CrossRef]
- Ellouze, O.; Berthoud, V.; Mervant, M.; Parthiot, J.P.; Girard, C. Septic Shock Due to Saccharomyces boulardii. Med. Et Mal. Infect. 2016, 46, 104–105. [Google Scholar] [CrossRef]
- Kara, I.; Yıldırım, F.; Özgen, Ö.; Erganiş, S.; Aydoğdu, M.; Dizbay, M.; Gürsel, G.; Kalkanci, A. Saccharomyces cerevisiae Fungemia after Probiotic Treatment in an Intensive Care Unit Patient. J. Mycol. Med. 2018, 28, 218–221. [Google Scholar] [CrossRef]
- Cardinali, G.; Martini, A. Electrophoretic Karyotypes of Authentic Strains of the Sensu Strict0 Group of the Genus Saccharomyces? Int. J. Syst. Bacteriol. 1994, 44, 791–797. [Google Scholar] [CrossRef]
- Molnar, O.; Messner, R.; Prillinger, H.; Stahl, U.; Slavikova, E. Genotypic Identification of Saccharomyces Species Using Random Amplified Polymorphic DNA Analysis. Syst. Appl. Microbiol. 1995, 18, 136–145. [Google Scholar] [CrossRef]
- McCullough, M.J.; Clemons, K.V.; McCusker, J.H.; Stevens, D.A. Species Identification and Virulence Attributes of Saccharomyces boulardii (Nom. Inval.). J. Clin. Microbiol. 1998, 36, 2613–2617. [Google Scholar] [CrossRef] [PubMed]
- Van Der Aa Kühle, A.; Jespersen, L. The Taxonomic Position of Saccharomyces boulardii as Evaluated by Sequence Analysis of the D1/D2 Domain of 26S RDNA, the ITS1-5.8S RDNA-ITS2 Region and the Mitochondrial Cytochrome-c Oxidase II Gene. Syst. Appl. Microbiol. 2003, 26, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Kurtzman, C.P.; Robnett, C.J. Identification and Phylogeny of Ascomycetous Yeasts from Analysis of Nuclear Large Subunit (26S) Ribosomal DNA Partial Sequences. Antonie Van Leeuwenhoek 1998, 73, 331–371. [Google Scholar] [CrossRef]
- McFarland, L.V. Saccharomyces boulardii is not Saccharomyces cerevisiae. Clin. Infect. Dis. 1996, 22, 200–201. [Google Scholar] [CrossRef]
- Edwards-Ingram, L.; Gitsham, P.; Burton, N.; Warhurst, G.; Clarke, I.; Hoyle, D.; Oliver, S.G.; Stateva, L. Genotypic and Physiological Characterization of Saccharomyces boulardii, the Probiotic Strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2007, 73, 2458–2467. [Google Scholar] [CrossRef]
- Khatri, I.; Tomar, R.; Ganesan, K.; Prasad, G.S.; Subramanian, S. Complete Genome Sequence and Comparative Genomics of the Probiotic Yeast Saccharomyces boulardii. Sci. Rep. 2017, 7, 371. [Google Scholar] [CrossRef]
- Pais, P.; Oliveira, J.; Almeida, V.; Yilmaz, M.; Monteiro, P.T.; Teixeira, M.C. Transcriptome-Wide Differences between Saccharomyces cerevisiae and Saccharomyces cerevisiae Var. Boulardii: Clues on Host Survival and Probiotic Activity Based on Promoter Sequence Variability. Genomics 2021, 113, 530–539. [Google Scholar] [CrossRef]
- Mitterdorfer, G.; Mayer, H.K.; Kneifel, W.; Viernstein, H. Clustering of Saccharomyces boulardii Strains within the Species S. Cerevisiae Using Mol. Typing Techniques. J. Appl. Microbiol. 2002, 93, 521–530. [Google Scholar] [CrossRef]
- Hennequin, C.; Thierry, A.; Richard, G.F.; Lecointre, G.; Nguyen, H.V.; Gaillardin, C.; Dujon, B. Microsatellite Typing as a New Tool for Identification of Saccharomyces cerevisiae Strains. J. Clin. Microbiol. 2001, 39, 551–559. [Google Scholar] [CrossRef]
- Posteraro, B.; Sanguinetti, M.; Romano, L.; Torelli, R.; Novarese, L.; Fadda, G. Molecular Tools for Differentiating Probiotic and Clinical Strains of Saccharomyces cerevisiae. Int. J. Food Microbiol. 2005, 103, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Imre, A.; Rácz, H.V.; Antunovics, Z.; Rádai, Z.; Kovács, R.; Lopandic, K.; Pócsi, I.; Pfliegler, W.P. A New, Rapid Multiplex PCR Method Identifies Frequent Probiotic Origin among Clinical Saccharomyces Isolates. Microbiol. Res. 2019, 227, 126298. [Google Scholar] [CrossRef]
- Nadai, C.; Bovo, B.; Giacomini, A.; Corich, V. New Rapid PCR Protocol Based on High-Resolution Melting Analysis to Identify Saccharomyces cerevisiae and Other Species within Its Genus. J. Appl. Microbiol. 2018, 124, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Ripari, V.; Gänzle, M.G.; Berardi, E. Evolution of Sourdough Microbiota in Spontaneous Sourdoughs Started with Different Plant Materials. Int. J. Food Microbiol. 2016, 232, 35–42. [Google Scholar] [CrossRef]
- Bazalová, O.; Cihlář, J.Z.; Dlouhá, Z.; Bár, L.; Dráb, V.; Kavková, M. Rapid Sourdough Yeast Identification Using Panfungal PCR Combined with High Resolution Melting Analysis. J. Microbiol. Methods 2022, 199, 106522. [Google Scholar] [CrossRef] [PubMed]
- Erdem, M.; Kesmen, Z.; Özbekar, E.; Çetin, B.; Yetim, H. Application of High-Resolution Melting Analysis for Differentiation of Spoilage Yeasts. J. Microbiol. 2016, 54, 618–625. [Google Scholar] [CrossRef]
- Kesmen, Z.; Büyükkiraz, M.E.; Özbekar, E.; Çelik, M.; Özkök, F.Ö.; Kılıç, Ö.; Çetin, B.; Yetim, H. Assessment of Multi Fragment Melting Analysis System (MFMAS) for the Identification of Food-Borne Yeasts. Curr. Microbiol. 2018, 75, 716–725. [Google Scholar] [CrossRef]
- Kesmen, Z.; Özbekar, E.; Büyükkiraz, M.E. Multifragment Melting Analysis of Yeast Species Isolated from Spoiled Fruits. J. Appl. Microbiol. 2018, 124, 522–534. [Google Scholar] [CrossRef]
- Baleiras-Couto, M.M.; Eijsma, B.; Hofstra, H.; Huis In’T Veld, J.H.; Van Der Vossen, J.M. Evaluation of Molecular Typing Techniques to Assign Genetic Diversity among Saccharomyces cerevisiae Strains. Appl. Environ. Microbiol. 1996, 62, 41–46. [Google Scholar] [CrossRef]
- Valente, P.; Gouveia, C.; De Lemos, G.A.; Pimentel, D.; Van Elsas, J.D.; Mendonqa-Hagler, L.C.; Hagler, A.N. PCR Amplification of the RDNA Internal Transcribed Spacer Region for Differentiation of Saccharomyces Cultures. FEMS Microbiol. Lett. 1996, 137, 253–256. [Google Scholar] [CrossRef]
- Rekha, C.R.; Vijayalakshmi, G. Bioconversion of Isoflavone Glycosides to Aglycones, Mineral Bioavailability and Vitamin B Complex in Fermented Soymilk by Probiotic Bacteria and Yeast. J. Appl. Microbiol. 2010, 109, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Değirmencioğlu, N.; Gurbuz, O.; Şahan, Y. The Monitoring, Via an In Vitro Digestion System, of the Bioactive Content of Vegetable Juice Fermented with Saccharomyces cerevisiae and Saccharomyces boulardii. J. Food Process. Preserv. 2016, 40, 798–811. [Google Scholar] [CrossRef]
- Zamora-Vega, R.; Montañez-Soto, J.L.; Martínez-Flores, H.E.; Flores-Magallón, R.; Muñoz-Ruiz, C.V.; Venegas-González, J.; De Jesús Ariza Ortega, T. Effect of Incorporating Prebiotics in Coating Materials for the Microencapsulation of Sacharomyces boulardii. Int. J. Food Sci. Nutr. 2012, 63, 930–935. [Google Scholar] [CrossRef]
- Chan, M.Z.A.; Tan, L.T.; Heng, S.W.Q.; Liu, S.Q. Effect of Co-Fermentation of Saccharomyces boulardii CNCM-I745 with Four Different Probiotic Lactobacilli in Coffee Brews on Cell Viabilities and Metabolic Activities. Fermentation 2023, 9, 219. [Google Scholar] [CrossRef]
- Karaolis, C.; Botsaris, G.; Pantelides, I.; Tsaltas, D. Potential Application of Saccharomyces boulardii as a Probiotic in Goat’s Yoghurt: Survival and Organoleptic Effects. Int. J. Food Sci. Technol. 2013, 48, 1445–1452. [Google Scholar] [CrossRef]
- Goktas, H.; Dikmen, H.; Demirbas, F.; Sagdic, O.; Dertli, E. Characterisation of Probiotic Properties of Yeast Strains Isolated from Kefir Samples. Int. J. Dairy Technol. 2021, 74, 715–722. [Google Scholar] [CrossRef]
- Gut, A.M.; Vasiljevic, T.; Yeager, T.; Donkor, O.N. Characterization of Yeasts Isolated from Traditional Kefir Grains for Potential Probiotic Properties. J. Funct. Foods 2019, 58, 56–66. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001. [Google Scholar]
- Borkowska, M.; Celińska, E. Multiple Region High Resolution Melting-Based Method for Accurate Differentiation of Food-Derived Yeasts at Species Level Resolution. Food Microbiol. 2023, 109, 104120. [Google Scholar] [CrossRef]
- Cappello, M.S.; Poltronieri, P.; Blaiotta, G.; Zacheo, G. Molecular and Physiological Characteristics of a Grape Yeast Strain Containing Atypical Genetic Material. Int. J. Food Microbiol. 2010, 144, 72–80. [Google Scholar] [CrossRef]
- Eizaguirre, J.I.; Peris, D.; Rodríguez, M.E.; Lopes, C.A.; De Los Ríos, P.; Hittinger, C.T.; Libkind, D. Phylogeography of the Wild Lager-Brewing Ancestor (Saccharomyces eubayanus) in Patagonia. Environ. Microbiol. 2018, 20, 3732–3743. [Google Scholar] [CrossRef]
- Hulin, M.; Harrison, E.; Stratford, M.; Wheals, A.E. Rapid Identification of the Genus Dekkera/Brettanomyces, the Dekkera Subgroup and All Individual Species. Int. J. Food Microbiol. 2014, 187, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Guitard, J.; Atanasova, R.; Brossas, J.Y.; Meyer, I.; Gits, M.; Marinach, C.; Vellaissamy, S.; Angoulvant, A.; Mazier, D.; Hennequin, C. Candida Inconspicua and Candida Norvegensis: New Insights into Identification in Relation to Sexual Reproduction and Genome Organization. J. Clin. Microbiol. 2015, 53, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Gronchi, N.; De Bernardini, N.; Cripwell, R.A.; Treu, L.; Campanaro, S.; Basaglia, M.; Foulquié-Moreno, M.R.; Thevelein, J.M.; Van Zyl, W.H.; Favaro, L.; et al. Natural Saccharomyces cerevisiae Strain Reveals Peculiar Genomic Traits for Starch-to-Bioethanol Production: The Design of an Amylolytic Consolidated Bioprocessing Yeast. Front. Microbiol. 2022, 12, 768562. [Google Scholar] [CrossRef] [PubMed]
- Emenyeonu, L.C.; Croxford, A.E.; Wilkinson, M.J. The Potential of Aerosol EDNA Sampling for the Characterisation of Commercial Seed Lots. PLoS ONE 2018, 13, e0201617. [Google Scholar] [CrossRef]
- Zheng, J.; Ruan, L.; Sun, M.; Gänzle, M. A Genomic View of Lactobacilli and Pediococci Demonstrates That Phylogeny Matches Ecology and Physiology. Appl. Environ. Microbiol. 2015, 81, 7233–7243. [Google Scholar] [CrossRef]
- Lin, X.B.; Gänzle, M.G. Quantitative High-Resolution Melting PCR Analysis for Monitoring of Fermentation Microbiota in Sourdough. Int. J. Food Microbiol. 2014, 186, 42–48. [Google Scholar] [CrossRef]
- Wang, S.Y.; Chen, H.C.; Liu, J.R.; Lin, Y.C.; Chen, M.J. Identification of Yeasts and Evaluation of Their Distribution in Taiwanese Kefir and Viili Starters. J. Dairy Sci. 2008, 91, 3798–3805. [Google Scholar] [CrossRef]
- Kalamaki, M.S.; Angelidis, A.S. Isolation and Molecular Identification of Yeasts in Greek Kefir. Int. J. Dairy Technol. 2017, 70, 261–268. [Google Scholar] [CrossRef]
- Özer, B.; Kirmaci, H.A. Fermented Milks: Products of Eastern Europe and Asia. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 900–907. [Google Scholar] [CrossRef]
- Nejati, F.; Junne, S.; Kurreck, J.; Neubauer, P. Quantification of Major Bacteria and Yeast Species in Kefir Consortia by Multiplex TaqMan QPCR. Front. Microbiol. 2020, 11, 1291. [Google Scholar] [CrossRef]
- Martorell, P.; Querol, A.; Fernández-Espinar, M.T. Rapid Identification and Enumeration of Saccharomyces cerevisiae Cells in Wine by Real-Time PCR. Appl. Environ. Microbiol. 2005, 71, 6823–6830. [Google Scholar] [CrossRef]
- White, J.; Hekmat, S. Development of Probiotic Fruit Juices Using Lactobacillus rhamnosus GR-1 Fortified with Short Chain and Long Chain Inulin Fiber. Fermentation 2018, 4, 27. [Google Scholar] [CrossRef]
- Fiocco, D.; Longo, A.; Arena, M.P.; Russo, P.; Spano, G.; Capozzi, V. How Probiotics Face Food Stress: They Get by with a Little Help. Crit. Rev. Food Sci. Nutr. 2020, 60, 1552–1580. [Google Scholar] [CrossRef] [PubMed]
LABEL | COMPOSITION |
---|---|
PS1 | Saccharomyces cerevisiae |
PS2 | Lactiplantibacillus plantarum, Bifidobacterium breve, Saccharomyces boulardii |
PS3 | Saccharomyces boulardii and fructooligosaccharides |
PS4 | Saccharomyces boulardii, L. rhamnosus GG, fructooligosaccharides |
GENE | PRIMERS | ||||||
---|---|---|---|---|---|---|---|
NAME (SYMBOL) | ACCESSION NUMBER | RANGE [bp] | LABEL | START | STOP | SEQUENCE (5′->3′) | PRODUCT LENGTH [bp] |
Homothallic switching endonuclease (HO) | NC_001136.1 | 46,810–47,130 | HO_Fw | 46,817 | 46,836 | TGAAGTTGTTCCCCCAGCAA | 198 |
HO_Rv | 47,014 | 46,995 | GGCGAAGGCCCTGAATCTTA | ||||
DNA-directed RNA polymerase II core subunit (RPB2) | NC_001147.6 | 615,169–615,510 | RPB2_Fw | 615,217 | 615,239 | ACGGTTCAAAACCTGAGAAACAC | 229 |
RPB2_Rv | 615,445 | 615,424 | AGGTCCATTATTGGCCCAACTT | ||||
tRNA adenylyl transferase (CCA1) | NC_001137.3 | 522,230–522,503 | CCA1_Fw | 522,282 | 522,302 | CCAGATGCTTGGATTTCTCGG | 213 |
CCA1_Rv | 522,494 | 522,474 | AGCCATTGACTCTTCGGATCA | ||||
Hexose transporter (HXT9) | NC_001142.9 | 19,800–20,028 | HXT9_Fw | 19,824 | 19,846 | AGAATGGGTTTGATCGTCTCAAT | 197 |
HXT9_Rv | 20,020 | 19,996 | AGGCCAGAAATAATTCTTCCAATGA | ||||
Alpha-glucosidase permease (MAL11) | NC_001139.9 | 1,074,890–1,075,090 | MAL11_Fw | 1,074,891 | 1,074,910 | TTTCTCACCAACCACCAGGG | 196 |
MAL11_Rv | 1,075,086 | 1,075,065 | ACATGACCAGTTACTCCAACAT | ||||
Topoisomerase I damage affected (TDA8) | NC_001133.9 | 13,363–13,743 | TDA8_Fw | 13,380 | 13,399 | GGGCTGTTAGGTCATCGTCA | 182 |
TDA8_Rv | 13,561 | 13,542 | GCCCGATAACATTGCAGGGA | ||||
Translation elongation factor 1-alpha (TEF1alpha) | NC_001142.4 | 701,120–701,420 | TEF1_Fw | 701,138 | 701,159 | ACCCAAAGACTGTTCCATTCGT | 238 |
TEF1_Rv | 701,375 | 701,355 | GGCACAGTACCAATACCACCA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borkowska, M.; Kułakowski, M.; Myszka, K. High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices. BioTech 2024, 13, 48. https://doi.org/10.3390/biotech13040048
Borkowska M, Kułakowski M, Myszka K. High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices. BioTech. 2024; 13(4):48. https://doi.org/10.3390/biotech13040048
Chicago/Turabian StyleBorkowska, Monika, Michał Kułakowski, and Kamila Myszka. 2024. "High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices" BioTech 13, no. 4: 48. https://doi.org/10.3390/biotech13040048
APA StyleBorkowska, M., Kułakowski, M., & Myszka, K. (2024). High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices. BioTech, 13(4), 48. https://doi.org/10.3390/biotech13040048