Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways
Abstract
:1. Introduction
2. Economic Consequences of Heat Stress on Livestock Production
3. Significance of Understanding the Molecular Mechanisms of Livestock Adaptation
4. Transcriptomics-Based Approach for Studying Molecular Mechanisms of Livestock Adaptation
5. Species Differences in Significantly Altered Transcripts in Heat-Stressed Farm Animals
6. Differences in Heat Stress-Mediated Significantly Altered Transcripts Between Indigenous and Crossbred/Purebred Animals
7. Heat Stress-Associated Changes in Clusters of Orthologous Gene (COG) Level Functions in Farm Animals
8. Heat Stress-Associated Changes in Transcriptomics-Based Stress Pathways at Different KEGG Levels in Ruminants
9. Classical Molecular Biomarkers for Heat Resilience in Farm Animals
10. Integrating Omics Approaches for Climate Resilience in Livestock
11. Conclusions
12. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- IPCC. Climate Change. In Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T., Ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Garnett, T. Livestock-related greenhouse gas emissions: Impacts and options for policy makers. Environ. Sci. Policy 2009, 12, 491–503. [Google Scholar] [CrossRef]
- FAOSTAT. Faostat. 2020. Available online: http://www.fao.org/faostat/en/ (accessed on 1 June 2024).
- The World Bank. World Development Indicators. 2020. Available online: https://datacatalog.worldbank.org/dataset/world-development-indicators (accessed on 1 June 2024).
- Sejian, V.; Kumar, D.; Gaughan, J.B.; Naqvi, S.M. Effect of multiple environmental stressors on the adaptive capability of Malpura rams based on physiological responses in a semi-arid tropical environment. J. Vet. Behav. 2017, 17, 6–13. [Google Scholar] [CrossRef]
- Gauly, M.; Bollwein, H.; Breves, G.; Brugemann, K.; Danicke, S.; Das, G.; Demeler, J.; Hansen, H.; Isselsten, J.; Konig, S.; et al. Future Consequences and challenges for dairy cows production systems arising from climate change in Central Europe—A review. Animal 2013, 7, 843–859. [Google Scholar] [CrossRef]
- Howden, S.M.; Crimp, S.J.; Stokes, C.J. Climate change and Australian livestock systems: Impacts, research and policy issues. Aust. J. Exp. Agric. 2008, 48, 780–788. [Google Scholar] [CrossRef]
- Henry, B.K.; Eckard, R.J.; Beauchemin, K.A. Review: Adaptation of ruminant livestock production systems to climate changes. Animal 2018, 12, s445–s456. [Google Scholar] [CrossRef]
- Wang, B.; Kumar, V.; Olson, A.; Ware, D. Reviving the transcriptome studies: An insight into the emergence of single-molecule transcriptome sequencing. Front. Genet. 2019, 10, 384. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; a review of the evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 2003, 86, 52–77. [Google Scholar] [CrossRef]
- Gunn, K.M.; Holly, M.A.; Veith, T.L.; Buda, A.R.; Prasad, R.; Rotz, C.A.; Soder, K.J.; Stoner, A.M.K. Projected heat stress challenges and abatement opportunities for U.S. milk production. PLoS ONE 2019, 14, e0214665. [Google Scholar] [CrossRef]
- Sackett, D.; Holmes, P.; Abbott, K.; Jephcott, S.; Barber, M. Assessing the economic cost of endemic disease on the profitability of Australian beef cattle and sheep producers. MLA Rep. AHW 2006, 87. [Google Scholar]
- Ouellet, V.; Grenier, P.; Santschi, D.E.; Cabrera, V.E.; Fadul-Pacheco, L.; Charbonneau, É. Projected economic losses from milk performance detriments under heat stress in Quebec dairy herds. Can. J. Anim. Sci. 2020, 101, 242–256. [Google Scholar] [CrossRef]
- Hansen, P.J. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 2004, 82, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, S.E.R.D.A.L.; Khan, F.A.; Huson, H.J.; Sonstegard, T.S.; Moss, J.I.; Dahl, G.E.; Hansen, P.J. The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. J. Dairy Sci. 2014, 97, 5508–5520. [Google Scholar] [CrossRef]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Khafaga, A.F.; Arif, M.; Taha, A.E.; Noreldin, A.E. Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. J. Therm. Biol. 2019, 79, 120–134. [Google Scholar] [CrossRef]
- Das, R.; Gupta, I.D.; Verma, A.; Singh, A.; Chaudhari, M.V.; Sailo, L.; Upadhyay, R.C.; Goswami, J. Genetic polymorphisms in ATP1A1 gene and their association with heat tolerance in Jersey crossbred cows. Indian J. Dairy Sci. 2015, 68, 50–54. [Google Scholar]
- Wang, Z.; Wang, G.; Huang, J.; Li, Q.; Wang, C.; Zhong, J. Novel SNPs in the ATP1B2 gene and their associations with milk yield, milk composition and heat-resistance traits in Chinese Holstein cows. Mol. Biol. Rep. 2011, 38, 1749–1755. [Google Scholar] [CrossRef]
- Cdn.ca. Canadian Dairy Network|Réseau Laitier Canadien. [Online]. 2022. Available online: https://www.cdn.ca/ (accessed on 12 September 2022).
- Grisart, B.; Coppieters, W.; Farnir, F.; Karim, L.; Ford, C.; Berzi, P.; Cambisano, N.; Mni, M.; Reid, S.; Simon, P.; et al. Positional candidate cloning of a QTL in dairy cattle: Identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition. Genome Res. 2002, 12, 222–231. [Google Scholar] [CrossRef]
- Cohen-Zinder, M.; Seroussi, E.; Larkin, D.M.; Loor, J.J.; Everts-Van Der Wind, A.; Lee, J.H.; Drackley, J.K.; Band, M.R.; Hernandez, A.G.; Shani, M.; et al. Identification of a missense mutation in the bovine ABCG2 gene with a major effect on the QTL on chromosome 6 affecting milk yield and composition in Holstein cattle. Genome Res. 2005, 15, 936–944. [Google Scholar] [CrossRef]
- Martyniuk, C.J. Perspectives on transcriptomics in animal physiology studies. Comp. Biochem. Physiol. Part. B Biochem. Mol. Biol. 2020, 250, 110490. [Google Scholar] [CrossRef]
- Verma, P.; Sharma, A.; Sodhi, M.; Thakur, K.; Kataria, R.S.; Niranjan, S.K.; Bharti, V.K.; Kumar, P.; Giri, A.; Kalia, S.; et al. Transcriptome analysis of circulating PBMCs to understand mechanism of high altitude adaptation in native cattle of Ladakh region. Sci. Rep. 2018, 8, 7681. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, K.; Weldenegodguad, M.; Popov, R.; Honkatukia, M.; Huuki, H.; Lindeberg, H.; Peippo, J.; Reilas, T.; Zarovnyaev, S.; Kantanen, J. Whole blood transcriptome analysis reveals footprints of cattle adaptation to sub-arctic conditions. Anim. Genet. 2019, 50, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Ebling, F.J.; Barrett, P. The regulation of seasonal changes in food intake and body weight. J. Neuroendocrinol. 2008, 20, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.T.; Girma, D.D.; Bionaz, M.; Ma, L.; Bu, D.P. Hepatic transcriptomic adaptation from prepartum to postpartum in dairy cows. J. Dairy Sci. 2021, 104, 1053–1072. [Google Scholar] [CrossRef]
- Ahlawat, S.; Arora, R.; Sharma, R.; Sharma, U.; Kaur, M.; Kumar, A.; Singh, K.V.; Singh, M.K.; Vijh, R.K. Skin transcriptome profiling of Changthangi goats highlights the relevance of genes involved in Pashmina production. Sci. Rep. 2020, 10, 6050. [Google Scholar] [CrossRef]
- Zhang, D.; Pan, J.; Cao, J.; Cao, Y.; Zhou, H. Screening of drought-resistance related genes and analysis of promising regulatory pathway in camel renal medulla. Genomics 2020, 112, 2633–2639. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, Q.; He, Y.; Yang, L.; Zhang, X.; Shi, P.; Yang, L.; Liu, Z.; Zhang, F.; Liu, F.; et al. The transcriptomic landscape of yaks reveals molecular pathways for high altitude adaptation. Genome Biol. Evol. 2019, 11, 72–85. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, X.; Zhang, Y.; Zhang, H.; Zhang, X.; Zhang, H. Comparative transcriptomic and proteomic analyses provide insights into functional genes for hypoxic adaptation in embryos of Tibetan chickens. Sci. Rep. 2020, 10, 11213. [Google Scholar] [CrossRef]
- Liu, S.; Ye, T.; Li, Z.; Li, J.; Jamil, A.M.; Zhou, Y.; Hua, G.; Liang, A.; Deng, T.; Yang, L. Identifying hub genes for heat tolerance in water buffalo (Bubalus bubalis) using transcriptome data. Front. Genet. 2019, 10, 209. [Google Scholar] [CrossRef]
- Tian, S.; Zhou, X.; Phuntsok, T.; Zhao, N.; Zhang, D.; Ning, C.; Li, D.; Zhao, H. Genomic Analyses Reveal Genetic Adaptations to Tropical Climates in Chickens. iScience 2020, 23, 101644. [Google Scholar] [CrossRef]
- Li, D.; Li, Y.; Li, M.; Che, T.; Tian, S.; Chen, B.; Zhou, X.; Zhang, G.; Gaur, U.; Luo, M.; et al. Population Genomics Identifies Patterns of Genetic Diversity and Selection in Chicken. BMC Genom. 2019, 20, 263. [Google Scholar] [CrossRef] [PubMed]
- Dangi, S.S.; Gupta, M.; Maurya, D.; Yadav, V.P.; Panda, R.P.; Singh, G.; Mohan, N.H.; Bhure, S.K.; Das, B.C.; Bag, S.; et al. Expression profile of HSP genes during different seasons in goats (Capra hircus). Trop. Anim. Health Prod. 2012, 44, 1905–1912. [Google Scholar] [CrossRef] [PubMed]
- Shandilya, U.K.; Sharma, A.; Sodhi, M.; Mukesh, M. Editing of HSF-1 and Na/K-ATPase A1 Subunit by CRISPR/Cas9 Reduces Thermal Tolerance of Bovine Skin Fibroblasts to Heat Shock in Vitro. Anim. Biotechnol. 2023, 34, 3626–3636. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, K.; Kwon, A.; Lee, E.; Chung, H. Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress Chaperones 2017, 22, 29–42. [Google Scholar] [CrossRef]
- Kapila, N.; Sharma, A.; Kishore, A.; Sodhi, M.; Tripathi, P.K.; Mohanty, A.K.; Mukesh, M. Impact of heat stress on cellular and transcriptional adaptation of mammary epithelial cells in riverine buffalo (Bubalus bubalis). PLoS ONE 2016, 11, e0157237. [Google Scholar] [CrossRef]
- Lu, Z.; Chu, M.; Li, Q.; Jin, M.; Fei, X.; Ma, L.; Zhang, L.; Wei, C. Transcriptomic analysis provides novel insights into heat stress responses in sheep. Animals 2019, 9, 387. [Google Scholar] [CrossRef]
- Kim, H.; Kim, H.; Seong, P.; Arora, D.; Shin, D.; Park, W.; Park, J.E. Transcriptomic Response under Heat Stress in Chickens Revealed the Regulation of Genes and Alteration of Metabolism to Maintain Homeostasis. Animals 2021, 11, 2241. [Google Scholar] [CrossRef]
- Mayorga, E.J.; Renaudeau, D.; Ramirez, B.C.; Ross, J.W.; Baumgard, L.H. Heat stress adaptations in pigs. Anim. Front. 2019, 9, 54–61. [Google Scholar] [CrossRef]
- He, Y.; Maltecca, C.; Tiezzi, F.; Soto, E.L.; Flowers, W.L. Transcriptome analysis identifies genes and co-expression networks underlying heat tolerance in pigs. BMC Genet. 2020, 21, 44. [Google Scholar] [CrossRef]
- Diaz, F.A.; Gutierrez-Castillo, E.J.; Foster, B.A.; Hardin, P.T.; Bondioli, K.R.; Jiang, Z. Evaluation of Seasonal Heat Stress on Transcriptomic Profiles and Global DNA Methylation of Bovine Oocytes. Front. Genet. 2021, 12, 699920. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Chiaratti, M.R.; Macabelli, C.H.; Rodrigues, C.A.; Ferraz, M.L.; Watanabe, Y.F.; Smith, L.C.; Meirelles, F.V.; Baruselli, P.S. The infertility of repeat-breeder cows during summer is associated with decreased mitochondrial DNA and increased expression of mitochondrial and apoptotic genes in oocytes. Biol. Reprod. 2016, 94, 66. [Google Scholar] [CrossRef] [PubMed]
- Pareek, C.S.; Sachajko, M.; Jaskowski, J.M.; Herudzinska, M.; Skowronski, M.; Domagalski, K.; Szczepanek, J.; Czarnik, U.; Sobiech, P.; Wysocka, D.; et al. Comparative Analysis of the Liver Transcriptome among Cattle Breeds Using RNA-seq. Vet. Sci. 2019, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Jodar, A.; Salama, A.A.; Hamzaoui, S.; Vailati-Riboni, M.; Caja, G.; Loor, J.J. Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. J. Dairy Res. 2018, 85, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.T.; Ma, L.; Zhou, Z.; Zhou, Z.K.; Baumgard, L.H.; Jiang, D.; Bionaz, M.; Bu, D.P. Heat stress negatively affects the transcriptome related to overall metabolism and milk protein synthesis in mammary tissue of midlactating dairy cows. Physiol. Genom. 2019, 51, 400–409. [Google Scholar] [CrossRef]
- Srikanth, K.; Kumar, H.; Park, W.; Byun, M.; Lim, D.; Kemp, S.; te Pas, M.F.W.; Kim, J.-M.; Park, J.-E. Cardiac and Skeletal Muscle Transcriptome Response to Heat Stress in Kenyan Chicken Ecotypes Adapted to Low and High Altitudes Reveal Differences in Thermal Tolerance and Stress Response. Front. Genet. 2019, 10, 993. [Google Scholar] [CrossRef]
- Khan, R.I.N.; Sahu, A.R.; Malla, W.A.; Praharaj, M.R.; Hosamani, N.; Kumar, S.; Gupta, S.; Sharma, S.; Saxena, A.; Varshney, A.; et al. Transcriptome profiling in Indian Cattle revealed novel insights into response to heat stress. BioRxiv 2020. [Google Scholar] [CrossRef]
- Leng, D.; Zeng, B.; Wang, T.; Chen, B.-L.; Li, D.-Y.; Li, Z.-J. Single Nucleus/Cell RNA-Seq of the Chicken Hypothalamic-Pituitary-Ovarian Axis Offers New Insights into the Molecular Regulatory Mechanisms of Ovarian Development. Zool. Res. 2024, 45, 1088. [Google Scholar] [CrossRef]
- Haire, A.; Bai, J.; Zhao, X.; Song, Y.; Zhao, G.; Dilixiati, A.; Li, J.; Sun, W.Q.; Wan, P.; Fu, X.; et al. Identifying the heat resistant genes by multi-tissue transcriptome sequencing analysis in Turpan Black sheep. Theriogenology 2022, 179, 78–86. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Galperin, M.Y.; Natale, D.A.; Koonin, E.V. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28, 33–36. [Google Scholar] [CrossRef]
- Petersen, M.; Meusemann, K.; Donath, A.; Dowling, D.; Liu, S.; Peters, R.S.; Podsiadlowski, L.; Vasilikopoulos, A.; Zhou, X.; Misof, B.; et al. Orthograph: A versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes. BMC Bioinform. 2017, 18, 111. [Google Scholar] [CrossRef]
- Tatusov, R.L.; Koonin, E.V.; Lipman, D.J. A genomic perspective on protein families. Science 1997, 278, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Koonin, E.V. Who’s your neighbor? New computational approaches for functional genomics. Nat. Biotechnol. 2000, 18, 609–613. [Google Scholar] [CrossRef] [PubMed]
- Zeng, T.; Zhang, L.; Li, J.; Wang, D.; Tian, Y.; Lu, L. De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress. Cell Stress Chaperones 2015, 20, 483–493. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Li, C.; Wang, G. Proteomic analysis to unravel the effect of heat stress on gene expression and milk synthesis in bovine mammary epithelial cells. Anim. Sci. J. 2017, 88, 2090–2099. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, M.H.; Kim, S.B.; Son, J.K.; Lee, J.H.; Joo, S.S.; Gu, B.H.; Park, T.; Park, B.Y.; Kim, E.T. Differential dynamics of the ruminal microbiome of Jersey Cows in a heat stress environment. Animals 2020, 10, 1127. [Google Scholar] [CrossRef]
- Sejian, V.; Silpa, M.V.; Trivedi, S.; MR, R.N.; Madiajagan, B.; Govindan, K.; Chinnasamy, D.; Manjunathareddy, G.B.; Malik, P.K.; Soren, N.M.; et al. Heat stress and rumen microbial ecology: Novel insights into goat adaptation. Res. Sq. 2021, 1–23. [Google Scholar] [CrossRef]
- Liu, X.; Sha, Y.; Dingkao, R.; Zhang, W.; Lv, W.; Wei, H.; Shi, H.; Hu, J.; Wang, J.; Li, S.; et al. Interactions between rumen microbes, VFAs, and host genes regulate nutrient absorption and epithelial barrier function during cold season nutritional stress in Tibetan sheep. Front. Microbiol. 2020, 11, 593062. [Google Scholar] [CrossRef]
- Lv, W.; Liu, X.; Sha, Y.; Shi, H.; Wei, H.; Luo, Y.; Wang, J.; Li, S.; Hu, J.; Guo, X.; et al. Rumen Fermentation—Microbiota—Host Gene Expression Interactions to Reveal the Adaptability of Tibetan Sheep in Different Periods. Animals 2021, 11, 3529. [Google Scholar] [CrossRef]
- Mayorga, O.L.; Kingston-Smith, A.H.; Kim, E.J.; Allison, G.G.; Wilkinson, T.J.; Hegarty, M.J.; Theodorou, M.K.; Newbold, C.J.; Huws, S.A. Temporal metagenomic and metabolomic characterization of fresh perennial ryegrass degradation by rumen bacteria. Front. Microbiol. 2016, 7, 1854. [Google Scholar] [CrossRef]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Sonna, L.A.; Fujita, J.; Gaffin, S.L.; Lilly, C.M. Invited review: Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 2002, 92, 1725–1742. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.C.; Chiang, C.M. The general transcription machinery and general cofactors. Crit. Rev. Biochem. Mol. Biol. 2006, 41, 105–178. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Collier, J.L.; Rhoads, R.P.; Baumgard, L.H. Invited review: Genes involved in the bovine heat stress response. J. Dairy Sci. 2008, 91, 445–454. [Google Scholar] [CrossRef]
- Garner, J.B.; Chamberlain, A.J.; Vander Jagt, C.; Nguyen, T.T.T.; Mason, B.A.; Marett, L.C.; Hayes, B.J. Gene expression of the heat stress response in bovine peripheral white blood cells and milk somatic cells in vivo. Sci. Rep. 2020, 10, 19181. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S.; Son, J.; Lim, H.; Kim, E.; Kim, D.; Ha, S.; Hur, T.; Lee, S.; Choi, I. Analysis of circulating-microRNA expression in lactating Holstein cows under summer heat stress. PLoS ONE 2020, 15, e0231125. [Google Scholar] [CrossRef]
- Donovan, M.R.; Marr, M.T. dFOXO activates large and small heat shock protein genes in response to oxidative stress to maintain proteostasis in Drosophila. J. Biol. Chem. 2016, 291, 19042–19050. [Google Scholar] [CrossRef]
- Kaneko, K.; Xu, P.; Cordonier, E.L.; Chen, S.S.; Ng, A.; Xu, Y.; Fukuda, M. Neuronal Rap1 regulates energy balance, glucose homeostasis, and leptin actions. Cell Rep. 2016, 16, 3003–3015. [Google Scholar] [CrossRef]
- Akbarian, A.; Michiels, J.; Degroote, J.; Majdeddin, M.; Golian, A.; De Smet, S. Association between heat stress and oxidative stress in poultry; mitochondrial dysfunction and dietary interventions with phytochemicals. J. Anim. Sci. Biotechnol. 2016, 7, 37. [Google Scholar] [CrossRef]
- Dado-Senn, B.; Skibiel, A.L.; Fabris, T.F.; Zhang, Y.; Dahl, G.E.; Peñagaricano, F.; Laporta, J. RNA-Seq reveals novel genes and pathways involved in bovine mammary involution during the dry period and under environmental heat stress. Sci. Rep. 2018, 8, 11096. [Google Scholar] [CrossRef]
- Li, Y.X.; Feng, X.P.; Wang, H.L.; Meng, C.H.; Zhang, J.; Qian, Y.; Zhong, J.F.; Cao, S.X. Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep. Cell Stress Chaperones 2019, 24, 1045–1054. [Google Scholar] [CrossRef]
- Singh, U.; Deb, R.; Alyethodi, R.R.; Alex, R.; Kumar, S.; Chakraborty, S.; Dhama, K.; Sharma, A. Molecular markers and their applications in cattle genetic research: A review. Biomark. Genom. Med. 2014, 6, 49–58. [Google Scholar] [CrossRef]
- Haley, C.; De Koning, D.J. Genetical genomics in livestock: Potentials and pitfalls. Anim. Genet. 2006, 37, 10–12. [Google Scholar] [CrossRef] [PubMed]
- Mondal, T.; Avishek, P.; Dangi, S.S.; Bag, S.; Sarkar, M.; Das, B.C. Expression kinetics of heat-induced genes and possible crosstalk between them in black Bengal goat. Biol. Rhythm Res. 2020, 51, 1243–1258. [Google Scholar] [CrossRef]
- Kumar, J.; Yadav, B.; Madan, A.K.; Kumar, M.; Sirohi, R.; Reddy, A.V. Dynamics of heat-shock proteins, metabolic and endocrine responses during increasing temperature humidity index (THI) in lactating Hariana (Zebu) cattle. Biol. Rhythm Res. 2020, 51, 934–950. [Google Scholar] [CrossRef]
- Hassan, F.U.; Nawaz, A.; Rehman, M.S.; Ali, M.A.; Dilshad, S.M.; Yang, C. Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. Anim. Nutr. 2019, 5, 340–350. [Google Scholar] [CrossRef]
- Aleena, J.; Sejian, V.; Bagath, M.; Krishnan, G.; Beena, V.; Bhatta, R. Resilience of three indigenous goat breeds to heat stress based on phenotypic traits and PBMC HSP70 expression. Int. J. Biometeorol. 2018, 62, 1995–2005. [Google Scholar] [CrossRef]
- Basiricò, L.; Morera, P.; Primi, V.; Lacetera, N.; Nardone, A.; Bernabucci, U. Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones 2011, 16, 441–448. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, A.; Sodhi, M.; Verma, P.; Parvesh, K.; Swami, S.K.; Jast, A.; Shandilya, U.K.; Mukesh, M. Characterizing binding sites of heat responsive microRNAs and their expression pattern in heat stressed PBMCs of native cattle, exotic cattle and riverine buffaloes. Mol. Biol. Rep. 2019, 46, 6513–6524. [Google Scholar] [CrossRef]
- Do Amaral, B.C.; Connor, E.E.; Tao, S.; Hayen, J.; Bubolz, J.; Dahl, G.E. Heat-stress abatement during the dry period: Does cooling improve transition into lactation? J. Dairy Sci. 2009, 92, 5988–5999. [Google Scholar] [CrossRef]
- Salama, A.A.K.; Duque, M.; Wang, L.; Shahzad, K.; Olivera, M.; Loor, J.J. Enhanced supply of methionine or arginine alters mechanistic target of rapamycin signaling proteins, messenger RNA, and microRNA abundance in heat-stressed bovine mammary epithelial cells in vitro. J. Dairy Sci. 2019, 102, 2469–2480. [Google Scholar] [CrossRef]
- Bharati, J.; Dangi, S.S.; Mishra, S.R.; Chouhan, V.S.; Verma, V.; Shankar, O.; Bharti, M.K.; Paul, A.; Mahato, D.K.; Rajesh, G.; et al. Expression analysis of toll like receptors and interleukins in Tharparkar cattle during acclimation to heat stress exposure. J. Therm. Biol. 2017, 65, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.S.; Rashamol, V.P.; Bagath, M.; Sejian, V.; Dunshea, F.R. Impacts of heat stress on immune responses and oxidative stress in farm animals and nutritional strategies for amelioration. Int. J. Biometeorol. 2021, 65, 1231–1244. [Google Scholar] [CrossRef] [PubMed]
- Yasoob, T.B.; Khalid, A.R.; Zhang, Z.; Zhu, X.; Hang, S. Liver transcriptome of rabbits supplemented with oral Moringa oleifera leaf powder under heat stress is associated with modulation of lipid metabolism and up-regulation of genes for thermo-tolerance, antioxidation, and immunity. Nutri. Res. 2022, 99, 25–39. [Google Scholar] [CrossRef] [PubMed]
- McManus, C.M.; Lucci, C.M.; Maranhão, A.Q.; Pimentel, D.; Pimentel, F.; Paiva, S.R. Response to Heat Stress for Small Ruminants: Physiological and Genetic Aspects. Livest. Sci. 2022, 263, 105028. [Google Scholar] [CrossRef]
- Calamari, L.U.I.G.I.; Petrera, F.; Abeni, F.; Bertin, G. Metabolic and hematological profiles in heat stressed lactating dairy cows fed diets supplemented with different selenium sources and doses. Livest. Sci. 2011, 142, 128–137. [Google Scholar] [CrossRef]
- Coleman, D.N.; Totakul, P.; Onjai-Uea, N.; Aboragah, A.; Jiang, Q.; Vailati-Riboni, M.; Pate, R.T.; Luchini, D.; Paengkoum, P.; Wanapat, M.; et al. Rumen-protected methionine during heat stress alters mTOR, insulin signaling, and 1-carbon metabolism protein abundance in liver, and whole-blood transsulfuration pathway genes in Holstein cows. J. Dairy Sci. 2022, 105, 7787–7804. [Google Scholar] [CrossRef]
- Kaur, R.; Sharma, A.; Sodhi, M.; Swami, S.K.; Sharma, V.L.; Kumari, P.; Verma, P.; Mukesh, M. Sequence characterization of alpha 1 isoform (ATP1A1) of Na+/K+-ATPase gene and expression characteristics of its major isoforms across tissues of riverine buffaloes (Bubalus bubalis). Gene Rep. 2018, 10, 97–108. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Li, H.; Zhou, X.; Wang, G. A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Mol. Biol. Rep. 2011, 38, 83–88. [Google Scholar] [CrossRef]
- Correa-Calderón, A.; Avendaño-Reyes, L.; López-Baca, M.; Macías-Cruz, U. Heat stress in dairy cattle with emphasis on milk production and feed and water intake habits. Review. Rev. Mex. De Cienc. Pecu. 2022, 13, 488–509. [Google Scholar] [CrossRef]
- Khalid, A.R.; Yasoob, T.B.; Zhang, Z.; Zhu, X.; Hang, S. Dietary Moringa oleifera leaf powder improves jejunal permeability and digestive function by modulating the microbiota composition and mucosal immunity in heat stressed rabbits. Environ. Sci. Pollut. Res. 2022, 29, 80952–80967. [Google Scholar] [CrossRef]
- Sejian, V.; Silpa, M.V.; Chauhan, S.S.; Bagath, M.; Devaraj, C.; Krishnan, G.; Nair, M.R.; Anisha, J.P.; Manimaran, A.; Koenig, S.; et al. Eco-intensified breeding strategies for improving climate resilience in goats. In Ecological Intensification of Natural Resources for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2021; pp. 627–655. [Google Scholar]
- Ribeiro, D.M.; Salama, A.A.; Vitor, A.C.; Argüello, A.; Moncau, C.T.; Santos, E.M.; Caja, G.; de Oliveira, J.S.; Balieiro, J.C.; Hernández-Castellano, L.E.; et al. The application of omics in ruminant production: A review in the tropical and sub-tropical animal production context. J. Proteom. 2020, 227, 103905. [Google Scholar] [CrossRef] [PubMed]
- Strandén, I.; Kantanen, J.; Russo, I.R.M.; Orozco-terWengel, P.; Bruford, M.W.; Climgen Consortium. Genomic selection strategies for breeding adaptation and production in dairy cattle under climate change. Heredity 2019, 123, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Min, L.; Zhao, S.; Tian, H.; Zhou, X.; Zhang, Y.; Li, S.; Yang, H.; Zheng, N.; Wang, J. Metabolic responses and “omics” technologies for elucidating the effects of heat stress in dairy cows. Int. J. Biometeorol. 2017, 61, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Sharma, N.; Kour, S.; Sodhi, S.S.; Gupta, M.K.; Lee, S.J.; Son, Y.O. Applications of omics technology for livestock selection and improvement. Front. Genet. 2022, 13, 774113. [Google Scholar] [CrossRef]
- Cassar-Malek, I.; Picard, B.; Bernard, C.; Hocquette, J.F. Application of gene expression studies in livestock production systems: A European perspective. Aust. J. Exp. Agric. 2008, 48, 701–710. [Google Scholar] [CrossRef]
Species | Genes Identified Through Transcriptome Analysis | Function | References |
---|---|---|---|
Bovine | Heat Shock 70 kDa Protein 1A (HSPA1A), Heat Shock 105 kDa/110 kDa Protein 1 (HSPH1), Heat Shock 70 kDa Protein 8 (HSPA8), DnaJ (Hsp40) homolog, subfamily A, member 1 (DNAJA1), and CDC-like kinase 1 (CDK1) | Metabolic process, catalytic activity, transcription factor activity, enzyme regulatory activity, protein binding, apoptotic process, stimulus response, cellular process, and immune system process | [35] |
Bubaline | Heat Shock 70 kDa Protein (HSPA6), Heat Shock 22 kDa Protein (HSPB8), DnaJ (Hsp40) homolog, subfamily B, member 2 (DNAJB2), heat shock 70 kDa protein 1A (HSPA1A), MHC class I heavy chain (BOLA), mitochondrial ribosomal protein L55 (MRPL55), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), proteasome (prosome, macropain) 26S subunit, ATPase, 2 (PSMC2), endonuclease domain-containing 1 (ENDODD1), AT rich interactive domain 5A (MRF1-like) (ARID5A), and SUMO1/sentrin/SMT3 specific peptidase 3 (SENP3) | Immune response, chaperon activity, cell proliferation, and metabolism | [36] |
Ovine | Rap1, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase and protein kinase B (PI3K-AKt), natriuretic peptide receptor 1 (NPR1), angiopoietin 2 (ANGPT2), and sodium-dependent citrate transporter member 5 (SLC12A5) | Fat regulation mechanism | [37] |
Poultry | Heat Shock Proteins (HSPs), myosin light chain kinase 2 (MYLK2), and Bradykinin receptor B1 (BDKRB1) | Protein processing and synthesis | [38] |
Swine | Solute carrier family 16 member 2 (SLC16A2), membrane-associated ring-CH-type finger 1 (MARCHF1), TNF alpha-induced protein 6 (TNFAIP6), relaxin/insulin-like family peptide receptor 2 (RXFP2), and interleukin 15 (IL15) | Heat resistance, inflammatory response, and immune function activation | [40] |
Gene | Description | Function | Animals | References |
---|---|---|---|---|
HSP27/HSPB1 | Heat shock protein 27 | Protects cells from cytotoxic effects of protein misfold | Cattle, Goat, Buffalo | [40,78,79,80,81,82] |
HSP40/DNAJB1 | Heat shock protein 40 | Stimulate ATPase activity of Hsp70. | ||
HSP60/HSPD1 | Heat shock protein 60 | Transportation and refolding of proteins | ||
HSP70/HSPA1A | Heat shock protein 70 | For protein folding and help to protect cells from stress. | ||
HSP90AB1 | Heat shock protein 90 | Signal transduction, protein folding, Protein degradation, and morphologic evolution | ||
HSF1 | Heat Shock Factor 1 | Primary mediator of transcriptional responses to proteotoxic stress with important roles in non-stress regulation such as development and metabolism. | Goat, Cattle | [77,83] |
ACACA | Acetyl-CoA carboxylase alpha | Fatty acid metabolism; Lipoprotein lipase (LPL) is the enzyme in milk responsible for enzymatic lipolysis, i.e., the hydrolysis of fatty acids from triglycerides and phospholipids in the milk | Cattle | [74,84,85] |
FASN | Fatty acid synthase | |||
LPL | Lipoprotein lipase | |||
TLR2 | Toll-like receptor 2 | Toll-like receptor 2 (TLR 2) and Toll-like receptor 4 (TLR 4) recognize the damage-associated molecular patterns (DAMPs) to produce several pro-inflammatory cytokines to evoke the host immune response during heat stress | Cattle | [19,86,87] |
TLR4 | Toll-like receptor 4 | |||
DUSP1 | Dual specificity protein phosphatase 1 | Regulates MAPKs activity and play an important role in the cellular response to environmental stress. | Buffalo, Cattle, Sheep, and Goat | [40,88,89] |
GPX1 | Glutathione peroxidase 1 | One of the most important antioxidant enzymes, functions in detoxification of hydrogen peroxide | Buffalo, Cattle | [40,90,91] |
ATP1A1 | Sodium–Potassium Adenosine Triphosphatase | Transport of sodium and potassium ions across cell membranes | Buffalo, Cattle | [92,93,94] |
TNFA | Tumor necrosis factor | Immune responsive genes | Goat, Buffalo, Rabbit | [40,84,95] |
IL6 | Interleukin 6 | |||
IL8/CXCL8 | Interleukin 8 | |||
NF-kβ | Nuclear factor kappalight- chain enhancer of activated B cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shashank, C.G.; Sejian, V.; Silpa, M.V.; Devaraj, C.; Madhusoodan, A.P.; Rebez, E.B.; Kalaignazhal, G.; Sahoo, A.; Dunshea, F.R. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. BioTech 2024, 13, 49. https://doi.org/10.3390/biotech13040049
Shashank CG, Sejian V, Silpa MV, Devaraj C, Madhusoodan AP, Rebez EB, Kalaignazhal G, Sahoo A, Dunshea FR. Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. BioTech. 2024; 13(4):49. https://doi.org/10.3390/biotech13040049
Chicago/Turabian StyleShashank, Chikamagalore Gopalakrishna, Veerasamy Sejian, Mullakkalparambil Velayudhan Silpa, Chinnasamy Devaraj, Aradotlu Parameshwarappa Madhusoodan, Ebenezer Binuni Rebez, Gajendirane Kalaignazhal, Artabandhu Sahoo, and Frank Rowland Dunshea. 2024. "Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways" BioTech 13, no. 4: 49. https://doi.org/10.3390/biotech13040049
APA StyleShashank, C. G., Sejian, V., Silpa, M. V., Devaraj, C., Madhusoodan, A. P., Rebez, E. B., Kalaignazhal, G., Sahoo, A., & Dunshea, F. R. (2024). Climate Resilience in Farm Animals: Transcriptomics-Based Alterations in Differentially Expressed Genes and Stress Pathways. BioTech, 13(4), 49. https://doi.org/10.3390/biotech13040049