Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Construction of DNA Expression Vectors
2.2. Walnut Somatic Embryo Preparation and Plant Transformation
2.3. Propagation of Selected Embryo Lines and Preparation of Extracts
2.4. Detection of Recombinant Proteins
2.5. Quantification of Betanin Content from RUBY Expression
3. Results
3.1. Validation of DNA Vectors and Selection of Expression Lines
3.2. Cultivation and Analysis of Selected Embryo Lines
3.3. Detection of Recombinant Proteins in Selected Embryo Lines
3.4. Production of Betanin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cornish, N.E.; Bachmann, L.H.; Diekema, D.J.; McDonald, L.C.; McNult, P.; Stevens-Garcia, J.; Raphael, B.H.; Miller, M.B. Pandemic Demand for SARS-CoV-2 Testing Led to Critical Supply and Workforce Shortages in U.S. Clinical and Public Health Laboratories. J. Clin. Microbiol. 2023, 61, e03189-20. [Google Scholar] [CrossRef] [PubMed]
- Hannay, E.; Fernández-Suárez, M.; Duneton, P. COVID-19 Diagnostics: Preserving Manufacturing Capacity for Future Pandemics. BMJ Glob. Health 2022, 7, e007494. [Google Scholar] [CrossRef] [PubMed]
- United States Government Accountability Office (GAO). Operation Warp Speed: Accelerated COVID-19 Vaccine Development Status and Efforts to Address Manufacturing Challenges|U.S. Available online: https://www.gao.gov/products/gao-21-319 (accessed on 8 September 2024).
- Rabil, M.J.; Tunc, S.; Bish, D.R.; Bish, E.K. Benefits of Integrated Screening and Vaccination for Infection Control. PLoS ONE 2022, 17, e0267388. [Google Scholar] [CrossRef] [PubMed]
- De Queiroz Simões, R.S. Rodríguez-Lázaro, D. Classical and Next-Generation Vaccine Platforms to SARS-CoV-2: Biotechnological Strategies and Genomic Variants. Int. J. Environ. Res. Public Health 2022, 19, 2392. [Google Scholar] [CrossRef]
- Pollet, J.; Chen, W.-H.; Strych, U. Recombinant Protein Vaccines, a Proven Approach against Coronavirus Pandemics. Adv. Drug Deliv. Rev. 2021, 170, 71–82. [Google Scholar] [CrossRef]
- De Pinho Favaro, M.T.; Atienza-Garriga, J.; Martínez-Torró, C.; Parladé, E.; Vázquez, E.; Corchero, J.L.; Ferrer-Miralles, N.; Villaverde, A. Recombinant Vaccines in 2022: A Perspective from the Cell Factory. Microb. Cell Factories 2022, 21, 203. [Google Scholar] [CrossRef]
- Montgomerie, I.; Bird, T.W.; Palmer, O.R.; Mason, N.C.; Pankhurst, T.E.; Lawley, B.; Hernández, L.C.; Harfoot, R.; Authier-Hall, A.; Anderson, D.E.; et al. Incorporation of SARS-CoV-2 Spike NTD to RBD Protein Vaccine Improves Immunity against Viral Variants. iScience 2023, 26, 106256. [Google Scholar] [CrossRef]
- Moon, K.-B.; Park, J.-S.; Park, Y.-I.; Song, I.-J.; Lee, H.-J.; Cho, H.S.; Jeon, J.-H.; Kim, H.-S. Development of Systems for the Production of Plant-Derived Biopharmaceuticals. Plants 2019, 9, 30. [Google Scholar] [CrossRef]
- Sosa, D.; Alves, F.M.; Prieto, M.A.; Pedrosa, M.C.; Heleno, S.A.; Barros, L.; Feliciano, M.; Carocho, M. Lemna Minor: Unlocking the Value of This Duckweed for the Food and Feed Industry. Foods 2024, 13, 1435. [Google Scholar] [CrossRef]
- Bosch, D.; Castilho, A.; Loos, A.; Schots, A.; Steinkellner, H. N-Glycosylation of Plant-Produced Recombinant Proteins. Curr. Pharm. Des. 2013, 19, 5503–5512. [Google Scholar] [CrossRef]
- Santos, R.B.; Abranches, R.; Fischer, R.; Sack, M.; Holland, T. Putting the Spotlight Back on Plant Suspension Cultures. Front. Plant Sci. 2016, 7, 297. [Google Scholar] [CrossRef] [PubMed]
- Sethi, L.; Kumari, K.; Dey, N. Engineering of Plants for Efficient Production of Therapeutics. Mol. Biotechnol. 2021, 63, 1125–1137. [Google Scholar] [CrossRef]
- Strasser, R. Plant Glycoengineering for Designing Next-Generation Vaccines and Therapeutic Proteins. Biotechnol. Adv. 2023, 67, 108197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Y.; Li, R.; Yang, X.; Zheng, Z.; Fu, J.; Yu, H.; Chen, X. Glycoprotein In Vitro N-Glycan Processing Using Enzymes Expressed in E. coli. Molecules 2023, 28, 2753. [Google Scholar] [CrossRef]
- Liu, H.; Timko, M.P. Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int. J. Mol. Sci. 2022, 23, 1326. [Google Scholar] [CrossRef]
- Yamamoto, T.; Hoshikawa, K.; Ezura, K.; Okazawa, R.; Fujita, S.; Takaoka, M.; Mason, H.S.; Ezura, H.; Miura, K. Improvement of the Transient Expression System for Production of Recombinant Proteins in Plants. Sci. Rep. 2018, 8, 4755. [Google Scholar] [CrossRef] [PubMed]
- Macharoen, K.; Du, M.; Jung, S.; McDonald, K.A.; Nandi, S. Production of Recombinant Butyrylcholinesterase from Transgenic Rice Cell Suspension Cultures in a Pilot-Scale Bioreactor. Biotechnol. Bioeng. 2021, 118, 1431–1443. [Google Scholar] [CrossRef]
- Verdú-Navarro, F.; Moreno-Cid, J.A.; Weiss, J.; Egea-Cortines, M. The Advent of Plant Cells in Bioreactors. Front. Plant Sci. 2023, 14, 1310405. [Google Scholar] [CrossRef]
- BioMADE. Available online: https://www.biomade.org (accessed on 8 September 2024).
- McGranahan, G.H.; Leslie, C.A.; Uratsu, S.L.; Martin, L.A.; Dandekar, A.M. Agrobacterium-Mediated Transformation of Walnut Somatic Embryos and Regeneration of Transgenic Plants. Bio/Technology 1988, 6, 800–804. [Google Scholar] [CrossRef]
- Sadat-Hosseini, M.; Vahdati, K.; Leslie, C.A. Germination of Persian Walnut Somatic Embryos and Evaluation of Their Genetic Stability by ISSR Fingerprinting and Flow Cytometry. HortScience 2019, 54, 1576–1580. [Google Scholar] [CrossRef]
- Martínez-García, P.J.; Crepeau, M.W.; Puiu, D.; Gonzalez-Ibeas, D.; Whalen, J.; Stevens, K.A.; Paul, R.; Butterfield, T.S.; Britton, M.T.; Reagan, R.L.; et al. The Walnut (Juglans regia) Genome Sequence Reveals Diversity in Genes Coding for the Biosynthesis of Non-Structural Polyphenols. Plant J. 2016, 87, 507–532. [Google Scholar] [CrossRef] [PubMed]
- Marrano, A.; Britton, M.; Zaini, P.A.; Zimin, A.V.; Workman, R.E.; Puiu, D.; Bianco, L.; Pierro, E.A.D.; Allen, B.J.; Chakraborty, S.; et al. High-Quality Chromosome-Scale Assembly of the Walnut (Juglans regia L.) Reference Genome. GigaScience 2020, 9, giaa050. [Google Scholar] [CrossRef] [PubMed]
- Walawage, S.L.; Zaini, P.A.; Mubarik, M.S.; Martinelli, F.; Balan, B.; Caruso, T.; Leslie, C.A.; Dandekar, A.M. Deploying Genome Editing Tools for Dissecting the Biology of Nut Trees. Front. Sustain. Food Syst. 2019, 3, 100. [Google Scholar] [CrossRef]
- Javanmardi, K.; Chou, C.-W.; Terrace, C.I.; Annapareddy, A.; Kaoud, T.S.; Guo, Q.; Lutgens, J.; Zorkic, H.; Horton, A.P.; Gardner, E.C.; et al. Rapid Characterization of Spike Variants via Mammalian Cell Surface Display. Mol. Cell 2021, 81, 5099–5111.e8. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, D.V.T.; Dos Santos Baião, D.; De Oliveira Silva, F.; Alves, G.; Perrone, D.; Del Aguila, E.M.; Paschoalin, V.M.F. Betanin, a Natural Food Additive: Stability, Bioavailability, Antioxidant and Preservative Ability Assessments. Molecules 2019, 24, 458. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Zhang, T.; Sun, H.; Zhan, H.; Zhao, Y. A Reporter for Noninvasively Monitoring Gene Expression and Plant Transformation. Hortic. Res. 2020, 7, 152. [Google Scholar] [CrossRef]
- Satoh, J.; Kato, K.; Shinmyo, A. The 5′-Untranslated Region of the Tobacco Alcohol Dehydrogenase Gene Functions as an Effective Translational Enhancer in Plant. J. Biosci. Bioeng. 2004, 98, 1–8. [Google Scholar] [CrossRef]
- Chen, Q.; He, J.; Phoolcharoen, W.; Mason, H.S. Geminiviral Vectors Based on Bean Yellow Dwarf Virus for Production of Vaccine Antigens and Monoclonal Antibodies in Plants. Hum. Vaccines 2011, 7, 331–338. [Google Scholar] [CrossRef]
- Xiong, Y.; Hirano, H.; Lane, N.E.; Nandi, S.; McDonald, K.A. Plant-Based Production and Characterization of a Promising Fc-Fusion Protein against Microgravity-Induced Bone Density Loss. Front. Bioeng. Biotechnol. 2022, 10, 962292. [Google Scholar] [CrossRef]
- Polito, V.S.; McGranahan, G.; Pinney, K.; Leslie, C. Origin of Somatic Embryos from Repetitively Embryogenic Cultures of Walnut (Juglans regia L.): Implications forAgrobacterium-Mediated Transformation. Plant Cell Rep. 1989, 8, 219–221. [Google Scholar] [CrossRef]
- Dandekar, A.M.; McGranahan, G.H.; Leslie, C.A.; Uratsu, S.L. Agrobacterium-Mediated Transformation of Somatic Embryos as a Method for the Production of Transgenic Plants. J. Tissue Cult. Methods 1989, 12, 145–150. [Google Scholar] [CrossRef]
- McGranahan, G.H.; Leslie, C.A.; Uratsu, S.L.; Dandekar, A.M. Improved Efficiency of the Walnut Somatic Embryo Gene Transfer System. Plant Cell Rep. 1990, 8, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Dandekar, A.M.; McGranahan, G.H.; Vail, P.V.; Uratsu, S.L.; Leslie, C.A.; Tebbets, J.S. High Levels of Expression of Full-Length CryIA(c) Gene from Bacillus thuringiensis in Transgenic Somatic Walnut Embryos. Plant Sci. 1998, 131, 181–193. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Li, J.; Meng, Y.; Zhao, G.-R. Improvement of Betanin Biosynthesis in Saccharomyces Cerevisiae by Metabolic Engineering. Synth. Syst. Biotechnol. 2022, 8, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.-S.; Fu, X.-Y.; Yang, Z.-Q.; Wang, B.; Gao, J.-J.; Wang, M.-Q.; Xu, J.; Han, H.-J.; Li, Z.-J.; Yao, Q.-H.; et al. Metabolic Engineering of Rice Endosperm for Betanin Biosynthesis. New Phytol. 2020, 225, 1915–1922. [Google Scholar] [CrossRef]
- Gokhale, S.; Lele, S. Betalain Content and Antioxidant Activity of Beta vulgaris: Effect of Hot Air Convective Drying and Storage. J. Food Process. Preserv. 2014, 38, 585–590. [Google Scholar] [CrossRef]
- Furtado, A.; Lupoi, J.S.; Hoang, N.V.; Healey, A.; Singh, S.; Simmons, B.A.; Henry, R.J. Modifying Plants for Biofuel and Biomaterial Production. Plant Biotechnol. J. 2014, 12, 1246–1258. [Google Scholar] [CrossRef]
- Masojídek, J.; Lhotský, R.; Štěrbová, K.; Zittelli, G.C.; Torzillo, G. Solar Bioreactors Used for the Industrial Production of Microalgae. Appl. Microbiol. Biotechnol. 2023, 107, 6439–6458. [Google Scholar] [CrossRef]
- Beritza, K.; Watts, E.C.; Van der Hoorn, R.A.L. Improving Transient Protein Expression in Agroinfiltrated Nicotiana Benthamiana. New Phytol. 2024, 243, 846–850. [Google Scholar] [CrossRef]
- Aoyagi, H. Application of Plant Protoplasts for the Production of Useful Metabolites. Biochem. Eng. J. 2011, 56, 1–8. [Google Scholar] [CrossRef]
- Dawson, J.; Pandey, S.; Yu, Q.; Schaub, P.; Wüst, F.; Moradi, A.B.; Dovzhenko, O.; Palme, K.; Welsch, R. Determination of Protoplast Growth Properties Using Quantitative Single-Cell Tracking Analysis. Plant Methods 2022, 18, 64. [Google Scholar] [CrossRef] [PubMed]
- Mallikarjuna Swamy, B.P.; Marundan, S.; Samia, M.; Ordonio, R.L.; Rebong, D.B.; Miranda, R.; Alibuyog, A.; Rebong, A.T.; Tabil, M.A.; Suralta, R.R.; et al. Development and Characterization of GR2E Golden Rice Introgression Lines. Sci. Rep. 2021, 11, 2496. [Google Scholar] [CrossRef]
- Naqvi, S.; Ramessar, K.; Farré, G.; Sabalza, M.; Miralpeix, B.; Twyman, R.M.; Capell, T.; Zhu, C.; Christou, P. High-Value Products from Transgenic Maize. Biotechnol. Adv. 2011, 29, 40–53. [Google Scholar] [CrossRef]
- Liew, P.S.; Hair-Bejo, M. Farming of Plant-Based Veterinary Vaccines and Their Applications for Disease Prevention in Animals. Adv. Virol. 2015, 2015, 936940. [Google Scholar] [CrossRef] [PubMed]
- Khalid, F.; Tahir, R.; Ellahi, M.; Amir, N.; Rizvi, S.F.A.; Hasnain, A. Emerging Trends of Edible Vaccine Therapy for Combating Human Diseases Especially COVID-19: Pros, Cons, and Future Challenges. Phytother. Res. PTR 2022, 36, 2746–2766. [Google Scholar] [CrossRef] [PubMed]
- Rattanapisit, K.; Shanmugaraj, B.; Manopwisedjaroen, S.; Purwono, P.B.; Siriwattananon, K.; Khorattanakulchai, N.; Hanittinan, O.; Boonyayothin, W.; Thitithanyanont, A.; Smith, D.R.; et al. Rapid Production of SARS-CoV-2 Receptor Binding Domain (RBD) and Spike Specific Monoclonal Antibody CR3022 in Nicotiana benthamiana. Sci. Rep. 2020, 10, 17698. [Google Scholar] [CrossRef] [PubMed]
- Sinegubova, M.V.; Orlova, N.A.; Kovnir, S.V.; Dayanova, L.K.; Vorobiev, I.I. High-Level Expression of the Monomeric SARS-CoV-2 S Protein RBD 320-537 in Stably Transfected CHO Cells by the EEF1A1-Based Plasmid Vector. PLoS ONE 2021, 16, e0242890. [Google Scholar] [CrossRef]
- Chen, W.-H.; Pollet, J.; Strych, U.; Lee, J.; Liu, Z.; Kundu, R.T.; Versteeg, L.; Villar, M.J.; Adhikari, R.; Wei, J.; et al. Yeast-Expressed Recombinant SARS-CoV-2 Receptor Binding Domain RBD203-N1 as a COVID-19 Protein Vaccine Candidate. Protein Expr. Purif. 2022, 190, 106003. [Google Scholar] [CrossRef]
- Nechooshtan, R.; Ehrlich, S.; Vitikainen, M.; Makovitzki, A.; Dor, E.; Marcus, H.; Hefetz, I.; Pitel, S.; Wiebe, M.; Huuskonen, A.; et al. Thermophilic Filamentous Fungus C1-Cell-Cloned SARS-CoV-2-Spike-RBD-Subunit-Vaccine Adjuvanted with Aldydrogel®85 Protects K18-hACE2 Mice against Lethal Virus Challenge. Vaccines 2022, 10, 2119. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, J.; Wei, Z.; Xing, S. Efficient Expression of Fusion Human Epidermal Growth Factor in Tobacco Chloroplasts. BMC Biotechnol. 2023, 23, 1. [Google Scholar] [CrossRef]
- Scheich, C.; Sievert, V.; Büssow, K. An Automated Method for High-Throughput Protein Purification Applied to a Comparison of His-Tag and GST-Tag Affinity Chromatography. BMC Biotechnol. 2003, 3, 12. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Tomar, M.; Potkule, J.; Verma, R.; Punia, S.; Mahapatra, A.; Belwal, T.; Dahuja, A.; Joshi, S.; Berwal, M.K.; et al. Advances in the Plant Protein Extraction: Mechanism and Recommendations. Food Hydrocoll. 2021, 115, 106595. [Google Scholar] [CrossRef]
- Karki, U.; Fang, H.; Guo, W.; Unnold-Cofre, C.; Xu, J. Cellular Engineering of Plant Cells for Improved Therapeutic Protein Production. Plant Cell Rep. 2021, 40, 1087–1099. [Google Scholar] [CrossRef] [PubMed]
Primer ID | Sequence 5′ → 3′ |
---|---|
SpeI-RBD-F | TAGTATGAAGAATACCTCTTCCCTTTG |
SpeI-R 1 | GTTTTCAGCGT-GTCCTCTCCAA |
SpeI-Spike-F | TAGTATGAAAAACACATCAAGTTTATGCTTATTATTAC |
ADH-RBD-F | GATCAAAAGCAAGTTCTTCACTGTTGATAATGAAGAATA-CCTCTTCCCTTTG |
ADH-R 2 | TTTTGTTAGTTTTGTGTGATTGTGATGTATCAGCGTGTCCT-CTCCAA |
ADH-Spike-F | GATCAAAAGCAAGTTCTTCACTGTTGATAATGAAAAACA-CATCAAGTTTATGCTTATTATTAC |
Base Vector + 5′UTR Modification | Recombinant Protein | Vector Name | Selected E2 1 Embryo Lines |
---|---|---|---|
RUBY + none | None | pRUBY.EV | 4 |
RUBY + SpeI site | RBD | pRUBY.SS | 26 |
RUBY + AtADH | RBD | pRUBY.SA | 18 |
RUBY + SpeI site | SPIKE | pRUBY.LS | 8 |
RUBY + AtADH | SPIKE | pRUBY.LA | 15 |
Gemini + AtADH | RBD | pGEM.RBD | 13 |
Gemini + AtADH | SPIKE | pGEM.SPIKE | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaini, P.A.; Haddad, K.R.; Feinberg, N.G.; Ophir, Y.; Nandi, S.; McDonald, K.A.; Dandekar, A.M. Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites. BioTech 2024, 13, 50. https://doi.org/10.3390/biotech13040050
Zaini PA, Haddad KR, Feinberg NG, Ophir Y, Nandi S, McDonald KA, Dandekar AM. Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites. BioTech. 2024; 13(4):50. https://doi.org/10.3390/biotech13040050
Chicago/Turabian StyleZaini, Paulo A., Katherine R. Haddad, Noah G. Feinberg, Yakir Ophir, Somen Nandi, Karen A. McDonald, and Abhaya M. Dandekar. 2024. "Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites" BioTech 13, no. 4: 50. https://doi.org/10.3390/biotech13040050
APA StyleZaini, P. A., Haddad, K. R., Feinberg, N. G., Ophir, Y., Nandi, S., McDonald, K. A., & Dandekar, A. M. (2024). Leveraging Walnut Somatic Embryos as a Biomanufacturing Platform for Recombinant Proteins and Metabolites. BioTech, 13(4), 50. https://doi.org/10.3390/biotech13040050