The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed
Abstract
:1. Introduction
2. The Nutritional Value of Cricket Meal
Composition (g/100 g, Dry Matter) | A. domesticus | G. assimilis | G. bimaculatus | FM | SBM |
---|---|---|---|---|---|
Protein | 10.3–73.1 | 62.1–64.9 | 57.0–59.9 | 57.40–73 | 49.4–54.0 |
Lipids | 3–22.8 | 18.14–23.2 | 13.9–46.0 | 4.7–9.9 | 0.9–1.8 |
Fiber | 3.5–10.2 | 7.0–8.3 | 8.4–9.5 | 0.5 | 3.4–7.9 |
Carbohydrates | NA | 8.6–12.5 | NA | 15.0 | 4.8–7.0 |
Ash | 4.41–8.36 | 4.48–4.8 | 4.8–5.4 | 12.70–18 | 6.0–7.0 |
Moisture | 4.72–73.2 | NA | 7.4 | NA | 10.4–12.5 |
EAA | |||||
Arginine | 3.73–8.53 | 4.04 | 4.59–6.20 | 3.7–7.42 | 3.59 |
Histidine | 0.67–2.93 | 1.52 | 1.51–2.20 | 1.30–7.86 | 1.32 |
Isoleucine | 2.0–5.31 | 2.91 | 1.88–3.75 | 2.60–5.04 | 2.17 |
Leucine | 3.80–8.69 | 4.83 | 3.79–6.70 | 4.23–7.81 | 3.74 |
Lysine | 3.22–6.16 | 3.90 | 3.02–5.14 | 4.49–8.78 | 3.16 |
Methionine | 0.93–1.49 | 1.10 | 0.98 ± 2.02 | 1.51–2.93 | 0.82 |
Phenylalanine | 1.36–4.23 | 2.34 | 1.75–4.0 | 2.21–5.38 | 2.50 |
Threonine | 1.65–4.49 | 2.54 | 2.55–3.58 | 2.42–6.26 | 1.99 |
Tryptophan | 0.38–0.68 | 0.68 | 0.25–0.85 | 0.62 | 0.72 |
Valine | 2.76–6.99 | 3.84 | 2.85–4.24 | 2.88–5.56 | 2.27 |
NEEA | |||||
Alanine | 3.67–5.92 | 5.89 | 3.47 | 4.14 | 2.15 |
Aspartate | 4.61–5.66 | 5.66 | 2.87 | 6.22 | 5.56 |
Cystine | 0.40–1.17 | 0.55 | 2.02 | 0.65 | 0.98 |
Glutamate | 6.2–7.26 | 6.48 | 6.77 | 8.36 | 9.32 |
Glycine | 2.6–3.65 | 3.50 | 3.31 | 3.72 | 2.06 |
Proline | 3.04–5.84 | 3.54 | 2.81 | 3.18 | 2.46 |
Serine | 1.59–2.87 | 2.87 | 1.59 | 2.49 | 2.51 |
Tyrosine | 2.71–4.91 | 3.18 | 7.63 | 2.20 | 1.87 |
EAA/NEAA | 0.83–1.33 | 0.87 | 0.76–1.27 | 0.84–1.86 | 0.83 |
Protein ADC (%) | 65.8–76.5 | 39.7 | 71.2–90.4 | 91.6 | 83.0 |
EFA | |||||
ALA | 41.39 | 26.13 | 4.15 | 0.54 | 6.8 |
LNA | NA | NA | NA | 1.24 | 51.0 |
ARA | 0.01 | NA | 0.01 | 0.84 | 0 |
EPA | 0.01 | NA | 0 | 11.44 | 0 |
DHA | 0.11 | 0.03 | 0.02 | 12.3 | 0 |
SFA | 32.2 | 43.7 | 3.25 | 26.43 | 14.2 |
MUFA | 21.7 | 27.5 | 3.13 | 35.26 | 30.0 |
PUFA | 42.6 | 28.8 | 4.33 | 37.4 | 55.8 |
ω3 | 1.10 | NA | 1.13 | 27 | 6.8 |
ω6 | 32.91 | NA | 24.33 | 2.56 | 51.0 |
ω3/ω6 | 0.07 | NA | 0.04 | 10.8 | 0.13 |
References | [21,22,23,38,39,40,41,42,43,44] | [38,40,45] | [40,46,47,48,49,50] | [22,23,47,51] | [32,52] |
3. The Dietary Use of Cricket Meal Influences the Growth Performance, Physiological Response, and Microbiota Composition of Different Aquatic Species
4. Challenges, Limitations, and Possible Solutions
4.1. Environmental Impact and Economic Feasibility of Cricket Meal Production
4.2. Challenges in Cricket-Meal-Based Aquafeed
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Little, D.C.; Newton, R.W.; Beveridge, M.C.M. Aquaculture: A Rapidly Growing and Significant Source of Sustainable Food? Status, Transitions and Potential. Proc. Nutr. Soc. 2016, 75, 274–286. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture (SOFIA); FAO: Rome, Italy, 2022; ISBN 9789251363645. [Google Scholar]
- Jobling, M. National Research Council (NRC): Nutrient Requirements of Fish and Shrimp; Aquaculture International: Cham, Switzerland, 2012; Volume 20, pp. 601–602. ISBN 1049901194806. [Google Scholar]
- Ayisi, C.L.; Hua, X.; Apraku, A.; Afriyie, G.; Kyei, B.A. Recent Studies Toward the Development of Practical Diets for Shrimp and Their Nutritional Requirements. HAYATI J. Biosci. 2017, 24, 109–117. [Google Scholar] [CrossRef]
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Fishmeal Alternative Protein Sources for Aquaculture Feeds; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 1–28. ISBN 9783319779416. [Google Scholar]
- Hodar, A.R.; Vasava, R.; Joshi, N.H.; Mahavadiya, D.R. Fish Meal and Fish Oil Replacement for Alternative Sources: A Review. J. Exp. Zool. India 2020, 23, 13–21. [Google Scholar]
- Bandara, T. Alternative Feed Ingredients in Aquaculture: Opportunities and Challenges. J. Entomol. Zool. Stud. 2018, 6, 3087–3094. [Google Scholar]
- Nogales-Mérida, S.; Gobbi, P.; Józefiak, D.; Mazurkiewicz, J.; Dudek, K.; Rawski, M.; Kierończyk, B.; Józefiak, A. Insect Meals in Fish Nutrition. Rev. Aquac. 2019, 11, 1080–1103. [Google Scholar] [CrossRef]
- Montowska, M.; Kowalczewski, P.Ł.; Rybicka, I.; Fornal, E. Nutritional Value, Protein and Peptide Composition of Edible Cricket Powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef]
- Maulu, S.; Langi, S.; Hasimuna, O.J.; Missinhoun, D.; Munganga, B.P.; Hampuwo, B.M.; Gabriel, N.N.; Elsabagh, M.; Van Doan, H.; Abdul Kari, Z.; et al. Recent Advances in the Utilization of Insects as an Ingredient in Aquafeeds: A Review. Anim. Nutr. 2022, 11, 334–349. [Google Scholar] [CrossRef]
- Goglio, P.; Van Den Burg, S.; Kousoulaki, K.; Skirtun, M.; Espmark, Å.M.; Kettunen, A.H.; Abbink, W. The Environmental Impact of Partial Substitution of Fish-Based Feed with Algae- and Insect-Based Feed in Salmon Farming. Sustainability 2022, 14, 12650. [Google Scholar] [CrossRef]
- Cadena-Cadena, F.; Cuevas-Acuña, D.A.; Frias, B.C.; Hernández, R.C.; Nuñez, J.C.G.; Martinez, B.A.; Arias-Moscoso, J.L. Replacement of Fishmeal by Common Cricket (Acheta domesticus) Meal in Diets for Juvenile Tilapia (Oreochromis niloticus). Isr. J. Aquac. Bamidgeh 2023, 75, 1–12. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G.; Dossey, A.T.; Berhow, M. Self-Selection of Food Ingredients and Agricultural by-Products by the House Cricket, Acheta Domesticus (Orthoptera: Gryllidae): A Holistic Approach to Develop Optimized Diets. PLoS ONE 2020, 15, e0227400. [Google Scholar] [CrossRef]
- Van Peer, M.; Frooninckx, L.; Coudron, C.; Berrens, S.; Álvarez, C.; Deruytter, D.; Verheyen, G.; Van Miert, S. Valorisation Potential of Using Organic Side Streams as Feed for Tenebrio Molitor, Acheta Domesticus and Locusta Migratoria. Insects 2021, 12, 796. [Google Scholar] [CrossRef]
- Mulia, R.N.; Doi, H. Global Simulation of Insect Meat Production Under Climate Change. Front. Sustain. Food Syst. 2019, 3, 91. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE 2010, 5, e0014445. [Google Scholar] [CrossRef]
- Van Huis, A. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Liceaga, A.M. Edible Insects, a Valuable Protein Source from Ancient to Modern Times. In Advances in Food and Nutrition Research; Elsevier Inc.: Amsterdam, The Netherlands, 2022; Volume 101, pp. 129–152. ISBN 9780323983808. [Google Scholar]
- Alexander, P.; Brown, C.; Arneth, A.; Dias, C.; Finnigan, J.; Moran, D.; Rounsevell, M.D.A. Could Consumption of Insects, Cultured Meat or Imitation Meat Reduce Global Agricultural Land Use? Glob. Food Sec. 2017, 15, 22–32. [Google Scholar] [CrossRef]
- Rumpold, B.A.; Schlüter, O.K. Potential and Challenges of Insects as an Innovative Source for Food and Feed Production. Innov. Food Sci. Emerg. Technol. 2013, 17, 1–11. [Google Scholar] [CrossRef]
- Barker, D.; Fitzpatrick, M.P.; Dierenfeld, E.S. Nutrient Composition of Selected Whole. Zoo Biol. 1998, 17, 123–134. [Google Scholar] [CrossRef]
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The Potential of Various Insect Species for Use as Food for Fish. Aquaculture 2014, 422–423, 193–201. [Google Scholar] [CrossRef]
- Tran, G.; Heuzé, V.; Makkar, H.P.S. Insects in Fish Diets. Anim. Front. 2015, 5, 37–44. [Google Scholar]
- Finke, M.D. Complete Nutrient Composition of Commercially Raised Invertebrates Used as Food for Insectivores. Zoo Biol. 2002, 21, 269–285. [Google Scholar] [CrossRef]
- Alfiko, Y.; Xie, D.; Astuti, R.T.; Wong, J.; Wang, L. Insects as a Feed Ingredient for Fish Culture: Status and Trends. Aquac. Fish. 2022, 7, 166–178. [Google Scholar] [CrossRef]
- Molina-Poveda, C. Nutrient Requirements; Elsevier Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128009956. [Google Scholar]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the Use of Insects in the Diet of Farmed Fish: Past and Future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Furuya, W.M.; da Cruz, T.P.; Gatlin, D.M. Amino Acid Requirements for Nile Tilapia: An Update. Animals 2023, 13, 900. [Google Scholar] [CrossRef]
- Casillas-Hernández, R.; Gonzalez-Galaviz, J.R.; Rodriguez-Anaya, L.Z.; Gil-Núñez, J.C.; Rodríguez-Jaramillo, M. del C. Dietary Use of Methionine Sources and Bacillus Amyloliquefaciens CECT 5940 Influences Growth Performance, Hepatopancreatic Histology, Digestion, Immunity, and Digestive Microbiota of Litopenaeus Vannamei Fed Reduced Fishmeal Diets. Animals 2023, 13, 43. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, I.H. Fish Meal—Nutritive Value. J. Anim. Physiol. Anim. Nutr. 2011, 95, 685–692. [Google Scholar] [CrossRef]
- Staessen, T.W.O.; Verdegem, M.C.J.; Koletsi, P.; Schrama, J.W. The Effect of Dietary Protein Source (Fishmeal vs. Plant Protein) and Non-Starch Polysaccharide Level on Fat Digestibility and Faecal Bile Acid Loss in Rainbow Trout (Oncorhynchus mykiss). Aquac. Res. 2020, 51, 1170–1181. [Google Scholar] [CrossRef]
- Rahman, M.M.; Gunathilaka, B.E.; You, S.G.; Kim, K.W.; Lee, S.M. Apparent Digestibility Coefficients of Plant Feed Ingredients for Olive Flounder (Paralichthys olivaceus). Fish. Aquat. Sci. 2023, 26, 87–96. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, Y.; Han, Z.; Zheng, Y.; Wang, X.; Zhang, M.; Li, H.; Xu, J.; Chen, X.; Ding, Z.; et al. Comparative Effects of Dietary Soybean Oil and Fish Oil on the Growth Performance, Fatty Acid Composition and Lipid Metabolic Signaling of Grass Carp, Ctenopharyngodon Idella. Aquac. Rep. 2022, 22, 101002. [Google Scholar] [CrossRef]
- Ndiritu, A.K.; Kinyuru, J.N.; Kenji, G.M.; Gichuhi, P.N. Extraction Technique Influences the Physico-Chemical Characteristics and Functional Properties of Edible Crickets (Acheta domesticus) Protein Concentrate. J. Food Meas. Charact. 2017, 11, 2013–2021. [Google Scholar] [CrossRef]
- Colombo, S.M.; Foroutani, M.B.; Parrish, C.C. Fats and Oils in Aquafeed Formulations. In Bailey’s Industrial Oil and Fat Products, 7th ed.; Shahidi, F., Ed.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2020; pp. 1–28. [Google Scholar] [CrossRef]
- Filipa-Silva, A.; Marques, A.; Salgado, M.A.; Abreu, H.; Dias, J.; Valente, L.M.P. Exploring Alternative Marine Lipid Sources as Substitutes for Fish Oil in Farmed Sea Bass (Dicentrarchus labrax) and Their Influence on Organoleptic, Chemical, and Nutritional Properties during Cold Storage. Front. Sustain. Food Syst. 2023, 7, 1–17. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Laurent, S.; Veenenbos, M.E.; van Loon, J.J.A. Dietary Enrichment of Edible Insects with Omega 3 Fatty Acids. Insect Sci. 2020, 27, 500–509. [Google Scholar] [CrossRef]
- Brogan, E.N.; Park, Y.L.; Matak, K.E.; Jaczynski, J. Characterization of Protein in Cricket (Acheta domesticus), Locust (Locusta migratoria), and Silk Worm Pupae (Bombyx mori) Insect Powders. LWT 2021, 152, 112314. [Google Scholar] [CrossRef]
- Irungu, F.G.; Mutungi, C.M.; Faraj, A.K.; Affognon, H.; Kibet, N.; Tanga, C.; Ekesi, S.; Nakimbugwe, D.; Fiaboe, K.K.M. Physico-Chemical Properties of Extruded Aquafeed Pellets Containing Black Soldier Fly (Hermetia illucens) Larvae and Adult Cricket (Acheta Domesticus) Meals. J. Insects Food Feed 2018, 4, 19–30. [Google Scholar] [CrossRef]
- Magara, H.J.O.; Niassy, S.; Ayieko, M.A.; Mukundamago, M.; Egonyu, J.P.; Tanga, C.M.; Kimathi, E.K.; Ongere, J.O.; Fiaboe, K.K.M.; Hugel, S.; et al. Edible Crickets (Orthoptera) Around the World: Distribution, Nutritional Value, and Other Benefits—A Review. Front. Nutr. 2021, 7, 537915. [Google Scholar] [CrossRef]
- Nakagaki, B.J.; Sunde, M.L.; Defoliart, G.R. Protein Quality of the House Cricket, Acheta Domesticus, When Fed to Broiler Chicks. Poult. Sci. 1987, 66, 1367–1371. [Google Scholar] [CrossRef]
- Perera, G.S.C.; Bhujel, R.C. Replacement of Fishmeal by House Cricket (Acheta domesticus) and Field Cricket (Gryllus bimaculatus) Meals: Effect for Growth, Pigmentation, and Breeding Performances of Guppy (Poecilia reticulata). Aquac. Rep. 2022, 25, 101260. [Google Scholar] [CrossRef]
- Udomsil, N.; Imsoonthornruksa, S.; Gosalawit, C.; Ketudat-Cairns, M. Nutritional Values and Functional Properties of House Cricket (Acheta domesticus) and Field Cricket (Gryllus bimaculatus). Food Sci. Technol. Res. 2019, 25, 597–605. [Google Scholar] [CrossRef]
- Owens, C.E.; Powell, M.S.; Gaylord, T.G.; Conley, Z.B.; Sealey, W.M. Investigation of the Suitability of 3 Insect Meals as Protein Sources for Rainbow Trout (Oncorhynchus mykiss). J. Econ. Entomol. 2024, 117, 1254–1260. [Google Scholar] [CrossRef]
- Fontes, T.V.; Oliveira, K.R.B.; Almeida, I.L.G.; Orlando, T.M.; Borges, R.P.; Costa, D.V.; Rosa, P.V. Digestibility of Insect Meals for Nile. Animals 2019, 9, 181. [Google Scholar] [CrossRef]
- Murugu, D.K.; Onyango, A.N.; Ndiritu, A.K.; Osuga, I.M.; Xavier, C.; Nakimbugwe, D.; Tanga, C.M. From Farm to Fork: Crickets as Alternative Source of Protein, Minerals, and Vitamins. Front. Nutr. 2021, 8, 704002. [Google Scholar] [CrossRef]
- Hanan, M.Y.; Amatul-Samahah, M.A.; Jaapar, M.Z.; Mohamad, S.N. The Effects of Field Cricket (Gryllus bimaculatus) Meal Substitution on Growth Performance and Feed Utilization of Hybrid Red Tilapia (Oreochromis Spp.). Appl. Food Res. 2022, 2, 100070. [Google Scholar] [CrossRef]
- Prachom, N.; Yuangsoi, B.; Pumnuan, J.; Ashour, M.; Davies, S.J.; El-Haroun, E. Effects of Substituting the Two-Spotted Cricket (Gryllus bimaculatus) Meal for Fish Meal on Growth Performances and Digestibility of Striped Snakehead (Channa striata) Juveniles. Life 2023, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Prachom, N.; Suharman, I. The Use of Cricket (Gryllus bimaculatus) Meal as Protein Source for Snakehead Fish (Channa striata). IOP Conf. Ser. Earth Environ. Sci. 2022, 1118, 012020. [Google Scholar] [CrossRef]
- Taufek, N.M.; Muin, H.; Raji, A.A.; Md Yusof, H.; Alias, Z.; Razak, S.A. Potential of Field Crickets Meal (Gryllus Bimaculatus) in the Diet of African Catfish (Clarias gariepinus). J. Appl. Anim. Res. 2018, 46, 541–546. [Google Scholar] [CrossRef]
- De Koning, A.J. Quantitative Quality Tests for Fish Meal. II: An Investigation of the Quality of South African Fish Meals and the Validity of a Number of Chemical Quality Indices. Int. J. Food Prop. 2002, 5, 495–507. [Google Scholar] [CrossRef]
- Wang, K.; Zou, X.; Guo, L.; Huang, L.; Wang, Y.; Yang, P.; Huang, L.; Ma, X.; Zhuo, Y.; Che, L.; et al. The Nutritive Value of Soybean Meal from Different Sources for Sows during Mid-and Late Gestation. J. Anim. Sci. 2022, 100, skac298. [Google Scholar] [CrossRef]
- Shin, J.; Lee, K.J. Digestibility of Insect Meals for Pacific White Shrimp (Litopenaeus vannamei) and Their Performance for Growth, Feed Utilization and Immune Responses. PLoS ONE 2021, 16, e0260305. [Google Scholar] [CrossRef]
- Peh, K.L.; Shapawi, R.; Lim, L.S. Black Cricket (Gryllus Bimaculatus) Meal as a Protein Source in the Practical Diets for Juvenile Whiteleg Shrimp (Litopenaeus vannamei). Iran. J. Fish. Sci. 2021, 20, 731–740. [Google Scholar] [CrossRef]
- Taufek, N.M.; Aspani, F.; Muin, H.; Raji, A.A.; Razak, S.A.; Alias, Z. The Effect of Dietary Cricket Meal (Gryllus bimaculatus) on Growth Performance, Antioxidant Enzyme Activities, and Haematological Response of African Catfish (Clarias gariepinus). Fish Physiol. Biochem. 2016, 42, 1143–1155. [Google Scholar] [CrossRef]
- Jeong, S.M.; Khosravi, S.; Mauliasari, I.R.; Lee, B.J.; You, S.G.; Lee, S.M. Nutritional Evaluation of Cricket, Gryllus Bimaculatus, Meal as Fish Meal Substitute for Olive Flounder, Paralichthys Olivaceus, Juveniles. J. World Aquac. Soc. 2021, 52, 859–880. [Google Scholar] [CrossRef]
- Perera, A.D.; Bhujel, R.C. Field Cricket (Gryllus bimaculatus) Meal (FCM) to Replace Fishmeal in the Diets for Sex Reversal and Nursing of Nile Tilapia (Oreochromis niloticus) Fry. Aquac. Res. 2021, 52, 4946–4958. [Google Scholar] [CrossRef]
- Alfaro, A.O.; Núñez, W.L.; Marcia, J.; Fernández, I.M. The Cricket (Gryllus assimilis) as an Alternative Food Versus Commercial Concentrate for Tilapia (Oreochromis Sp.) in the Nursery Stage. J. Agric. Sci. 2019, 11, 97. [Google Scholar] [CrossRef]
- Lee, S.W.; Tey, H.C.; Wendy, W.; Zahari, M.W.; Kelantan, M.; Tembak, J.P.; Chepa, P. The Effect of House Cricket (Acheta Domesticus) Meal on Growth Performance of Red Hybrid Tilapia (Oreochromis Sp.). Int. J. Aquat. Sci. 2017, 8, 78–82. [Google Scholar]
- Liu, Y.; Ding, X.; Brown, P.B.; Bai, Y.; Liu, Z.; Shen, J.; Liu, H.; Huang, Y. The Digestive Enzyme Activity, Intestinal Microbiota and Immune-Related Genes Expression of Snakehead Fish (Channa argus) Juveniles Affected by Dietary Cricket (Gryllus testaceus) Meal. Anim. Feed Sci. Technol. 2023, 304, 115721. [Google Scholar] [CrossRef]
- Perera, G.S.C.; Afridin, M.R.; Adikari, A.M.A.N.; Heenatigala, P.P.M.; Maduka, K.L.W.T.; Dunusinghe, S.B.K. Replacing the Unsustainable and Wild-Caught Fishmeal with Field Cricket (Gryllus bimaculatus) Meal in Catla (Catla catla) Fry Diet: Effect for Growth, in Vivo Digestibility, Carcass Composition, Histopathological Alterations, and Disease Tolerance. Aquac. Int. 2023, 32, 2609–2626. [Google Scholar] [CrossRef]
- Fan, K.; Liu, H.; Pei, Z.; Brown, P.B.; Huang, Y. A Study of the Potential Effect of Dietary Fishmeal Replacement with Cricket Meal (Gryllus bimaculatus) on Growth Performance, Blood Health, Liver Antioxidant Activities, Intestinal Microbiota and Immune-Related Gene Expression of Juvenile Channel Catfish. Anim. Feed Sci. Technol. 2023, 295, 115542. [Google Scholar] [CrossRef]
- Taufek, N.M.; Simarani, K.; Muin, H.; Aspani, F.; Raji, A.A.; Alias, Z.; Razak, S.A. Inclusion of Cricket (Gryllus bimaculatus) Meal in African Catfish (Clarias gariepinus) Feed Influences Disease Resistance. J. Fish. 2018, 6, 623–631. [Google Scholar] [CrossRef]
- Hasan, I.; Gai, F.; Cirrincione, S.; Rimoldi, S.; Saroglia, G.; Terova, G. Chitinase and Insect Meal in Aquaculture Nutrition: A Comprehensive Overview of the Latest Achievements. Fishes 2023, 8, 607. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Sharifinia, M.; Emerenciano, M.G.C. A Detailed Look at the Impacts of Biofloc on Immunological and Hematological Parameters and Improving Resistance to Diseases. Fish Shellfish. Immunol. 2023, 137, 108796. [Google Scholar] [CrossRef]
- Delgadillo-Nuño, M.A.; Liñán-Cabello, M.A.; Justel-Díez, M.; Delgadillo-Nuño, E.; Kono-Martínez, T.; Galindo-Sánchez, C.E.; Cabral-Tena, R.A.; Carpizo-Ituarte, E.J. Dos Biomarcadores de La Plasticidad de La Expresión Génica En Corales Pocillopora Del Arrecife Carrizales, PacíficoTropical Mexicano. Hidrobiologica 2023, 33, 115–125. [Google Scholar] [CrossRef]
- López Nadal, A.; Ikeda-Ohtsubo, W.; Sipkema, D.; Peggs, D.; McGurk, C.; Forlenza, M.; Wiegertjes, G.F.; Brugman, S. Feed, Microbiota, and Gut Immunity: Using the Zebrafish Model to Understand Fish Health. Front. Immunol. 2020, 11, 114. [Google Scholar] [CrossRef] [PubMed]
- Hilmarsdóttir, G.S.; Ögmundarson, Ó.; Arason, S.; Gudjónsdóttir, M. Identification of Environmental Hotspots in Fishmeal and Fish Oil Production towards the Optimization of Energy-Related Processes. J. Clean. Prod. 2022, 343, 130880. [Google Scholar] [CrossRef]
- Boyd, C.E.; McNevin, A.A. Resource Use and Pollution Potential in Feed-Based Aquaculture. Rev. Fish. Sci. Aquac. 2024, 32, 306–333. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Osei-Owusu, J.; Yunusa, B.M.; Rahayu, T.; Fernando, I.; Shah, M.A.; Centoducati, G. Prospects of Edible Insects as Sustainable Protein for Food and Feed—A Review. J. Insects Food Feed 2023, 10, 191–217. [Google Scholar] [CrossRef]
- Van Peer, M.; Berrens, S.; Coudron, C.; Noyens, I.; Verheye, G.R.; Van Miert, S. Towards Good Practices for Research on Acheta Domesticus, the House Cricket. J. Insects Food Feed 2024, 5, 1–17. [Google Scholar] [CrossRef]
- Vauterin, A.; Steiner, B.; Sillman, J.; Kahiluoto, H. The Potential of Insect Protein to Reduce Food-Based Carbon Footprints in Europe: The Case of Broiler Meat Production. J. Clean. Prod. 2021, 320, 128799. [Google Scholar] [CrossRef]
- Fréon, P.; Durand, H.; Avadí, A.; Huaranca, S.; Orozco Moreyra, R. Life Cycle Assessment of Three Peruvian Fishmeal Plants: Toward a Cleaner Production. J. Clean. Prod. 2017, 145, 50–63. [Google Scholar] [CrossRef]
- Marchán-Moreno, C.; Queipo-Abad, S.; Corns, W.T.; Bueno, M.; Pannier, F.; Amouroux, D.; Fontagné-Dicharry, S.; Pedrero, Z. Assessment of Dietary Selenium and Its Role in Mercury Fate in Cultured Fish Rainbow Trout with Two Sustainable Aquafeeds. Food Chem. 2024, 447, 138865. [Google Scholar] [CrossRef]
- Pahlow, M.; van Oel, P.R.; Mekonnen, M.M.; Hoekstra, A.Y. Increasing Pressure on Freshwater Resources Due to Terrestrial Feed Ingredients for Aquaculture Production. Sci. Total Environ. 2015, 536, 847–857. [Google Scholar] [CrossRef]
- Giusti, G.; Galo, N.R.; Tóffano Pereira, R.P.; Lopes Silva, D.A.; Filimonau, V. Assessing the Impact of Drought on Carbon Footprint of Soybean Production from the Life Cycle Perspective. J. Clean. Prod. 2023, 425, 138843. [Google Scholar] [CrossRef]
- Hlaváč, D.; Adámek, Z.; Hartman, P.; Másílko, J. Effects of Supplementary Feeding in Carp Ponds on Discharge Water Quality: A Review. Aquac. Int. 2014, 22, 299–320. [Google Scholar] [CrossRef]
- Halloran, A.; Hanboonsong, Y.; Roos, N.; Bruun, S. Life Cycle Assessment of Cricket Farming in North-Eastern Thailand. J. Clean. Prod. 2017, 156, 83–94. [Google Scholar] [CrossRef]
- Maiolo, S.; Cristiano, S.; Gonella, F.; Pastres, R. Ecological Sustainability of Aquafeed: An Emergy Assessment of Novel or Underexploited Ingredients. J. Clean. Prod. 2021, 294, 126266. [Google Scholar] [CrossRef]
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Soybean Dreg Pre-Digested by Enzymes Can Effectively Replace Part of the Fishmeal Included in Feed Pellets for Rearing Gold-Lined Seabream. Sci. Total Environ. 2020, 704, 135266. [Google Scholar] [CrossRef]
- Reverberi, M. Edible Insects: Cricket Farming and Processing as an Emerging Market. J. Insects Food Feed 2020, 6, 211–220. [Google Scholar] [CrossRef]
- Żuk-Gołaszewska, K.; Gałęcki, R.; Obremski, K.; Smetana, S.; Figiel, S.; Gołaszewski, J. Edible Insect Farming in the Context of the EU Regulations and Marketing—An Overview. Insects 2022, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Fantatto, R.R.; Mota, J.; Ligeiro, C.; Vieira, I.; Guilgur, L.G.; Santos, M.; Murta, D. Exploring Sustainable Alternatives in Aquaculture Feeding: The Role of Insects. Aquac. Rep. 2024, 37, 102228. [Google Scholar] [CrossRef]
- Serra, V.; Pastorelli, G.; Tedesco, D.E.A.; Turin, L.; Guerrini, A. Alternative Protein Sources in Aquafeed: Current Scenario and Future Perspectives. Vet. Anim. Sci. 2024, 25, 100381. [Google Scholar] [CrossRef]
- Pan, J.; Xu, H.; Cheng, Y.; Mintah, B.K.; Dabbour, M.; Yang, F.; Chen, W.; Zhang, Z.; Dai, C.; He, R.; et al. Recent Insight on Edible Insect Protein: Extraction, Functional Properties, Allergenicity, Bioactivity, and Applications. Foods 2022, 11, 2931. [Google Scholar] [CrossRef]
- Bassett, F.S. Comparison of Functional, Nutritional, and Sensory Properties of Spray-Dried and Oven-Dried Cricket (Acheta domesticus) Powder; Brigham Young University: Provo, UT, USA, 2018; p. 43. [Google Scholar]
- Ruggeri, M.; Bianchi, E.; Vigani, B.; Sánchez-Espejo, R.; Spano, M.; Totaro Fila, C.; Mannina, L.; Viseras, C.; Rossi, S.; Sandri, G. Nutritional and Functional Properties of Novel Italian Spray-Dried Cricket Powder. Antioxidants 2023, 12, 112. [Google Scholar] [CrossRef]
- Mohd Zaini, N.S.; Lim, E.J.; Ahmad, N.H.; Gengatharan, A.; Wan-Mohtar, W.A.A.Q.I.; Abd Rahim, M.H. The Review of Cooking, Drying, and Green Extraction Methods on General Nutritional Properties of Mealworms and Locusts. Food Bioprocess Technol. 2023, 16, 1904–1918. [Google Scholar] [CrossRef] [PubMed]
- Hall, F.; Liceaga, A. Effect of Microwave-Assisted Enzymatic Hydrolysis of Cricket (Gryllodes sigillatus) Protein on ACE and DPP-IV Inhibition and Tropomyosin-IgG Binding. J. Funct. Foods 2020, 64, 103634. [Google Scholar] [CrossRef]
- Patrignani, F.; Parrotta, L.; Del Duca, S.; Vannini, L.; Camprini, L.; Dalla Rosa, M.; Schlüter, O.; Lanciotti, R. Potential of Yarrowia Lipolytica and Debaryomyces Hansenii Strains to Produce High Quality Food Ingredients Based on Cricket Powder. LWT 2020, 119, 108866. [Google Scholar] [CrossRef]
- Choi, B.D.; Wong, N.A.K.; Auh, J.H. Defatting and Sonication Enhances Protein Extraction from Edible Insects. Korean J. Food Sci. Anim. Resour. 2017, 37, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Lee, J.H.; Yong, H.I.; Kang, M.C.; Cha, J.Y.; Chun, J.Y.; Choi, Y.S. Effects of Defatting Methods on the Physicochemical Properties of Proteins Extracted from Hermetia Illucens Larvae. Foods 2022, 11, 1400. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef]
- Józefiak, A.; Engberg, R.M. Insect Proteins as a Potential Source of Antimicrobial Peptides in Livestock Production. A Review. J. Anim. Feed Sci. 2017, 26, 87–99. [Google Scholar] [CrossRef]
Aquatic Species | Initial Weight (g) | Bioassay Duration (Days) | Cricket Species | Optimal CM Inclusion (%) | CM Inclusions (%) | Effects | References |
---|---|---|---|---|---|---|---|
Penaeus vannamei | 0.17 | 65 | Gryllus bimaculatus | 10 | 10% CM CD: 250 g/kg FM. | Performance: No differences in FW, SGR, FCR, and SUR between CM and FM basal diet; ↑FI. Antioxidant enzyme activities: no differences in PO, SOD, and GPx; ↑NBT activity in 10% CM. | [53] |
Penaeus vannamei | 0.73 | 40 | Gryllus bimaculatus | 50 | 0%, 10%, 20%, 30%, 40%, and 50% CM. CD: 426.10 g/kg FM. | Performance: ↑WG, ↑SGR, ↑SUR, and ↓FCR in 50% CM. | [54] |
Clarias gariepinus | 4 | 56 | Gryllus bimaculatus | 100 | 0%, 25%, 50%, 75%, and 100% CM. CD: 300 g/kg FM. | Performance: ↑FW in 50, 75, and 100% CM with highest value in 100% CM; ↑WG in 75 and 100% CM with highest value in 100% CM; ↑SGR in 100% CM; ↓FCR in 100% CM; no differences in SUR between groups. | [50] |
Clarias gariepinus | 13.2 | 49 | Gryllus bimaculatus | 100 | 0%, 75%, and 100% CM. CD: 350 g/kg FM. | Performance: ↑FI, ↑WG, ↑SGR, and ↑SUR in 100% CM with lowest FCR in 100% CM. Antioxidant enzyme activities: ↑CAT in 100% CM; no differences in GST and SOD between groups. | [55] |
Chana striata | 15 | 70 | Gryllus bimaculatus | 100 | 100% CM. CD: 450 g/kg FM. | Performance: ↑FW and ↑WG in 100% CM; ↓FCR in 100% CM; no differences in FI, SGR, and SUR between the FM diet and CM diet. | [49] |
Chana striata | 15 | 70 | Gryllus bimaculatus | 100 | 0%, 50%, and 100% CM. CD: 450 g/kg FM. | Performance: ↑FW, ↑WG, and ↓FCR in 100% CM; no differences in SGR between dietary groups. | [48] |
Paralichtysolivaceus | 33.5 | 56 | Gryllus bimaculatus | 20 | 0, 20, 40, 60, and 80% CM. CD: 650 g/kg FM. | Performance: ↑WG in 20% CM; lowest SGR in 80% CM; no differences in SUR and FCR between dietary groups. Antioxidant enzyme activities: ↑SOD and ↑GPx in 60% CM; no differences in LZM and MPO activities between dietary groups. | [56] |
Oreochromis niloticus | 8 | 21 (sex reversal treatment) | Gryllus bimaculatus | 60–80 | 0, 20, 40, 60, 80, and 100% CM. CD: 987 g/kg FM. | Performance: ↑SUR; ↓FCR in 80% CM; no differences in SGR and FW between groups. | [57] |
Oreochromis niloticus | 0.30 | 30 (nursery I) | Gryllus bimaculatus | 60–80 | 0, 20, 40, 60, 80, and 100% CM. CD: 382 g/kg FM. | Performance: ↑FW in 60% and ↓FCR in 60% CM; ↑SUR in 80% CM; ↑SGR in 40% CM. | [57] |
Oreochromis niloticus | 0.33 | 33 (nursery II) | Gryllus bimaculatus | 60 | 0, 20, 40, 60, 80, and 100. CD: 382 g/kg FM. | Performance: ↑FW and ↓FCR in 60% CM; no differences in SGR between dietary groups. | [57] |
Oreochromis spp. | 7.9 | 98 | Gryllus bimaculatus | 25–50 | 0, 25, 50, and 75% CM. CD: 200 g/kg FM. | Performance: No differences in FW, WG, and SGR between 25 and 50% CM in the FM diet (0%); no differences in SUR and FCR between dietary groups. | [47] |
Poecilia reticulata | 0.0057 | 30 | Gryllus bimaculatus | 75 | 0, 50, 75, and 100% CM. CD: 450 g/kg FM. | Performance: No differences in FW, WG, SGR, and SUR between dietary groups. Pigmentation: ↑TCC in 100% CM. | [42] |
Poecilia reticulata | 0.0057 | 30 | Acheta domesticus | 75 | 0, 50, 75, and 100% CM. CD: 450 g/kg FM. | Performance: No differences in FW, WG, SGR, and SUR between dietary groups. Pigmentation: No differences in TCC between dietary groups. | [42] |
Oreochromis sp. | 5 | 60 | Gryllus assimilis | 32 | 68% CM. CD: 32% CP in commercial diet. | Performance: No differences in SUR, FCR, and FB between dietary groups. | [58] |
Oreochromis sp. | 1.427 | 28 | Acheta domesticus | 60 | 0, 60, 70, 80, 90, and 100% CM. CD: commercial diet (Cargill, Malaysia). | Performance: ↑SGR in 60% CM; no differences in FW between groups. | [59] |
Chana argus | 3.5 | 70 | Gryllus testaceus | 30 | 0, 15, 30, 45, and 60% CM. CD: 450 g/kg FM. | Performance: No differences in FW, WG, FCR, and SGR in 15% and 30% CM compared with the control diet (0% CM); no differences in SUR and FI between groups. Antioxidant enzyme activities: No differences in CAT, GPx, and SOD between groups; ↑T-AOC in 30% and 45% CM with highest value in 45%; lowest MDA in 45 and 60% CM with lowest value in 60% CM. Immune gene expression: ↑IL-β, ↑IL-10, ↑HSP70 ↑HSP90, and ↓IL-8 in all CM groups; ↑IκBα in 30 and 45% CM. Histology: No differences in mid-intestinal thickness in 15, 30, and 45% CM compared with the control (0% CM); ↓villus height in CM groups; no differences in villus width between groups. Digestive enzymes activities: ↑Amylase activity in 60% CM; ↑lipase activity in 45 and 60% CM with highest value in 45% CM. Gut microbiota: ↑Firmicutes abundance in 60% CM. | [60] |
Catla catla | 0.22 | 56 | Gryllus bimaculatus | 100 | 0, 35, 70, and 100% CM. CD: 250 g/kg FM. | Performance: ↑FW and ↑FI in 70 and 100% CM with highest value in 100% CM; no differences in WG, SUR, and FCR between dietary groups. Liver and gill histology: No changes were observed in gill and liver tissues between groups. Bacterial challenge: No differences in SUR between groups. | [61] |
Ictalurus punctatus | 2.7 | 70 | Gryllus bimaculatus | 50–75 | 0, 25, 50, 75, and 100% CM. CD: 350 g/kg FM. | Performance: ↑FW, ↑WG, and ↑SGR in 50 and 75% CM with highest values in 75% CM; no differences in FI and SUR between treatments. Hematological parameters: No differences in WBC, RBC, MVC, PLT, and MPV between groups; ↑HGB, ↑HCT, and ↑MCH in all CM groups with highest values in 50% CM; ↑MCHC in all CM groups with highest values in 100% CM. Antioxidant enzyme activities: No differences in SOD and T-AOC between groups; no differences in MDA between 0% CM and 100% CM; ↑MDA in 75% CM; ↑CAT in 50, 75, and 100% CM with highest values in 50% CM; ↑GPx in 75% CM. Immune gene expression: ↑IL-1β, ↑IL-8, and ↑IL-10 in 25, 50, and 100 CM groups with highest values in 75%; ↑TNF-α in 100% CM; ↑IL-22 and ↑IFN-y in 50, 75, and 100% CM groups with highest values in 100% CM; ↓NF-KB in 50, 75, and 100% CM groups with lowest value in 100% CM; ↑HIF1α in 75% CM. Gut microbiota: ↑Firmicutes abundance in CM groups; ↓Vibrio abundance in 100% CM; ↓Acinetobacter abundance in 50 and 100% CM. | [62] |
Oreochromis niloticus | 9 | 40 | Acheta domesticus | 30 | 20 and 35% CM. CD: Commercial diet (Nutripec, Cargill) | Performance: No difference in FW, FB, and MR between the control and 35% CM. | [12] |
Clarias gariepinus | 22.5 | 40 | Gryllus bimaculatus | 40 | 35 and 40% CM. CD: 350 g/kg FM | Hematological parameters: ↑TP and ↑GBC in 35% and 40% CM with highest values in 40% CM; ↑WBC in 40% CM. Antioxidant enzyme activities: ↑LZM in 35 and 40% CM with highest values in 40% CM. Bacterial challenge: ↑SUR in both CM groups with highest value in 40% CM; ↓MR in both CM groups with lowest value in 40% CM. | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraijo-Valenzuela, A.; Arias-Moscoso, J.L.; García-Pérez, O.D.; Rodriguez-Anaya, L.Z.; Gonzalez-Galaviz, J.R. The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed. BioTech 2024, 13, 51. https://doi.org/10.3390/biotech13040051
Fraijo-Valenzuela A, Arias-Moscoso JL, García-Pérez OD, Rodriguez-Anaya LZ, Gonzalez-Galaviz JR. The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed. BioTech. 2024; 13(4):51. https://doi.org/10.3390/biotech13040051
Chicago/Turabian StyleFraijo-Valenzuela, Aldo, Joe Luis Arias-Moscoso, Oscar Daniel García-Pérez, Libia Zulema Rodriguez-Anaya, and Jose Reyes Gonzalez-Galaviz. 2024. "The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed" BioTech 13, no. 4: 51. https://doi.org/10.3390/biotech13040051
APA StyleFraijo-Valenzuela, A., Arias-Moscoso, J. L., García-Pérez, O. D., Rodriguez-Anaya, L. Z., & Gonzalez-Galaviz, J. R. (2024). The Biotechnological Potential of Crickets as a Sustainable Protein Source for Fishmeal Replacement in Aquafeed. BioTech, 13(4), 51. https://doi.org/10.3390/biotech13040051