The Use of Biologics for Targeting GPCRs in Metastatic Cancers
Abstract
:1. Introduction
2. GPCRs in Metastatic Cancers
2.1. Metastatic Breast Cancer
2.2. Metastatic Colorectal Cancer
2.3. Metastatic Lung Cancer
2.4. Metastatic Prostate Cancer
2.5. Metastatic Melanoma
3. Biologics Targeting GPCRs in Cancer
3.1. Mononclonal Antibodies
3.2. Protein/Peptides
3.3. Nanobodies
4. Conclusions
Funding
Conflicts of Interest
References
- Nieto Gutierrez, A.; McDonald, P.H. GPCRs: Emerging anti-cancer drug targets. Cell. Signal. 2018, 41, 65–74. [Google Scholar] [CrossRef]
- Yang, D.; Zhou, Q.; Labroska, V.; Qin, S.; Darbalaei, S.; Wu, Y.; Yuliantie, E.; Xie, L.; Tao, H.; Cheng, J.; et al. G protein-coupled receptors: Structure- and function-based drug discovery. Signal Transduct. Target. Ther. 2021, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Hauser, A.S.; Attwood, M.M.; Rask-Andersen, M.; Schiöth, H.B.; Gloriam, D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017, 16, 829–842. [Google Scholar] [CrossRef] [PubMed]
- UTEP GPCR Index. Available online: https://gpcr.utep.edu/ (accessed on 26 September 2024).
- Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 2004, 5, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Alexander, S.P.H.; Christopoulos, A.; Davenport, A.P.; Kelly, E.; Mathie, A.A.; Peters, J.A.; Veale, E.L.; Armstrong, J.F.; Faccenda, E.; Harding, S.D.; et al. The Concise Guide to PHARMACOLOGY 2023/24: G protein-coupled receptors. Br. J. Pharmacol. 2023, 180, S23–S144. [Google Scholar] [CrossRef] [PubMed]
- Heldin, C.H.; Lu, B.; Evans, R.; Gutkind, J.S. Signals and receptors. Cold Spring Harb. Perspect. Biol. 2016, 8, a005900. [Google Scholar] [CrossRef]
- Jiang, H.; Galtes, D.; Wang, J.; Rockman, H.A. G protein-coupled receptor signaling: Transducers and effectors. Am. J. Physiology. Cell Physiol. 2022, 323, C731–C748. [Google Scholar] [CrossRef] [PubMed]
- Hilger, D.; Masureel, M.; Kobilka, B.K. Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 2018, 25, 4–12. [Google Scholar] [CrossRef]
- Gurevich, V.V.; Gurevich, E.V. GPCR signaling regulation: The role of GRKs and arrestins. Front. Pharmacol. 2019, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Syrovatkina, V.; Alegre, K.O.; Dey, R.; Huang, X.Y. Regulation, Signaling, and Physiological Functions of G-Proteins. J. Mol. Biol. 2016, 428, 3850–3868. [Google Scholar] [CrossRef] [PubMed]
- Wedegaertner, P.B. G Protein Trafficking. In GPCR Signalling Complexes—Synthesis, Assembly, Trafficking and Specificity; Dupré, D.J., Hébert, T.E., Jockers, R., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 193–223. [Google Scholar]
- Pavlos, N.J.; Friedman, P.A. GPCR Signaling and Trafficking: The Long and Short of It. Trends Endocrinol. Metab. 2017, 28, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Han, Y.; Duan, L.; Chung, K.Y. Scaffolding of Mitogen-Activated Protein Kinase Signaling by β-Arrestins. Int. J. Mol. Sci. 2022, 23, 1000. [Google Scholar] [CrossRef] [PubMed]
- Eichel, K.; von Zastrow, M. Subcellular Organization of GPCR Signaling. Trends Pharmacol. Sci. 2018, 39, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.S.; Li, G.; Li, S.; Gao, W.; Chen, G.; Gan, S.; Zhang, M.; Li, H.; Wu, S.; Du, Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct. Target. Ther. 2023, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.K.; Kim, S. An insight into gpcr and g-proteins as cancer drivers. Cells 2021, 10, 3288. [Google Scholar] [CrossRef]
- Du, B.; Shim, J. Targeting Epithelial–Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 2016, 21, 965. [Google Scholar] [CrossRef]
- Mao, X.; Xu, J.; Wang, W.; Liang, C.; Hua, J.; Liu, J.; Zhang, B.; Meng, Q.; Yu, X.; Shi, S. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives. Mol. Cancer 2021, 20, 131. [Google Scholar] [CrossRef] [PubMed]
- Guan, X. Cancer metastases: Challenges and opportunities. Acta Pharm. Sin. B 2015, 5, 402–418. [Google Scholar] [CrossRef]
- Wells, A.; Grahovac, J.; Wheeler, S.; Ma, B.; Lauffenburger, D. Targeting tumor cell motility as a strategy against invasion and metastasis. Trends Pharmacol. Sci. 2013, 34, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Dizeyi, N.; Bjartell, A.; Nilsson, E.; Hansson, J.; Gadaleanu, V.; Cross, N.; Abrahamsson, P.A. Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate 2004, 59, 328–336. [Google Scholar] [CrossRef]
- Zhu, P.; Lu, T.; Chen, Z.; Liu, B.; Fan, D.; Li, C.; Wu, J.; He, L.; Zhu, X.; Du, Y.; et al. 5-hydroxytryptamine produced by enteric serotonergic neurons initiates colorectal cancer stem cell self-renewal and tumorigenesis. Neuron 2022, 110, 2268–2282.e2264. [Google Scholar] [CrossRef] [PubMed]
- Mao, L.; Xin, F.; Ren, J.; Xu, S.; Huang, H.; Zha, X.; Wen, X.; Gu, G.; Yang, G.; Cheng, Y.; et al. 5-HT2B-mediated serotonin activation in enterocytes suppresses colitis-associated cancer initiation and promotes cancer progression. Theranostics 2022, 12, 3928–3945. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ise, K.; Yamazaki, Y.; Fujishima, F.; McNamara, K.M.; Sasano, H. Serotonin receptor 4 (5-hydroxytryptamine receptor Type 4) regulates expression of estrogen receptor beta and cell migration in hormone-naive prostate cancer. Indian J. Pathol. Microbiol. 2017, 60, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Gautam, J.; Banskota, S.; Regmi, S.C.; Ahn, S.; Jeon, Y.H.; Jeong, H.; Kim, S.J.; Nam, T.-G.; Jeong, B.-S.; Kim, J.-A. Tryptophan hydroxylase 1 and 5-HT7 receptor preferentially expressed in triple-negative breast cancer promote cancer progression through autocrine serotonin signaling. Mol. Cancer 2016, 15, 75. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, T.; Wang, Z.; Wu, X.; Gu, Y.; Huang, Q.; Wang, J.; Xie, J. 5-HT7 Receptor Contributes to Proliferation, Migration and Invasion in NSCLC Cells. OncoTargets Ther. 2020, 13, 2139–2151. [Google Scholar] [CrossRef]
- Mittal, D.; Sinha, D.; Barkauskas, D.; Young, A.; Kalimutho, M.; Stannard, K.; Caramia, F.; Haibe-Kains, B.; Stagg, J.; Khanna, K.K.; et al. Adenosine 2B Receptor Expression on Cancer Cells Promotes Metastasis. Cancer Res. 2016, 76, 4372–4382. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.-G.; Jacobson, K.A. A2B Adenosine Receptor and Cancer. Int. J. Mol. Sci. 2019, 20, 5139. [Google Scholar] [CrossRef] [PubMed]
- Madi, L.; Ochaion, A.; Rath-Wolfson, L.; Bar-Yehuda, S.; Erlanger, A.; Ohana, G.; Harish, A.; Merimski, O.; Barer, F.; Fishman, P. The A3 Adenosine Receptor Is Highly Expressed in Tumor versus Normal Cells. Clin. Cancer Res. 2004, 10, 4472–4479. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, E.; Meyrath, M.; Milde, L.; Herrera, M.; Lövrot, J.; Hägerstrand, D.; Frings, O.; Bartish, M.; Rolny, C.; Sonnhammer, E.; et al. A Novel ACKR2-Dependent Role of Fibroblast-Derived CXCL14 in Epithelial-to-Mesenchymal Transition and Metastasis of Breast Cancer. Clin. Cancer Res. 2019, 25, 3702–3717. [Google Scholar] [CrossRef]
- Chang, T.-M.; Chiang, Y.-C.; Lee, C.-W.; Lin, C.-M.; Fang, M.-L.; Chi, M.-C.; Liu, J.-F.; Kou, Y.R. CXCL14 promotes metastasis of non-small cell lung cancer through ACKR2-depended signaling pathway. Int. J. Biol. Sci. 2023, 19, 1455–1470. [Google Scholar] [CrossRef] [PubMed]
- Akter, R.; Kim, K.; Kwon, H.Y.; Kim, Y.; Eom, Y.W.; Cho, H.-M.; Cho, M.-Y. EMR1/ADGRE1 Expression in Cancer Cells Upregulated by Tumor-Associated Macrophages Is Related to Poor Prognosis in Colorectal Cancer. Biomedicines 2022, 10, 3121. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Fichna, J.; Matlawska-Wasowska, K.; Jacenik, D. The Expression Pattern of Adhesion G Protein-Coupled Receptor F5 Is Related to Cell Adhesion and Metastatic Pathways in Colorectal Cancer—Comprehensive Study Based on In Silico Analysis. Cells 2022, 11, 3876. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, H.; Sun, Z.; Liu, J.; Li, K.; Fan, R.; Dai, F.; Tang, H.; Hou, Q.; Li, J.; et al. The adhesion-GPCR ADGRF5 fuels breast cancer progression by suppressing the MMP8-mediated antitumorigenic effects. Cell Death Dis. 2024, 15, 455. [Google Scholar] [CrossRef]
- Shi, W.; Xu, C.; Lei, P.; Sun, X.; Song, M.; Guo, Y.; Song, W.; Li, Y.; Yu, L.; Zhang, H.; et al. A correlation study of adhesion G protein-coupled receptors as potential therapeutic targets for breast cancer. Breast Cancer Res. Treat. 2024, 207, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Sousa, D.M.; Fernandes, V.; Lourenço, C.; Carvalho-Maia, C.; Estevão-Pereira, H.; Lobo, J.; Cantante, M.; Couto, M.; Conceição, F.; Jerónimo, C.; et al. Profiling the Adrenergic System in Breast Cancer and the Development of Metastasis. Cancers 2022, 14, 5518. [Google Scholar] [CrossRef]
- Lu, T.; Zheng, C.; Fan, Z. Cardamonin suppressed the migration, invasion, epithelial mesenchymal transition (EMT) and lung metastasis of colorectal cancer cells by down-regulating ADRB2 expression. Pharm. Biol. 2022, 60, 1011–1021. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Zhou, Z.; Tian, X.; Xiao, D.; Hou, X.; Xie, Z.; Liang, H.; Lin, S. ADRB3 expression in tumor cells is a poor prognostic factor and promotes proliferation in non-small cell lung carcinoma. Cancer Immunol. Immunother. 2020, 69, 2345–2355. [Google Scholar] [CrossRef]
- Baran, M.; Ozturk, F.; Canoz, O.; Onder, G.O.; Yay, A. The effects of apoptosis and apelin on lymph node metastasis in invasive breast carcinomas. Clin. Exp. Med. 2020, 20, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Z.; Zhao, Q.; Chen, L. Roles of apelin/APJ system in cancer: Biomarker, predictor, and emerging therapeutic target. J. Cell. Physiol. 2022, 237, 3734–3751. [Google Scholar] [CrossRef]
- Berta, J.; Török, S.; Tárnoki-Zách, J.; Drozdovszky, O.; Tóvári, J.; Paku, S.; Kovács, I.; Czirók, A.; Masri, B.; Megyesfalvi, Z.; et al. Apelin promotes blood and lymph vessel formation and the growth of melanoma lung metastasis. Sci. Rep. 2021, 11, 5798. [Google Scholar] [CrossRef]
- Zhao, N.; Peacock, S.O.; Lo, C.H.; Heidman, L.M.; Rice, M.A.; Fahrenholtz, C.D.; Greene, A.M.; Magani, F.; Copello, V.A.; Martinez, M.J.; et al. Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer. Sci. Transl. Med. 2019, 11, eaaw4636. [Google Scholar] [CrossRef] [PubMed]
- Shu, C.; Zha, H.; Long, H.; Wang, X.; Yang, F.; Gao, J.; Hu, C.; Zhou, L.; Guo, B.; Zhu, B. C3a-C3aR signaling promotes breast cancer lung metastasis via modulating carcinoma associated fibroblasts. J. Exp. Clin. Cancer Res. 2020, 39, 11. [Google Scholar] [CrossRef]
- Oncul, S.; Cho, M.S.; Lee, H.; Carlos-Alcalde, W.E.; Singh, S.; Yee, C.; Afshar-Kharghan, V. The impact of the complement receptors C3aR1 and C5aR1 on the progression of melanoma. J. Immunol. 2023, 210, 89.09. [Google Scholar] [CrossRef]
- Vadrevu, S.K.; Chintala, N.K.; Sharma, S.K.; Sharma, P.; Cleveland, C.; Riediger, L.; Manne, S.; Fairlie, D.P.; Gorczyca, W.; Almanza, O.; et al. Complement C5a Receptor Facilitates Cancer Metastasis by Altering T-Cell Responses in the Metastatic Niche. Cancer Res. 2014, 74, 3454–3465. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, X.; Gong, S.; Zhao, J.; Yao, C.; Zhu, H.; Xiao, R.; Qin, Y.; Li, R.; Sun, N.; et al. Platelets promote CRC by activating the C5a/C5aR1 axis via PSGL-1/JNK/STAT1 signaling in tumor-associated macrophages. Theranostics 2023, 13, 2040–2056. [Google Scholar] [CrossRef] [PubMed]
- Hannan, F.M.; Kallay, E.; Chang, W.; Brandi, M.L.; Thakker, R.V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 2019, 15, 33–51. [Google Scholar] [CrossRef] [PubMed]
- Coke, C.J.; Scarlett, K.A.; Chetram, M.A.; Jones, K.J.; Sandifer, B.J.; Davis, A.S.; Marcus, A.I.; Hinton, C.V. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J. Biol. Chem. 2016, 291, 9991–10005. [Google Scholar] [CrossRef]
- Preet, A.; Qamri, Z.; Nasser, M.W.; Prasad, A.; Shilo, K.; Zou, X.; Groopman, J.E.; Ganju, R.K. Cannabinoid Receptors, CB1 and CB2, as Novel Targets for Inhibition of Non–Small Cell Lung Cancer Growth and Metastasis. Cancer Prev. Res. 2011, 4, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Sun, S.; Li, Z.; Wu, T.; Zhang, C.; Xin, T. CCKAR is a biomarker for prognosis and asynchronous brain metastasis of non-small cell lung cancer. Front. Oncol. 2023, 12, 1098728. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Lee, D.H.; Lee, J.; Choi, C.; Kim, J.-Y.; Nam, J.-S.; Lim, Y.; Lee, Y.H. C-C motif chemokine receptor 1 (CCR1) is a target of the EGF-AKT-mTOR-STAT3 signaling axis in breast cancer cells. Oncotarget 2017, 8, 94591–94605. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kawada, K.; Itatani, Y.; Inamoto, S.; Okamura, R.; Iwamoto, M.; Miyamoto, E.; Chen-Yoshikawa, T.F.; Hirai, H.; Hasegawa, S.; et al. Loss of SMAD4 Promotes Lung Metastasis of Colorectal Cancer by Accumulation of CCR1+ Tumor-Associated Neutrophils through CCL15-CCR1 Axis. Clin. Cancer Res. 2017, 23, 833–844. [Google Scholar] [CrossRef]
- Tapmeier, T.T.; Howell, J.H.; Zhao, L.; Papiez, B.W.; Schnabel, J.A.; Muschel, R.J.; Gal, A. Evolving polarisation of infiltrating and alveolar macrophages in the lung during metastatic progression of melanoma suggests CCR1 as a therapeutic target. Oncogene 2022, 41, 5032–5045. [Google Scholar] [CrossRef]
- Qian, B.-Z.; Li, J.; Zhang, H.; Kitamura, T.; Zhang, J.; Campion, L.R.; Kaiser, E.A.; Snyder, L.A.; Pollard, J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.Y.; Yuzhalin, A.E.; Gordon-Weeks, A.N.; Muschel, R.J. Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 2016, 7, 28697–28710. [Google Scholar] [CrossRef]
- Bekaert, S.; Rocks, N.; Vanwinge, C.; Noel, A.; Cataldo, D. Asthma-related inflammation promotes lung metastasis of breast cancer cells through CCL11–CCR3 pathway. Respir. Res. 2021, 22, 61. [Google Scholar] [CrossRef]
- Cheadle, E.J.; Riyad, K.; Subar, D.; Rothwell, D.G.; Ashton, G.; Batha, H.; Sherlock, D.J.; Hawkins, R.E.; Gilham, D.E. Eotaxin-2 and Colorectal Cancer: A Potential Target for Immune Therapy. Clin. Cancer Res. 2007, 13, 5719–5728. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-J.; Kim, D.-H.; Lee, S.-H.; Nam, H.-S.; Roh, M.R.; Cho, M.-K. Chemokine Receptor CCR3 Expression in Malignant Cutaneous Tumors. Ann. Dermatol. 2010, 22, 412. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.; Liu, P.; Li, J.; Zhang, Y. Eotaxin-1 promotes prostate cancer cell invasion via activation of the CCR3-ERK pathway and upregulation of MMP-3 expression. Oncol. Rep. 2014, 31, 2049–2054. [Google Scholar] [CrossRef] [PubMed]
- Korbecki, J.; Kojder, K.; Simińska, D.; Bohatyrewicz, R.; Gutowska, I.; Chlubek, D.; Baranowska-bosiacka, I. Cc chemokines in a tumor: A review of pro-cancer and anti-cancer properties of the ligands of receptors ccr1, ccr2, ccr3, and ccr4. Int. J. Mol. Sci. 2020, 21, 8412. [Google Scholar] [CrossRef]
- Klein, A.; Sagi-Assif, O.; Meshel, T.; Telerman, A.; Izraely, S.; Ben-Menachem, S.; Bayry, J.; Marzese, D.M.; Ohe, S.; Hoon, D.S.B.; et al. CCR4 is a determinant of melanoma brain metastasis. Oncotarget 2017, 8, 31079–31091. [Google Scholar] [CrossRef]
- Maolake, A.; Izumi, K.; Shigehara, K.; Natsagdorj, A.; Iwamoto, H.; Kadomoto, S.; Takezawa, Y.; Machioka, K.; Narimoto, K.; Namiki, M.; et al. Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget 2017, 8, 9739–9751. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Xu, L.; Zeng, X.; Wu, H.; Liang, F.; Lv, Q.; Du, Z. CCL5 mediates breast cancer metastasis and prognosis through CCR5/Treg cells. Front. Oncol. 2022, 12, 972383. [Google Scholar] [CrossRef] [PubMed]
- Aldinucci, D.; Borghese, C.; Casagrande, N. The CCL5/CCR5 Axis in Cancer Progression. Cancers 2020, 12, 1765. [Google Scholar] [CrossRef]
- Korbecki, J.; Grochans, S.; Gutowska, I.; Barczak, K.; Baranowska-Bosiacka, I. CC Chemokines in a Tumor: A Review of Pro-Cancer and Anti-Cancer Properties of Receptors CCR5, CCR6, CCR7, CCR8, CCR9, and CCR10 Ligands. Int. J. Mol. Sci. 2020, 21, 7619. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Hu, S.; Zhu, Q.; Li, C.; Kang, T.; Xie, W.; Wang, Y.; Li, Y.; Lu, Y.; Qi, J.; et al. RANKL/RANK signaling recruits Tregs via the CCL20–CCR6 pathway and promotes stemness and metastasis in colorectal cancer. Cell Death Dis. 2024, 15, 437. [Google Scholar] [CrossRef]
- Samaniego, R.; Gutiérrez-González, A.; Gutiérrez-Seijo, A.; Sánchez-Gregorio, S.; García-Giménez, J.; Mercader, E.; Márquez-Rodas, I.; Avilés, J.A.; Relloso, M.; Sánchez-Mateos, P. CCL20 Expression by Tumor-Associated Macrophages Predicts Progression of Human Primary Cutaneous Melanoma. Cancer Immunol. Res. 2018, 6, 267–275. [Google Scholar] [CrossRef]
- Xie, T.; Fu, D.-J.; Li, Z.-M.; Lv, D.-J.; Song, X.-L.; Yu, Y.-Z.; Wang, C.; Li, K.-J.; Zhai, B.; Wu, J.; et al. CircSMARCC1 facilitates tumor progression by disrupting the crosstalk between prostate cancer cells and tumor-associated macrophages via miR-1322/CCL20/CCR6 signaling. Mol. Cancer 2022, 21, 173. [Google Scholar] [CrossRef]
- Maolake, A.; Izumi, K.; Natsagdorj, A.; Iwamoto, H.; Kadomoto, S.; Makino, T.; Naito, R.; Shigehara, K.; Kadono, Y.; Hiratsuka, K.; et al. Tumor necrosis factor-α induces prostate cancer cell migration in lymphatic metastasis through CCR7 upregulation. Cancer Sci. 2018, 109, 1524–1531. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Qin, Z.; Wan, J.; Yan, Y.; Duan, X.; Yao, X.; Jiang, Z.; Li, W.; Qin, Z. Tumor-derived exosomes drive pre-metastatic niche formation in lung via modulating CCL1+ fibroblast and CCR8+ Treg cell interactions. Cancer Immunol. Immunother. 2022, 71, 2717–2730. [Google Scholar] [CrossRef] [PubMed]
- Tu, Z.; Xiao, R.; Xiong, J.; Tembo, K.M.; Deng, X.; Xiong, M.; Liu, P.; Wang, M.; Zhang, Q. CCR9 in cancer: Oncogenic role and therapeutic targeting. J. Hematol. Oncol. 2016, 9, 10. [Google Scholar] [CrossRef]
- Mergia Terefe, E.; Catalan Opulencia, M.J.; Rakhshani, A.; Ansari, M.J.; Sergeevna, S.E.; Awadh, S.A.; Polatova, D.S.; Abdulkadhim, A.H.; Mustafa, Y.F.; Kzar, H.H.; et al. Roles of CCR10/CCL27–CCL28 axis in tumour development: Mechanisms, diagnostic and therapeutic approaches, and perspectives. Expert Rev. Mol. Med. 2022, 24, e37. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiao, A.; Zhang, B. CCR10/CCL27 crosstalk regulates cell metastasis via PI3K-Akt signaling axis in non-small-cell lung cancer. Am. J. Transl. Res. 2021, 13, 13135–13146. [Google Scholar] [PubMed]
- Akram, I.G.; Georges, R.; Hielscher, T.; Adwan, H.; Berger, M.R. The chemokines CCR1 and CCRL2 have a role in colorectal cancer liver metastasis. Tumor Biol. 2016, 37, 2461–2471. [Google Scholar] [CrossRef] [PubMed]
- Reyes, N.; Benedetti, I.; Rebollo, J.; Correa, O.; Geliebter, J. Atypical chemokine receptor CCRL2 is overexpressed in prostate cancer cells. J. Biomed. Res. 2019, 33, 17. [Google Scholar] [CrossRef]
- Jin, L.; Li, C.; Li, R.; Sun, Z.; Fang, X.; Li, S. Corticotropin-releasing hormone receptors mediate apoptosis via cytosolic calcium-dependent phospholipase A2 and migration in prostate cancer cell RM-1. J. Mol. Endocrinol. 2014, 52, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Dinatale, A.; Kaur, R.; Qian, C.; Zhang, J.; Marchioli, M.; Ipe, D.; Castelli, M.; McNair, C.M.; Kumar, G.; Meucci, O.; et al. Subsets of cancer cells expressing CX3CR1 are endowed with metastasis-initiating properties and resistance to chemotherapy. Oncogene 2022, 41, 1337–1351. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, H.; Dong, T.; Yan, Y.; Sun, L.; Wang, W. Clinical significance of expression level of CX3CL1–CX3CR1 axis in bone metastasis of lung cancer. Clin. Transl. Oncol. 2021, 23, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xu, M.; Huang, S.; Pan, Q.; Liu, C.; Zeng, F.; Fan, Z.; Lu, Y.; Wang, J.; Liu, J.; et al. Mesoscale visualization of three-dimensional microvascular architecture and immunocyte distribution in intact mouse liver lobes. Theranostics 2022, 12, 5418–5433. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, A.; Tian, Y.; Wu, J.D.; Liu, Y.; Li, T.; Chen, Y.; Han, X.; Wu, K. The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev. 2016, 31, 61–71. [Google Scholar] [CrossRef]
- Łukaszewicz-Zając, M.; Zajkowska, M.; Pączek, S.; Kulczyńska-Przybik, A.; Safiejko, K.; Juchimiuk, M.; Kozłowski, L.; Mroczko, B. The Significance of CXCL1 and CXCR1 as Potential Biomarkers of Colorectal Cancer. Biomedicines 2023, 11, 1933. [Google Scholar] [CrossRef]
- Zhang, T.; Tseng, C.; Zhang, Y.; Sirin, O.; Corn, P.G.; Li-Ning-Tapia, E.M.; Troncoso, P.; Davis, J.; Pettaway, C.; Ward, J.; et al. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment. Nat. Commun. 2016, 7, 11674. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Wang, X.-Y.; Zhang, P.; He, T.-C.; Han, J.-H.; Zhang, R.; Lin, J.; Fan, J.; Lu, L.; Zhu, W.-W.; et al. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 2022, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, R.; Zhang, W.; Naseem, M.; Puccini, A.; Berger, M.D.; Soni, S.; McSkane, M.; Baba, H.; Lenz, H.-J. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation—A target for novel cancer therapy. Cancer Treat. Rev. 2018, 63, 40–47. [Google Scholar] [CrossRef]
- Kuroki, M.; Kuroki, M.; Kinugasa, T.; Shibaguchi, H.; Yanagisawa, J.; Tanaka, T.; Kawakami, T.; Shirakusa, T.; Iwasaki, A.; Maekawa, S. Association between the expression of chemokine receptors CCR7 and CXCR3, and lymph node metastatic potential in lung adenocarcinoma. Oncol. Rep. 2008, 19, 1461–1468. [Google Scholar] [CrossRef]
- Ma, B.; Khazali, A.; Shao, H.; Jiang, Y.; Wells, A. Expression of E-cadherin and specific CXCR3 isoforms impact each other in prostate cancer. Cell Commun. Signal. 2019, 17, 164. [Google Scholar] [CrossRef]
- Mortezaee, K. CXCL12/CXCR4 axis in the microenvironment of solid tumors: A critical mediator of metastasis. Life Sci. 2020, 249, 117534. [Google Scholar] [CrossRef] [PubMed]
- Mendt, M.; Cardier, J.E. Activation of the CXCR4 chemokine receptor enhances biological functions associated with B16 melanoma liver metastasis. Melanoma Res. 2017, 27, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, M.; Ao, D.; Wei, X. CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2022, 1877, 188799. [Google Scholar] [CrossRef]
- Deng, L.; Chen, N.; Li, Y.; Zheng, H.; Lei, Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim. Biophys. Acta (BBA)—Rev. Cancer 2010, 1806, 42–49. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Y.; Zhou, W.; Si, L.; Ren, L. CXCL16 and CXCR6 Are Coexpressed in Human Lung Cancer In Vivo and Mediate the Invasion of Lung Cancer Cell Lines In Vitro. PLoS ONE 2014, 9, e99056. [Google Scholar] [CrossRef]
- Seidl, H.; Richtig, E.; Tilz, H.; Stefan, M.; Schmidbauer, U.; Asslaber, M.; Zatloukal, K.; Herlyn, M.; Schaider, H. Profiles of chemokine receptors in melanocytic lesions: De novo expression of CXCR6 in melanoma. Hum. Pathol. 2007, 38, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Tang, S.J.; Sun, G.H.; Sun, K.H. CXCR7 mediates TGFβ1-promoted EMT and tumor-initiating features in lung cancer. Oncogene 2016, 35, 2123–2132. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Song, Y.; Si, M.; Sun, Y.; Liu, X.; Cui, S.; Qu, X.; Yu, X. Exosomal miR-146a-5p and miR-155-5p promote CXCL12/CXCR7-induced metastasis of colorectal cancer by crosstalk with cancer-associated fibroblasts. Cell Death Dis. 2022, 13, 380. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-J.; Liu, P.; Tian, W.-W.; Li, Z.-F.; Liu, B.-G.; Sun, J.-F. Mechanisms of CXCR7 induction in malignant melanoma development. Oncol. Lett. 2017, 14, 4106–4114. [Google Scholar] [CrossRef]
- Hsiao, J.J.; Ng, B.H.; Smits, M.M.; Wang, J.; Jasavala, R.J.; Martinez, H.D.; Lee, J.; Alston, J.J.; Misonou, H.; Trimmer, J.S.; et al. Androgen receptor and chemokine receptors 4 and 7 form a signaling axis to regulate CXCL12-dependent cellular motility. BMC Cancer 2015, 15, 204. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Jung, E.; Choi, J.; Hwang, J.-S.; Jeong, E.-J.; Roh, Y.; Ban, H.; Kim, S.; Kim, S.-K.; Kim, S.-Y.; et al. The EDN1/EDNRA/β-arrestin axis promotes colorectal cancer progression by regulating STAT3 phosphorylation. Int. J. Oncol. 2022, 62, 13. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Han, S.; Cui, M.; Xue, J.; Ai, L.; Sun, L.; Zhu, X.; Wang, Y.; Liu, C. Knockdown of endothelin receptor B inhibits the progression of triple-negative breast cancer. Ann. N. Y. Acad. Sci. 2019, 1448, 5–18. [Google Scholar] [CrossRef]
- Cruz-Muñoz, W.; Jaramillo, M.L.; Man, S.; Xu, P.; Banville, M.; Collins, C.; Nantel, A.; Francia, G.; Morgan, S.S.; Cranmer, L.D.; et al. Roles for Endothelin Receptor B and BCL2A1 in Spontaneous CNS Metastasis of Melanoma. Cancer Res. 2012, 72, 4909–4919. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liao, R.; Chen, X.; Ying, X.; Chen, G.; Li, M.; Dong, C. Twist-mediated PAR1 induction is required for breast cancer progression and metastasis by inhibiting Hippo pathway. Cell Death Dis. 2020, 11, 520. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Gangadharan, B.; Brass, L.F.; Ruf, W.; Mueller, B.M. Protease-Activated Receptors (PAR1 and PAR2) Contribute to Tumor Cell Motility and Metastasis. Mol. Cancer Res. 2004, 2, 395–402. [Google Scholar] [CrossRef]
- Hua, Q.; Sun, Z.; Liu, Y.; Shen, X.; Zhao, W.; Zhu, X.; Xu, P. KLK8 promotes the proliferation and metastasis of colorectal cancer via the activation of EMT associated with PAR1. Cell Death Dis. 2021, 12, 860. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Lei, X.; Hu, H.; Li, Z.; Zhu, H.; Zhan, W.; Zhang, T. Investigation of fatty acid metabolism-related genes in breast cancer: Implications for Immunotherapy and clinical significance. Transl. Oncol. 2023, 34, 101700. [Google Scholar] [CrossRef] [PubMed]
- Liotti, A.; Cosimato, V.; Mirra, P.; Calì, G.; Conza, D.; Secondo, A.; Luongo, G.; Terracciano, D.; Formisano, P.; Beguinot, F.; et al. Oleic acid promotes prostate cancer malignant phenotype via the G protein-coupled receptor FFA1/GPR40. J. Cell. Physiol. 2018, 233, 7367–7378. [Google Scholar] [CrossRef] [PubMed]
- Hozhabri, H.; Ghasemi Dehkohneh, R.S.; Razavi, S.M.; Razavi, S.M.; Salarian, F.; Rasouli, A.; Azami, J.; Ghasemi Shiran, M.; Kardan, Z.; Farrokhzad, N.; et al. Comparative analysis of protein-protein interaction networks in metastatic breast cancer. PLoS ONE 2022, 17, e0260584. [Google Scholar] [CrossRef] [PubMed]
- Vecchi, L.; Alves Pereira Zóia, M.; Goss Santos, T.; de Oliveira Beserra, A.; Colaço Ramos, C.M.; França Matias Colombo, B.; Paiva Maia, Y.C.; Piana de Andrade, V.; Teixeira Soares Mota, S.; Gonçalves de Araújo, T.; et al. Inhibition of the AnxA1/FPR1 autocrine axis reduces MDA-MB-231 breast cancer cell growth and aggressiveness in vitro and in vivo. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2018, 1865, 1368–1382. [Google Scholar] [CrossRef]
- Li, S.-Q.; Su, N.; Gong, P.; Zhang, H.-B.; Liu, J.; Wang, D.; Sun, Y.-P.; Zhang, Y.; Qian, F.; Zhao, B.; et al. The Expression of Formyl Peptide Receptor 1 is Correlated with Tumor Invasion of Human Colorectal Cancer. Sci. Rep. 2017, 7, 5918. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, N.; Peddareddigari, V.G.R.; Warneke, C.L.; Johnson, M.M.; Overwijk, W.W.; Hwu, P.; Prieto, V.G. Differential Expression of the G-Protein–Coupled Formyl Peptide Receptor in Melanoma Associates With Aggressive Phenotype. Am. J. Dermatopathol. 2013, 35, 184–190. [Google Scholar] [CrossRef]
- Lu, J.B.; Zhao, J.; Jia, C.; Zhou, L.X.; Cai, Y.; Ni, J.; Ma, J.M.; Zheng, M.; Lu, A. FPR2 enhances colorectal cancer progression by promoting EMT process. Neoplasma 2019, 66, 785–791. [Google Scholar] [CrossRef]
- Ghinea, N. Vascular Endothelial FSH Receptor, a Target of Interest for Cancer Therapy. Endocrinology 2018, 159, 3268–3274. [Google Scholar] [CrossRef]
- Radu, A.; Pichon, C.; Camparo, P.; Antoine, M.; Allory, Y.; Couvelard, A.; Fromont, G.; Hai, M.T.V.; Ghinea, N. Expression of Follicle-Stimulating Hormone Receptor in Tumor Blood Vessels. N. Engl. J. Med. 2010, 363, 1621–1630. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, L.; Cai, Y.; Shen, S.; Zhang, T.; Wang, N.; Wu, G.; Ma, W.; Li, S.-T.; Suo, C.; et al. Hypoxia-Induced Suppression of Alternative Splicing of MBD2 Promotes Breast Cancer Metastasis via Activation of FZD1. Cancer Res. 2021, 81, 1265–1278. [Google Scholar] [CrossRef] [PubMed]
- Gujral, T.S.; Chan, M.; Peshkin, L.; Sorger, P.K.; Kirschner, M.W.; MacBeath, G. A Noncanonical Frizzled2 Pathway Regulates Epithelial-Mesenchymal Transition and Metastasis. Cell 2014, 159, 844–856. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Mo, Q.-w. [Role and action mechanisms of FZD5 in prostate cancer bone metastasis in mice]. Zhonghua Nan Ke Xue 2016, 22, 128–132. [Google Scholar]
- Tiwary, S.; Xu, L. FRIZZLED7 Is Required for Tumor Inititation and Metastatic Growth of Melanoma Cells. PLoS ONE 2016, 11, e0147638. [Google Scholar] [CrossRef]
- Ueno, K.; Hazama, S.; Mitomori, S.; Nishioka, M.; Suehiro, Y.; Hirata, H.; Oka, M.; Imai, K.; Dahiya, R.; Hinoda, Y. Down-regulation of frizzled-7 expression decreases survival, invasion and metastatic capabilities of colon cancer cells. Br. J. Cancer 2009, 101, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Bai, Y.; Wang, Z.; Sun, Y.; Gao, J.; Na, L.; Zhang, Z.; Wang, W.; Zhao, C. Non-canonical Fzd7 signaling contributes to breast cancer mesenchymal-like stemness involving Col6a1. Cell Commun. Signal. 2020, 18, 143. [Google Scholar] [CrossRef] [PubMed]
- Al-Zahrani, M.; Assidi, M.; Pushparaj, P.; Al-Maghrabi, J.; Zari, A.; Abusanad, A.; Buhmeida, A.; Abu-Elmagd, M. Expression pattern, prognostic value and potential microRNA silencing of FZD8 in breast cancer. Oncol. Lett. 2023, 26, 477. [Google Scholar] [CrossRef]
- Li, Q.; Ye, L.; Zhang, X.; Wang, M.; Lin, C.; Huang, S.; Guo, W.; Lai, Y.; Du, H.; Li, J.; et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 2017, 402, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wen, T.; Liu, Z.; Xu, F.; Yang, L.; Liu, J.; Feng, G.; An, G. MicroRNA-375 suppresses human colorectal cancer metastasis by targeting Frizzled 8. Oncotarget 2016, 7, 40644–40656. [Google Scholar] [CrossRef]
- Kiezun, J.; Kiezun, M.; Krazinski, B.E.; Paukszto, L.; Koprowicz-Wielguszewska, A.; Kmiec, Z.; Godlewski, J. Galanin Receptors (GALR1, GALR2, and GALR3) Immunoexpression in Enteric Plexuses of Colorectal Cancer Patients: Correlation with the Clinico-Pathological Parameters. Biomolecules 2022, 12, 1769. [Google Scholar] [CrossRef]
- Desaulniers, A.T.; White, B.R. Role of gonadotropin-releasing hormone 2 and its receptor in human reproductive cancers. Front. Endocrinol. 2024, 14, 1341162. [Google Scholar] [CrossRef] [PubMed]
- Ranđelović, I.; Schuster, S.; Kapuvári, B.; Fossati, G.; Steinkühler, C.; Mező, G.; Tóvári, J. Improved In Vivo Anti-Tumor and Anti-Metastatic Effect of GnRH-III-Daunorubicin Analogs on Colorectal and Breast Carcinoma Bearing Mice. Int. J. Mol. Sci. 2019, 20, 4763. [Google Scholar] [CrossRef] [PubMed]
- Lappano, R.; Maggiolini, M. GPER is involved in the functional liaison between breast tumor cells and cancer-associated fibroblasts (CAFs). J. Steroid Biochem. Mol. Biol. 2018, 176, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Sáez-Martínez, P.; Jiménez-Vacas, J.M.; León-González, A.J.; Herrero-Aguayo, V.; Montero Hidalgo, A.J.; Gómez-Gómez, E.; Sánchez-Sánchez, R.; Requena-Tapia, M.J.; Castaño, J.P.; Gahete, M.D.; et al. Unleashing the Diagnostic, Prognostic and Therapeutic Potential of the Neuronostatin/GPR107 System in Prostate Cancer. J. Clin. Med. 2020, 9, 1703. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zuo, H.; Xiong, H.; Kolar, M.J.; Chu, Q.; Saghatelian, A.; Siegwart, D.J.; Wan, Y. Gpr132 sensing of lactate mediates tumor–macrophage interplay to promote breast cancer metastasis. Proc. Natl. Acad. Sci. USA 2017, 114, 580–585. [Google Scholar] [CrossRef]
- Parija, M.; Adhya, A.K.; Mishra, S.K. G-protein-coupled receptor 141 mediates breast cancer proliferation and metastasis by regulating oncogenic mediators and the p-mTOR/p53 axis. Oncotarget 2023, 14, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhu, Q.; Chen, S.; Li, Y.; Fu, D.; Qiao, D.; Ni, C. Post-transcriptional suppression of G protein-coupled receptor 15 (GPR15) by microRNA-1225 inhibits proliferation, migration, and invasion of human colorectal cancer cells. 3 Biotech 2021, 11, 139. [Google Scholar] [CrossRef]
- Feigin, M.E.; Xue, B.; Hammell, M.C.; Muthuswamy, S.K. G-protein–coupled receptor GPR161 is overexpressed in breast cancer and is a promoter of cell proliferation and invasion. Proc. Natl. Acad. Sci. USA 2014, 111, 4191–4196. [Google Scholar] [CrossRef]
- Dai, J.; Chen, Q.; Li, G.; Chen, M.; Sun, H.; Yan, M. DIRAS3, GPR171 and RAC2 were identified as the key molecular patterns associated with brain metastasis of breast cancer. Front. Oncol. 2022, 12, 965136. [Google Scholar] [CrossRef]
- Dho, S.H.; Lee, K.-P.; Jeong, D.; Kim, C.-J.; Chung, K.-S.; Young Kim, J.; Park, B.-C.; Park, S.S.; Kim, S.-Y.; Kwon, K.-S. GPR171 expression enhances proliferation and metastasis of lung cancer cells. Oncotarget 2016, 7, 7856–7865. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Peng, W.; Ji, J.; Peng, C.; Wang, T.; Yang, P.; Gu, J.O.; Feng, Y.; Jin, K.; Wang, X.; et al. GPR176 Promotes Cancer Progression by Interacting with G Protein GNAS to Restrain Cell Mitophagy in Colorectal Cancer. Adv. Sci. 2023, 10, 2205627. [Google Scholar] [CrossRef]
- Qin, Y.; Verdegaal, E.M.E.; Siderius, M.; Bebelman, J.P.; Smit, M.J.; Leurs, R.; Willemze, R.; Tensen, C.P.; Osanto, S. Quantitative expression profiling of G-protein-coupled receptors (GPCRs) in metastatic melanoma: The constitutively active orphan GPCR GPR18 as novel drug target. Pigment Cell Melanoma Res. 2011, 24, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.; Herr, D.R. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2017, 1864, 1318–1327. [Google Scholar] [CrossRef]
- Riker, A.I.; Enkemann, S.A.; Fodstad, O.; Liu, S.; Ren, S.; Morris, C.; Xi, Y.; Howell, P.; Metge, B.; Samant, R.S.; et al. The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis. BMC Med. Genom. 2008, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Rong, Y.M.; Huang, X.M.; Fan, D.J.; Lin, X.T.; Zhang, F.; Hu, J.C.; Tan, Y.X.; Chen, X.; Zou, Y.F.; Lan, P. Overexpression of G protein-coupled receptor 31 as a poor prognosticator in human colorectal cancer. World J. Gastroenterol. 2018, 24, 4679–4690. [Google Scholar] [CrossRef] [PubMed]
- Iida, Y.; Tsuno, N.H.; Kishikawa, J.; Kaneko, K.; Murono, K.; Kawai, K.; Ikeda, T.; Ishihara, S.; Yamaguchi, H.; Sunami, E.; et al. Lysophosphatidylserine stimulates chemotactic migration of colorectal cancer cells through GPR34 and PI3K/Akt pathway. Anticancer. Res. 2014, 34, 5465–5472. [Google Scholar] [PubMed]
- Mackiewicz, T.; Włodarczyk, J.; Zielińska, M.; Włodarczyk, M.; Durczyński, A.; Hogendorf, P.; Dziki, Ł.; Fichna, J. Increased GPR35 expression in human colorectal and pancreatic cancer samples: A preliminary clinical validation of a new biomarker. Adv. Clin. Exp. Med. 2023, 32, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, M.; Li, D.-D.; Abudukelimu, W.; Zhou, X.-H. GPR37 promotes the malignancy of lung adenocarcinoma via TGF-β/Smad pathway. Open Med. 2020, 16, 024–032. [Google Scholar] [CrossRef]
- Mero, M.; Asraf, H.; Sekler, I.; Taylor, K.M.; Hershfinkel, M. ZnR/GPR39 upregulation of K(+)/Cl(-)-cotransporter 3 in tamoxifen resistant breast cancer cells. Cell Calcium 2019, 81, 12–20. [Google Scholar] [CrossRef]
- Asraf, H.; Salomon S Fau-Nevo, A.; Nevo A Fau-Sekler, I.; Sekler I Fau-Mayer, D.; Mayer D Fau-Hershfinkel, M.; Hershfinkel, M. The ZnR/GPR39 interacts with the CaSR to enhance signaling in prostate and salivary epithelia. J. Cell. Physiol. 2013, 229, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Cui, R.; Huang, Y.; Luo, Y.; Qin, S.; Zhong, M. Increased proton-sensing receptor GPR4 signalling promotes colorectal cancer progression by activating the hippo pathway. EBioMedicine 2019, 48, 264–276. [Google Scholar] [CrossRef] [PubMed]
- Stolwijk, J.A.; Wallner, S.; Heider, J.; Kurz, B.; Pütz, L.; Michaelis, S.; Goricnik, B.; Erl, J.; Frank, L.; Berneburg, M.; et al. GPR4 in the pH-dependent migration of melanoma cells in the tumor microenvironment. Exp. Dermatol. 2023, 32, 479–490. [Google Scholar] [CrossRef]
- Biswas, P.K.; Park, S.R.; An, J.; Lim, K.A.-O.X.; Dayem, A.A.-O.; Song, K.A.-O.; Choi, H.Y.; Choi, Y.; Park, K.A.-O.; Shin, H.J.; et al. The Orphan GPR50 Receptor Regulates the Aggressiveness of Breast Cancer Stem-like Cells via Targeting the NF-kB Signaling Pathway. Int. J. Mol. Sci. 2023, 24, 2804. [Google Scholar] [CrossRef]
- Zhou, X.L.; Guo, X.; Song, Y.P.; Zhu, C.Y.; Zou, W. The LPI/GPR55 axis enhances human breast cancer cell migration via HBXIP and p-MLC signaling. Acta Pharmacol. Sin. 2017, 39, 459–471. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Lu, X.; Zhang, L.; Wang, Z. miRNA-7062-5p Promoting Bone Resorption After Bone Metastasis of Colorectal Cancer Through Inhibiting GPR65. Front. Cell Dev. Biol. 2021, 9, 681968. [Google Scholar] [CrossRef] [PubMed]
- Cárdenas, S.; Colombero, C.; Panelo, L.; Dakarapu, R.; Falck, J.R.; Costas, M.A.; Nowicki, S. GPR75 receptor mediates 20-HETE-signaling and metastatic features of androgen-insensitive prostate cancer cells. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2020, 1865, 158573. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.D.; Zhou, H.; Li, G. GPR78 promotes lung cancer cell migration and metastasis by activation of Gαq-Rho GTPase pathway. BMB Rep. 2016, 49, 623–628. [Google Scholar] [CrossRef]
- Kalyvianaki, K.; Panagiotopoulos, A.A.; Malamos, P.; Moustou, E.; Tzardi, M.; Stathopoulos, E.N.; Ioannidis, G.S.; Marias, K.; Notas, G.; Theodoropoulos, P.A.; et al. Membrane androgen receptors (OXER1, GPRC6A AND ZIP9) in prostate and breast cancer: A comparative study of their expression. Steroids 2019, 142, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, Y.Y.; Yang, F.; Wang, J.Y.; Shi, X.H.; Zhu, X.Q.; Xu, Y.; Wei, D.; Sun, L.; Zhang, Y.G.; et al. Evidence for a role of GPRC6A in prostate cancer metastasis based on case-control and in vitro analyses. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2235–2248. [Google Scholar]
- Yue, Y.; Deng, P.; Xiao, H.; Tan, M.; Wang, H.; Tian, L.; Xie, J.; Chen, M.; Luo, Y.; Wang, L.; et al. N6-methyladenosine-mediated downregulation of miR-374c-5p promotes cadmium-induced cell proliferation and metastasis by targeting GRM3 in breast cancer cells. Ecotoxicol. Environ. Saf. 2021, 229, 113085. [Google Scholar] [CrossRef]
- Ruginis, T.; Taglia L Fau-Matusiak, D.; Matusiak D Fau-Lee, B.-S.; Lee Bs Fau-Benya, R.V.; Benya, R.V. Consequence of gastrin-releasing peptide receptor activation in a human colon cancer cell line: A proteomic approach. J. Proteome Res. 2006, 5, 1460–1468. [Google Scholar] [CrossRef]
- Whiteside, E.J.; Seim, I.; Pauli, J.P.; O’keeffe, A.J.; Thomas, P.B.; Carter, S.L.; Walpole, C.M.; Fung, J.N.; Josh, P.; Herington, A.C.; et al. Identification of a long non-coding RNA gene, growth hormone secretagogue receptor opposite strand, which stimulates cell migration in non-small cell lung cancer cell lines. Int. J. Oncol. 2013, 43, 566–574. [Google Scholar] [CrossRef]
- Sustarsic, E.G.; Junnila Rk Fau-Kopchick, J.J.; Kopchick, J.J. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment. Biochem. Biophys. Res. Commun. 2013, 441, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Kotta, A.A.-O.X.; Kelling, A.A.-O.; Corleto, K.A.; Sun, Y.; Giles, E.A.-O. Ghrelin and Cancer: Examining the Roles of the Ghrelin Axis in Tumor Growth and Progression. Biomolecules 2022, 12, 483. [Google Scholar] [CrossRef]
- Jin, L.; Guo, Y.; Chen, J.; Wen, Z.; Jiang, Y.; Qian, J. Lactate receptor HCAR1 regulates cell growth, metastasis and maintenance of cancer-specific energy metabolism in breast cancer cells. Mol. Med. Rep. 2022, 26, 268. [Google Scholar] [CrossRef]
- Fernández-Nogueira, P.; Noguera-Castells, A.; Fuster, G.; Recalde-Percaz, L.; Moragas, N.; López-Plana, A.; Enreig, E.; Jauregui, P.; Carbó, N.; Almendro, V.; et al. Histamine receptor 1 inhibition enhances antitumor therapeutic responses through extracellular signal-regulated kinase (ERK) activation in breast cancer. Cancer Lett. 2018, 424, 70–83. [Google Scholar] [CrossRef]
- Medina, V.; Croci M Fau-Crescenti, E.; Crescenti E Fau-Mohamad, N.; Mohamad N Fau-Sanchez-Jiménez, F.; Sanchez-Jiménez F Fau-Massari, N.; Massari N Fau-Nuñez, M.; Nuñez M Fau-Cricco, G.; Cricco G Fau-Martin, G.; Martin G Fau-Bergoc, R.; Bergoc R Fau-Rivera, E.; et al. The role of histamine in human mammary carcinogenesis: H3 and H4 receptors as potential therapeutic targets for breast cancer treatment. Cancer Biol. Ther. 2008, 7, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Jia, J.; Zhang, J.J.; Xun, Y.P.; Xie, S.J.; Liang, J.F.; Guo, H.G.; Zhu, J.Z.; Ma, S.L.; Zhang, S.R. Inhibition of histamine receptor H3 suppresses the growth and metastasis of human non-small cell lung cancer cells via inhibiting PI3K/Akt/mTOR and MEK/ERK signaling pathways and blocking EMT. Acta Pharmacol. Sin. 2020, 42, 1288–1297. [Google Scholar] [CrossRef]
- Li, T.; Wei, L.; Zhang, X.; Fu, B.; Zhou, Y.; Yang, M.; Cao, M.; Chen, Y.; Tan, Y.; Shi, Y.; et al. Serotonin Receptor HTR2B Facilitates Colorectal Cancer Metastasis via CREB1–ZEB1 Axis–Mediated Epithelial–Mesenchymal Transition. Mol. Cancer Res. 2024, 22, 538–554. [Google Scholar] [CrossRef]
- Yue, Z.; Yuan, Z.; Zeng, L.; Wang, Y.; Lai, L.; Li, J.; Sun, P.; Xue, X.; Qi, J.; Yang, Z.; et al. LGR4 modulates breast cancer initiation, metastasis, and cancer stem cells. FASEB J. 2017, 32, 2422–2437. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Yi, J.; Carmon, K.S.; Crumbley, C.A.; Xiong, W.; Thomas, A.; Fan, X.; Guo, S.; An, Z.; Chang, J.T.; et al. Aberrant RSPO3-LGR4 signaling in Keap1-deficient lung adenocarcinomas promotes tumor aggressiveness. Oncogene 2014, 34, 4692–4701. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Tan, P.; Rodriguez, M.; He, L.; Tan, K.; Zeng, L.; Siwko, S.; Liu, M. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J. Biol. Chem. 2017, 292, 15525–15537. [Google Scholar] [CrossRef]
- Kong, Y.; Ou, X.; Li, X.; Zeng, Y.; Gao, G.; Lyu, N.; Liu, P. LGR6 Promotes Tumor Proliferation and Metastasis through Wnt/β-Catenin Signaling in Triple-Negative Breast Cancer. Mol. Ther.—Oncolytics 2020, 18, 351–359. [Google Scholar] [CrossRef]
- Wang, F.; Dai, C.Q.; Zhang, L.R.; Bing, C.; Qin, J.; Liu, Y.F. Downregulation of Lgr6 inhibits proliferation and invasion and increases apoptosis in human colorectal cancer. Int. J. Mol. Med. 2018, 42, 625–632. [Google Scholar] [CrossRef]
- Sunaga, N.A.-O.; Kaira, K.A.-O.; Shimizu, K.; Tanaka, I.; Miura, Y.; Nakazawa, S.; Ohtaki, Y.A.-O.; Kawabata-Iwakawa, R.; Sato, M.; Girard, L.; et al. The oncogenic role of LGR6 overexpression induced by aberrant Wnt/β-catenin signaling in lung cancer. Thorac. Cancer 2023, 15, 131–141. [Google Scholar] [CrossRef]
- Mondaca, J.M.; Uzair, I.D.; Castro Guijarro, A.C.; Flamini, M.I.; Sanchez, A.M. Molecular Basis of LH Action on Breast Cancer Cell Migration and Invasion via Kinase and Scaffold Proteins. Front. Cell Dev. Biol. 2021, 8, 630147. [Google Scholar] [CrossRef] [PubMed]
- Schally, A.V.; Nagy, A. Chemotherapy targeted to cancers through tumoral hormone receptors. Trends Endocrinol. Metab. 2004, 15, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Sahay, D.; Leblanc, R.; Grunewald, T.G.; Ambatipudi, S.; Ribeiro, J.; Clézardin, P.; Peyruchaud, O. The LPA1/ZEB1/miR-21-activation pathway regulates metastasis in basal breast cancer. Oncotarget 2015, 6, 20604. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.A.-O.; Yin, Z.; Lu, F.; Wang, W.; Zhang, H. Disruption of LPA-LPAR1 pathway results in lung tumor growth inhibition by downregulating B7-H3 expression in fibroblasts. Thorac. Cancer 2023, 15, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Rebecca, V.W.; Kossenkov, A.V.; Connelly, T.; Liu, Q.A.-O.X.; Gutierrez, A.; Xiao, M.; Li, L.; Zhang, G.A.-O.; Samarkina, A.; et al. Neural Crest-Like Stem Cell Transcriptome Analysis Identifies LPAR1 in Melanoma Progression and Therapy Resistance. Cancer Res. 2021, 81, 5230–5241. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xiao, D.; Zhang, J.; Qu, H.; Yang, Y.; Yan, Y.; Liu, X.; Wang, J.; Liu, L.; Wang, J.; et al. Expression of LPA2 is associated with poor prognosis in human breast cancer and regulates HIF-1α expression and breast cancer cell growth. Oncol. Rep. 2016, 36, 3479–3487. [Google Scholar] [CrossRef]
- Popnikolov, N.K.; Dalwadi Bh Fau-Thomas, J.D.; Thomas Jd Fau-Johannes, G.J.; Johannes Gj Fau-Imagawa, W.T.; Imagawa, W.T. Association of autotaxin and lysophosphatidic acid receptor 3 with aggressiveness of human breast carcinoma. Tumor Biol. 2012, 33, 2237–2243. [Google Scholar] [CrossRef]
- Zheng, Y.Q.; Miao, X.; Li, J.; Hu, M.F.; Zhu, Y.S.; Li, X.R.; Zhang, Y.J. Trichostatin A alleviates the process of breast carcinoma by downregulating LPAR5. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 6417–6425. [Google Scholar] [PubMed]
- Ketscher, A.; Jilg, C.A.; Willmann, D.; Hummel, B.; Imhof, A.; Rüsseler, V.; Hölz, S.; Metzger, E.; Müller, J.M.; Schüle, R. LSD1 controls metastasis of androgen-independent prostate cancer cells through PXN and LPAR6. Oncogenesis 2014, 3, e120. [Google Scholar] [CrossRef] [PubMed]
- Kalinkin, A.I.; Nemtsova, M.V.; Zaletaev, D.V.; Sigin, V.O.; Ignatova, E.; Kuznetsova, E.B.; Strelnikov, V.V.; Tanas, A.S. Leukotriene B4 receptors abnormal gene expression is associated with either shorter or longer survival in breast cancer patients depending on the intrinsic tumour molecular subtype. Ann. Oncol. 2019, 30, vii17. [Google Scholar] [CrossRef]
- Raufman, J.-P.; Cheng, K.; Saxena, N.; Chahdi, A.; Belo, A.; Khurana, S.; Xie, G. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells. Biochem. Biophys. Res. Commun. 2011, 415, 319–324. [Google Scholar] [CrossRef]
- Zhao, Q.; Gu, X.; Zhang, C.; Lu, Q.; Chen, H.; Xu, L. Blocking M2 muscarinic receptor signaling inhibits tumor growth and reverses epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC). Cancer Biol. Ther. 2015, 16, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Sun, L.; Wang, R.; Guo, Y.; Xie, C. Overexpression of Muscarinic Receptor 3 Promotes Metastasis and Predicts Poor Prognosis in Non–Small-Cell Lung Cancer. J. Thorac. Oncol. 2014, 9, 170–178. [Google Scholar] [CrossRef]
- Nishimura, S.; Uno M Fau-Kaneta, Y.; Kaneta Y Fau-Fukuchi, K.; Fukuchi K Fau-Nishigohri, H.; Nishigohri H Fau-Hasegawa, J.; Hasegawa J Fau-Komori, H.; Komori H Fau-Takeda, S.; Takeda S Fau-Enomoto, K.; Enomoto K Fau-Nara, F.; Nara F Fau-Agatsuma, T.; et al. MRGD, a MAS-related G-protein coupled receptor, promotes tumorigenisis and is highly expressed in lung cancer. PLOS ONE 2012, 7, e38618. [Google Scholar] [CrossRef]
- Przygodzka, P.A.-O.; Soboska, K.A.-O.; Sochacka, E.A.-O.; Pacholczyk, M.A.-O.; Braun, M.A.-O.; Kassassir, H.A.-O.; Papiewska-Pająk, I.A.-O.; Kielbik, M.A.-O.; Boncela, J.A.-O. Neuromedin U secreted by colorectal cancer cells promotes a tumour-supporting microenvironment. Cell Commun. Signal. 2022, 20, 193. [Google Scholar] [CrossRef]
- Przygodzka, P.; Sochacka, E.; Soboska, K.; Pacholczyk, M.; Papiewska-Pająk, I.; Przygodzki, T.; Płociński, P.; Ballet, S.; De Prins, A.; Boncela, J. Neuromedin U induces an invasive phenotype in CRC cells expressing the NMUR2 receptor. J. Exp. Clin. Cancer Res. 2021, 40, 283. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.A.-O.; Rodríguez, F.A.-O.; Coveñas, R.A.-O. Neuropeptide Y Peptide Family and Cancer: Antitumor Therapeutic Strategies. Int. J. Mol. Sci. 2023, 24, 9962. [Google Scholar] [CrossRef]
- Medeiros, P.J.; Pascetta, S.; Kirsh, S.; Al-Khazraji, B.K.; Uniacke, J. HIF-dependent Neuropeptide Y Receptor Y1 and Y5 expression sensitizes hypoxic cells to NPY stimulation. J. Biol. Chem. 2022, 298, 101645. [Google Scholar] [CrossRef]
- Dupouy, S.; Viardot-Foucault, V.; Alifano, M.; Souazé, F.; Plu-Bureau, G.; Chaouat, M.; Lavaur, A.; Hugol, D.; Gespach, C.; Gompel, A.; et al. The neurotensin receptor-1 pathway contributes to human ductal breast cancer progression. PLoS ONE 2009, 4, e4223. [Google Scholar] [CrossRef] [PubMed]
- Younes, M.; Wu, Z.; Dupouy, S.; Lupo, A.M.; Mourra, N.; Takahashi, T.; Fléjou, J.F.; Trédaniel, J.; Régnard, J.F.; Damotte, D.; et al. Neurotensin (NTS) and its receptor (NTSR1) causes EGFR, HER2 and HER3 over-expression and their autocrine/paracrine activation in lung tumors, confirming responsiveness to erlotinib. Oncotarget 2014, 5, 8252–8269. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, Z.; Lei, Y. The expression of kappa-opioid receptor promotes the migration of breast cancer cells in vitro. BMC Anesthesiol. 2021, 21, 210. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.A.-O.X.; Wang, R.; Yang, Y.; Xu, T.; Li, Y.; Xu, J.A.-O.X.; Jiang, Z.A.-O. Expression of OPN3 in lung adenocarcinoma promotes epithelial-mesenchymal transition and tumor metastasis. Thorac. Cancer 2019, 11, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Masi, M.; Garattini, E.; Bolis, M.; Di Marino, D.; Maraccani, L.; Morelli, E.; Grolla, A.A.; Fagiani, F.; Corsini, E.; Travelli, C.; et al. OXER1 and RACK1-associated pathway: A promising drug target for breast cancer progression. Oncogenesis 2020, 9, 105. [Google Scholar] [CrossRef]
- Moresco, M.A.; Raccosta, L.; Corna, G.; Maggioni, D.; Soncini, M.; Bicciato, S.; Doglioni, C.; Russo, V. Enzymatic Inactivation of Oxysterols in Breast Tumor Cells Constraints Metastasis Formation by Reprogramming the Metastatic Lung Microenvironment. Front. Immunol. 2018, 9, 2251. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Liu, N.; Li, J.; Chen, D.; Luo, D.; Sun, Q.; Yin, Y.; Liu, Y.; Bu, B.; Chen, X.; et al. Oxytocin involves in chronic stress-evoked melanoma metastasis via β-arrestin 2-mediated ERK signaling pathway. Carcinogenesis 2019, 40, 1395–1404. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Zhang, C.; Shan, J. Pyrroline-5-Carboxylate Reductase 1 Accelerates the Migration and Invasion of Nonsmall Cell Lung Cancer In Vitro. Cancer Biotherapy Radiopharm. 2019, 34, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.A.-O.; Riquelme, M.A.; Tian, Y.; Zhao, D.; Acosta, F.A.-O.; Gu, S.; Jiang, J.X. ATP Inhibits Breast Cancer Migration and Bone Metastasis through Down-Regulation of CXCR4 and Purinergic Receptor P2Y11. Cancers 2021, 13, 4293. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, B.; Ren, D.; Hu, X.; Qiao, J.; Zhang, D.; Zhang, Y.; Pan, Y.; Fan, Y.; Liu, L.; et al. Pyrimidinergic receptor P2Y6 expression is elevated in lung adenocarcinoma and is associated with poor prognosis. Cancer Biomarkers 2023, 38, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Naruse, T.; Goi, T.; Yamaguchi, A. Prokineticin-1 induces normal lymphangiogenic activity and is involved in lymphangiogenesis and lymph node metastasis in colorectal cancer. Oncotarget 2021, 12, 1388–1397. [Google Scholar] [CrossRef]
- Kurebayashi, H.; Goi, T.; Shimada, M.; Tagai, N.; Naruse, T.; Nakazawa, T.; Kimura, Y.; Hirono, Y.; Yamaguchi, A. Prokineticin 2 (PROK2) is an important factor for angiogenesis in colorectal cancer. Oncotarget 2015, 6, 26242–26251. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.; Lou, Y.; Li, S.; Zhao, C.; Ji, Y.; Wang, D.; Tang, L.; Zhou, M.; Xu, W.; Qian, M.; et al. Kadsurenone is a useful and promising treatment strategy for breast cancer bone metastases by blocking the PAF/PTAFR signaling pathway. Oncol. Lett. 2018, 16, 2255–2262. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, K.; Takahashi, H.; Okuzaki, D.; Osawa, H.; Ogino, T.; Miyoshi, N.; Uemura, M.; Matsuda, C.; Yamamoto, H.; Mizushima, T.; et al. Syntenin-1 promotes colorectal cancer stem cell expansion and chemoresistance by regulating prostaglandin E2 receptor. Br. J. Cancer 2020, 123, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Dingledine, R. Role of prostaglandin receptor EP2 in the regulations of cancer cell proliferation, invasion, and inflammation. J. Pharmacol. Exp. Ther. 2013, 344, 360–367. [Google Scholar] [CrossRef]
- Swami S Fau-Zhu, H.; Zhu H Fau-Nisco, A.; Nisco A Fau-Kimura, T.; Kimura T Fau-Kim, M.J.; Kim Mj Fau-Nair, V.; Nair V Fau-Wu, J.Y.; Wu, J.Y. Parathyroid hormone 1 receptor signaling mediates breast cancer metastasis to bone in mice. J. Clin. Investig. 2023, 8, e157390. [Google Scholar]
- Monego, G.; Lauriola L Fau-Ramella, S.; Ramella S Fau-D’Angelillo, R.M.; D’Angelillo Rm Fau-Lanza, P.; Lanza P Fau-Granone, P.; Granone P Fau-Ranelletti, F.O.; Ranelletti, F.O. Parathyroid hormone-related peptide and parathyroid hormone-related peptide receptor type 1 expression in human lung adenocarcinoma. Chest 2010, 137, 898–908. [Google Scholar] [CrossRef]
- Kawan, M.A.; Kyrou, I.; Ramanjaneya, M.; Williams, K.; Jeyaneethi, J.; Randeva, H.S.; Karteris, E. Involvement of the glutamine RF-amide peptide and its cognate receptor GPR103 in prostate cancer. Oncol. Rep. 2018, 41, 1140–1150. [Google Scholar] [CrossRef]
- Feng, S.; Agoulnik, I.U.; Truong, A.; Li, Z.; Creighton, C.J.; Kaftanovskaya, E.M.; Pereira, R.; Han, H.D.; Lopez-Berestein, G.; Klonisch, T.; et al. Suppression of relaxin receptor RXFP1 decreases prostate cancer growth and metastasis. Endocr.-Relat. Cancer 2010, 17, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Nagahashi, M.; Yamada, A.; Katsuta, E.; Aoyagi, T.; Huang, W.C.; Terracina, K.P.; Hait, N.C.; Allegood, J.C.; Tsuchida, J.; Yuza, K.; et al. Targeting the SphK1/S1P/S1PR1 Axis That Links Obesity, Chronic Inflammation, and Breast Cancer Metastasis. Cancer Res. 2018, 78, 1713–1725. [Google Scholar] [CrossRef]
- Lin, Q.; Ren, L.; Jian, M.; Xu, P.; Li, J.; Zheng, P.; Feng, Q.; Yang, L.; Ji, M.; Wei, Y.; et al. The mechanism of the premetastatic niche facilitating colorectal cancer liver metastasis generated from myeloid-derived suppressor cells induced by the S1PR1–STAT3 signaling pathway. Cell Death Dis. 2019, 10, 693. [Google Scholar] [CrossRef] [PubMed]
- Filipenko, I.; Schwalm, S.; Reali, L.; Pfeilschifter, J.; Fabbro, D.; Huwiler, A.; Zangemeister-Wittke, U. Upregulation of the S1P(3) receptor in metastatic breast cancer cells increases migration and invasion by induction of PGE(2) and EP(2)/EP(4) activation. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2016, 1861, 1840–1851. [Google Scholar]
- Kuo, C.-C.; Wu, J.-Y.; Wu, K.K. Cancer-derived extracellular succinate: A driver of cancer metastasis. J. Biomed. Sci. 2022, 29, 93. [Google Scholar] [CrossRef] [PubMed]
- Corcoran, K.E.; Malhotra A Fau-Molina, C.A.; Molina Ca Fau-Rameshwar, P.; Rameshwar, P. Stromal-derived factor-1alpha induces a non-canonical pathway to activate the endocrine-linked Tac1 gene in non-tumorigenic breast cells. J. Mol. Endocrinol. 2008, 40, 113–124. [Google Scholar] [CrossRef]
- Hao, X.; Gao, L.-Y.; Zhang, N.; Chen, H.; Jiang, X.; Liu, W.; Ao, L.; Cao, J.; Han, F.; Liu, J. Tac2-N acts as a novel oncogene and promotes tumor metastasis via activation of NF-κB signaling in lung cancer. J. Exp. Clin. Cancer Res. 2019, 38, 319. [Google Scholar] [CrossRef] [PubMed]
- Ashton, A.W.; Zhang, Y.; Cazzolli, R.; Honn, K.V. The Role and Regulation of Thromboxane A2 Signaling in Cancer-Trojan Horses and Misdirection. Molecules 2022, 27, 6234. [Google Scholar] [CrossRef]
- Yang, X.L.; Qi, L.G.; Lin, F.J.; Ou, Z.L. The role of the chemokine receptor XCR1 in breast cancer cells. Breast Cancer Targets Ther. 2017, 9, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Han, S.; Wu, Z.; Han, Z.; Yan, W.; Liu, T.; Wei, H.; Song, D.; Zhou, W.; Yang, X.; et al. XCR1 promotes cell growth and migration and is correlated with bone metastasis in non-small cell lung cancer. Biochem. Biophys. Res. Commun. 2015, 464, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Kim, D.; Ko, S.; Kim, A.; Mo, K.; Yoon, H. Breast Cancer Metastasis: Mechanisms and Therapeutic Implications. Int. J. Mol. Sci. 2022, 23, 6806. [Google Scholar] [CrossRef]
- Hughes, C.E.; Nibbs, R.J.B. A guide to chemokines and their receptors. FEBS J. 2018, 285, 2944–2971. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.W.; Sokol, C.L.; Luster, A.D. Chemokines and chemokine receptors: Positioning cells for host defense and immunity. Annu. Rev. Immunol. 2014, 32, 659–702. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.; Homey, B.; Soto, H.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.C.; Luker, K.E.; Garbow, J.R.; Prior, J.L.; Jackson, E.; Piwnica-Worms, D.; Luker, G.D. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res. 2004, 64, 8604–8612. [Google Scholar] [CrossRef]
- Li, Y.M.; Pan, Y.; Wei, Y.; Cheng, X.; Zhou, B.P.; Tan, M.; Zhou, X.; Xia, W.; Hortobagyi, G.N.; Yu, D.; et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 2004, 6, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.X.; Chauhan, V.P.; Posada, J.; Ng, M.R.; Wu, M.W.; Adstamongkonkul, P.; Huang, P.; Lindeman, N.; Langer, R.A.-O.; Jain, R.K. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 4558–4566. [Google Scholar] [CrossRef]
- Kochetkova, M.; Kumar, S.; McColl, S.R. Chemokine receptors CXCR4 and CCR7 promote metastasis by preventing anoikis in cancer cells. Cell Death Differ. 2009, 16, 664–673. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, M.; Qiu, W.; Ye, J.; Feng, Q.A.-O. CCR7 mediates human breast cancer cell invasion, migration by inducing epithelial-mesenchymal transition and suppressing apoptosis through AKT pathway. Cancer Med. 2017, 6, 1062–1071. [Google Scholar] [CrossRef]
- Arakaki, A.K.S.; Pan, W.A.; Trejo, J.A.-O. GPCRs in Cancer: Protease-Activated Receptors, Endocytic Adaptors and Signaling. Int. J. Mol. Sci. 2018, 19, 1886. [Google Scholar] [CrossRef]
- Yang, E.; Boire, A.; Agarwal, A.; Nguyen, N.; O’Callaghan, K.; Tu, P.; Kuliopulos, A.; Covic, L. Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Res. 2009, 69, 6223–6231. [Google Scholar] [CrossRef]
- Yang, E.; Cisowski, J.; Nguyen, N.; O’Callaghan, K.; Xu, J.; Agarwal, A.; Kuliopulos, A.; Covic, L. Dysregulated protease activated receptor 1 (PAR1) promotes metastatic phenotype in breast cancer through HMGA2. Oncogene 2016, 35, 1529–1540. [Google Scholar] [CrossRef] [PubMed]
- Gad, A.A.; Balenga, N. The Emerging Role of Adhesion GPCRs in Cancer. ACS Pharmacol. Transl. Sci. 2020, 3, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Jin, R.; Qu, G.; Wang, X.; Li, Z.; Yuan, Z.; Zhao, C.; Siwko, S.; Shi, T.; Wang, P.; et al. GPR116, an Adhesion G-Protein–Coupled Receptor, Promotes Breast Cancer Metastasis via the Gαq-p63RhoGEF-Rho GTPase Pathway. Cancer Res. 2013, 73, 6206–6218. [Google Scholar] [CrossRef]
- Talia, M.; De Francesco, E.M.; Rigiracciolo, D.C.; Muoio, M.G.; Muglia, L.; Belfiore, A.; Maggiolini, M.A.-O.X.; Sims, A.A.-O.; Lappano, R. The G Protein-Coupled Estrogen Receptor (GPER) Expression Correlates with Pro-Metastatic Pathways in ER-Negative Breast Cancer: A Bioinformatics Analysis. Cells 2020, 9, 622. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Chen, Z.; Jiang, G.; Zhou, Y.; Liu, Q.; Su, Q.; Wei, W.; Du, J.; Wang, H. Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-κB/IL-6 signals. Cancer Lett. 2017, 386, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer: A Review. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef]
- Ottaiano, A.A.-O.; Santorsola, M.; Del Prete, P.; Perri, F.A.-O.; Scala, S.; Caraglia, M.A.-O.; Nasti, G. Prognostic Significance of CXCR4 in Colorectal Cancer: An Updated Meta-Analysis and Critical Appraisal. Cancers 2021, 13, 3284. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, D.; Wang, X.; Sun, S.; Zhang, Y.; Wang, S.; Miao, R.; Xu, X.; Qu, X. CXCL12/CXCR4 promotes inflammation-driven colorectal cancer progression through activation of RhoA signaling by sponging miR-133a-3p. J. Exp. Clin. Cancer Res. 2019, 38, 32. [Google Scholar] [CrossRef]
- Wang, D.; Wang, X.; Si, M.; Yang, J.; Sun, S.; Wu, H.; Cui, S.; Qu, X.; Yu, X. Exosome-encapsulated miRNAs contribute to CXCL12/CXCR4-induced liver metastasis of colorectal cancer by enhancing M2 polarization of macrophages. Cancer Lett. 2020, 474, 36–52. [Google Scholar] [CrossRef]
- Brand, S.; Dambacher, J.; Beigel, F.; Olszak, T.; Diebold, J.; Otte, J.-M.; Göke, B.; Eichhorst, S.T. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp. Cell Res. 2005, 310, 117–130. [Google Scholar] [CrossRef]
- Zhang, S.-S.; Han, Z.-P.; Jing, Y.-Y.; Tao, S.-F.; Li, T.-J.; Wang, H.; Wang, Y.; Li, R.; Yang, Y.; Zhao, X.; et al. CD133+CXCR4+ colon cancer cells exhibit metastatic potential and predict poor prognosis of patients. BMC Med. 2012, 10, 85. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Zheng, H.T.; Huang, L.Y.; Shi, D.B.; Peng, J.J.; Liang, L.; Cai, S.J. Silencing of CXCR7 gene represses growth and invasion and induces apoptosis in colorectal cancer through ERK and β-arrestin pathways. Int. J. Oncol. 2014, 45, 1649–1657. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Song, Y.; Wang, X.; Wang, D.; Liu, X.; Qu, X.; Song, Z.; Yu, X. CXCL12/CXCR7/β-arrestin1 biased signal promotes epithelial-to-mesenchymal transition of colorectal cancer by repressing miRNAs through YAP1 nuclear translocation. Cell Biosci. 2022, 12, 171. [Google Scholar] [CrossRef] [PubMed]
- Lattanzi, R.; Miele, R. Prokineticin-Receptor Network: Mechanisms of Regulation. Life 2022, 12, 172. [Google Scholar] [CrossRef] [PubMed]
- Tabata, S.; Goi T Fau-Nakazawa, T.; Nakazawa T Fau-Kimura, Y.; Kimura Y Fau-Katayama, K.; Katayama K Fau-Yamaguchi, A.; Yamaguchi, A. Endocrine gland-derived vascular endothelial growth factor strengthens cell invasion ability via prokineticin receptor 2 in colon cancer cell lines. Oncol. Rep. 2012, 29, 459–463. [Google Scholar] [CrossRef]
- Goi, T.; Kurebayashi, H.; Ueda, Y.; Naruse, T.; Nakazawa, T.; Koneri, K.; Hirono, Y.; Katayama, K.; Yamaguchi, A. Expression of prokineticin-receptor2(PK-R2) is a new prognostic factor in human colorectal cancer. Oncotarget 2015, 6, 31758–31766. [Google Scholar] [CrossRef]
- Kono, H.; Goi, T.A.-O.; Matsunaka, T.A.-O.X.; Koneri, K. Anti-Prokineticin1 Suppresses Liver Metastatic Tumors in a Mouse Model of Colorectal Cancer with Liver Metastasis. Curr. Issues Mol. Biol. 2023, 46, 44–52. [Google Scholar] [CrossRef]
- Ji, B.; Feng, Y.; Sun, Y.; Ji, D.; Qian, W.; Zhang, Z.; Wang, Q.; Zhang, Y.; Zhang, C.; Sun, Y. GPR56 promotes proliferation of colorectal cancer cells and enhances metastasis via epithelial-mesenchymal transition through PI3K/AKT signaling activation. Oncol. Rep. 2018, 40, 1885–1896. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.R.; Kang, D.H.; Kuk, J.C.; Kim, T.H.; Shin, E.J.; Ahn, T.S.; Kim, H.J.; Jeong, D.J.; Baek, M.J.; Kim, N.K. Prognostic impact of GPR56 in patients with colorectal cancer. Neoplasma 2021, 68, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Zhang, J.; Xu, H.; Wang, Y.; Chu, Y.; Liu, R.; Xiong, S. Differential expression of CXCR4 is associated with the metastatic potential of human non-small cell lung cancer cells. Clin. Cancer Res. 2005, 11, 8273–8280. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Burdick, M.D.; Strieter, B.A.; Mehrad, B.; Strieter, R.M. CXCR4, but not CXCR7, Discriminates Metastatic Behavior in Non–Small Cell Lung Cancer Cells. Mol. Cancer Res. 2014, 12, 38–47. [Google Scholar] [CrossRef]
- Zhang, C.; Li, J.; Han, Y.; Jiang, J. A meta-analysis for CXCR4 as a prognostic marker and potential drug target in non-small cell lung cancer. Drug Des. Dev. Ther. 2015, ume 9, 3267–3278. [Google Scholar]
- Bertolini, G.; Cancila, V.; Milione, M.; Lo Russo, G.; Fortunato, O.; Zaffaroni, N.; Tortoreto, M.; Centonze, G.; Chiodoni, C.; Facchinetti, F.; et al. A novel CXCR4 antagonist counteracts paradoxical generation of cisplatin-induced pro-metastatic niches in lung cancer. Mol. Ther. 2021, 29, 2963–2978. [Google Scholar] [CrossRef] [PubMed]
- Keane, M.P.; Belperio, J.A.; Xue, Y.Y.; Burdick, M.D.; Strieter, R.M. Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J. Immunol. 2004, 172, 2853–2860. [Google Scholar] [CrossRef]
- Saintigny, P.; Massarelli, E.; Lin, S.; Ahn, Y.H.; Chen, Y.; Goswami, S.; Erez, B.; O’Reilly, M.S.; Liu, D.; Lee, J.J.; et al. CXCR2 expression in tumor cells is a poor prognostic factor and promotes invasion and metastasis in lung adenocarcinoma. Cancer Res. 2013, 73, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Mo, F.; Li, Q.; Han, X.; Shi, H.; Chen, S.; Wei, Y.; Wei, X.A.-O. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol. Cancer 2021, 20, 62. [Google Scholar] [CrossRef] [PubMed]
- Willier, S.; Butt E Fau-Grunewald, T.G.P.; Grunewald, T.G. Lysophosphatidic acid (LPA) signalling in cell migration and cancer invasion: A focussed review and analysis of LPA receptor gene expression on the basis of more than 1700 cancer microarrays. Biol. Cell 2013, 105, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Mou, L.J.; Liu, N.; Tsao, M.S. Autotaxin expression in non-small-cell lung cancer. Am. J. Respir. Cell Mol. Biol. 1999, 21, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Prestwich, G.D. Inhibition of tumor growth and angiogenesis by a lysophosphatidic acid antagonist in an engineered three-dimensional lung cancer xenograft model. Cancer 2010, 116, 1739–1750. [Google Scholar] [CrossRef] [PubMed]
- Ueda, N.; Minami, K.; Ishimoto, K.; Tsujiuchi, T. Effects of lysophosphatidic acid (LPA) receptor-2 (LPA(2)) and LPA(3) on the regulation of chemoresistance to anticancer drug in lung cancer cells. BMB Rep. 2016, 49, 623–628. [Google Scholar] [CrossRef]
- Lin, X.J.; Liu, H.; Li, P.; Wang, H.F.; Yang, A.K.; Di, J.M.; Jiang, Q.W.; Yang, Y.; Huang, J.R.; Yuan, M.L.; et al. miR-936 Suppresses Cell Proliferation, Invasion, and Drug Resistance of Laryngeal Squamous Cell Carcinoma and Targets GPR78. Front. Oncol. 2020, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Achard, V.; Putora, P.M.; Omlin, A.; Zilli, T.; Fischer, S. Metastatic Prostate Cancer: Treatment Options. Oncology 2021, 100, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhong, T. The association of CXCR4 expression with clinicopathological significance and potential drug target in prostate cancer: A meta-analysis and literature review. Drug Des. Dev. Ther. 2015, 9, 5115–5122. [Google Scholar] [CrossRef] [PubMed]
- Don-Salu-Hewage, A.S.; Chan, S.Y.; McAndrews, K.M.; Chetram, M.A.; Dawson, M.R.; Bethea, D.A.; Hinton, C.V. Cysteine (C)-x-C receptor 4 undergoes transportin 1-dependent nuclear localization and remains functional at the nucleus of metastatic prostate cancer cells. PLOS ONE 2013, 8, e57194. [Google Scholar]
- Sbrissa, D.; Semaan, L.; Govindarajan, B.; Li, Y.; Caruthers, N.J.; Stemmer, P.M.; Cher, M.L.; Sethi, S.; Vaishampayan, U.; Shisheva, A.; et al. A novel cross-talk between CXCR4 and PI4KIIIα in prostate cancer cells. Oncogene 2019, 38, 332–344. [Google Scholar] [CrossRef] [PubMed]
- Vaday, G.G.; Peehl, D.M.; Kadam, P.A.; Lawrence, D.M. Expression of CCL5 (RANTES) and CCR5 in prostate cancer. Prostate 2005, 66, 124–134. [Google Scholar] [CrossRef]
- Sicoli, D.; Jiao, X.; Ju, X.; Velasco-Velazquez, M.; Ertel, A.; Addya, S.; Li, Z.; Andò, S.; Fatatis, A.; Paudyal, B.; et al. CCR5 receptor antagonists block metastasis to bone of v-Src oncogene-transformed metastatic prostate cancer cell lines. Cancer Res. 2014, 74, 7103–7114. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.A.-O.X.; Xie, H.; Zhu, B.; Sun, Z.; Huang, Y.A.-O. MiR-455-5p Suppresses the Progression of Prostate Cancer by Targeting CCR5. BioMed Res. Int. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pi, M.; Quarles, L.D. GPRC6A regulates prostate cancer progression. Prostate 2012, 72, 399–409. [Google Scholar] [CrossRef]
- Ye, R.; Pi, M.; Cox, J.V.; Nishimoto, S.K.; Quarles, L.D. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. J. Exp. Clin. Cancer Res. 2017, 36. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Qadir, M.I.; Ghafoor, S. Malignant Melanoma: Skin Cancer-Diagnosis, Prevention, and Treatment. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Mori, T.; Chen, S.L.; Amersi, F.F.; Martinez, S.R.; Kuo, C.; Turner, R.R.; Ye, X.; Bilchik, A.J.; Morton, D.L.; et al. Chemokine receptor CXCR4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Ann. Surg. 2006, 244, 113–120. [Google Scholar] [CrossRef]
- Mannavola, F.; Tucci, M.; Felici, C.; Passarelli, A.; D’Oronzo, S.; Silvestris, F. Tumor-derived exosomes promote the in vitro osteotropism of melanoma cells by activating the SDF-1/CXCR4/CXCR7 axis. J. Transl. Med. 2019, 17, 230. [Google Scholar] [CrossRef] [PubMed]
- Alimohammadi, M.; Rahimi, A.; Faramarzi, F.; Alizadeh-Navaei, R.; Rafiei, A. Overexpression of chemokine receptor CXCR4 predicts lymph node metastatic risk in patients with melanoma: A systematic review and meta-analysis. Cytokine 2021, 148, 155691. [Google Scholar] [CrossRef]
- Saxena, R.; Wang, Y.; Mier, J.W. CXCR4 inhibition modulates the tumor microenvironment and retards the growth of B16-OVA melanoma and Renca tumors. Melanoma Res. 2020, 30, 14–25. [Google Scholar] [CrossRef]
- Fiandalo, M.; Sanny, T.; Monsalud, D.; Cordes, S.; Waikel, R.L. Functional Role of Chemokine Receptor 10 in Melanoma Metastasis. FASEB J. 2006, 20, A936. [Google Scholar] [CrossRef]
- Kühnelt-Leddihn, L.; Müller, H.; Eisendle, K.; Zelger, B.; Weinlich, G. Overexpression of the chemokine receptors CXCR4, CCR7, CCR9, and CCR10 in human primary cutaneous melanoma: A potential prognostic value for CCR7 and CCR10? Arch. Dermatol. Res. 2012, 304, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, O.; Goteri, G.; Lucarini, G.; Filosa, A.; Pieramici, T.; Rubini, C.; Biagini, G.; Offidani, A. Potential role of CCL27 and CCR10 expression in melanoma progression and immune escape. Eur. J. Cancer 2006, 42, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.E. P2-pyrimidinergic receptors and their ligands. Curr. Pharm. Des. 2002, 8, 2353–2369. [Google Scholar] [CrossRef] [PubMed]
- Di Virgilio, F.A.-O.; Sarti, A.C.; Falzoni, S.; De Marchi, E.; Adinolfi, E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 2018, 18, 601–618. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Pan, X.; Wei, Y.; Tan, B.; Yang, L.; Ren, H.; Qian, M.; Du, B. Chemotherapy-induced uridine diphosphate release promotes breast cancer metastasis through P2Y6 activation. Oncotarget 2016, 7, 29036–29050. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Zhang, Z.; Fu, Z.; Ren, H.; Liu, M.; Qian, M.; Du, B. The UDP/P2y6 axis promotes lung metastasis of melanoma by remodeling the premetastatic niche. Cell. Mol. Immunol. 2020, 17, 1269–1271. [Google Scholar] [CrossRef]
- White, N.; Ryten M Fau-Clayton, E.; Clayton E Fau-Butler, P.; Butler P Fau-Burnstock, G.; Burnstock, G. P2Y purinergic receptors regulate the growth of human melanomas. Cancer Lett. 2004, 224, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Peter, S.; Siragusa, L.; Thomas, M.; Palomba, T.; Cross, S.; O’Boyle, N.M.; Bajusz, D.; Ferenczy, G.G.; Keserű, G.M.; Bottegoni, G.; et al. Comparative Study of Allosteric GPCR Binding Sites and Their Ligandability Potential. J. Chem. Inf. Model. 2024, 64, 8176–8192. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.C.; Elmes, J.B.; Shibu, P.A.; Larck, C.; Park, S.I. Mogamulizumab: An Anti-CC Chemokine Receptor 4 Antibody for T-Cell Lymphomas. Ann. Pharmacother. 2020, 54, 371–379. [Google Scholar] [CrossRef]
- Keam, S.J. Talquetamab: First Approval. Drugs 2023, 83, 1439–1445. [Google Scholar] [CrossRef]
- Hoy, S.M. Motixafortide: First Approval. Drugs 2023, 83, 1635–1643. [Google Scholar] [CrossRef]
- Moore, H.C.F.; Unger, J.M.; Phillips, K.-A.; Boyle, F.; Hitre, E.; Porter, D.; Francis, P.A.; Goldstein, L.J.; Gomez, H.L.; Vallejos, C.S.; et al. Goserelin for Ovarian Protection during Breast-Cancer Adjuvant Chemotherapy. N. Engl. J. Med. 2015, 372, 923–932. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Mongiat-Artus, P.; Teillac, P. Abarelix: The first gonadotrophin-releasing hormone antagonist for the treatment of prostate cancer. Expert Opin. Pharmacother. 2004, 5, 2171–2179. [Google Scholar] [CrossRef]
- Desai, K.; McManus, J.M.; Sharifi, N.A.-O. Hormonal Therapy for Prostate Cancer. Endocr. Rev. 2021, 42, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Zengerling, F.; Jakob, J.J.; Schmidt, S.; Meerpohl, J.J.; Blümle, A.; Schmucker, C.; Mayer, B.; Kunath, F. Degarelix for treating advanced hormone-sensitive prostate cancer. Cochrane Database Syst. Rev. 2021, 8, CD012548. [Google Scholar]
- Deeks, E.D. Histrelin: In advanced prostate cancer. Drugs 2010, 70, 623–630. [Google Scholar] [CrossRef]
- Ploussard, G.; Mongiat-Artus, P. Triptorelin in the management of prostate cancer. Futur. Oncol. 2012, 9, 93–102. [Google Scholar] [CrossRef]
- Erdem, G.U.; Sendur Ma Fau-Ozdemir, N.Y.; Ozdemir Ny Fau-Yazıcı, O.; Yazıcı O Fau-Zengin, N.; Zengin, N. A comprehensive review of the role of the hedgehog pathway and vismodegib in the management of basal cell carcinoma. Curr. Med. Res. Opin. 2015, 31, 743–756. [Google Scholar] [CrossRef] [PubMed]
- Aditya, S.; Rattan, A. Vismodegib: A smoothened inhibitor for the treatment of advanced basal cell carcinoma. Indian Dermatol. Online J. 2013, 4, 365–368. [Google Scholar] [CrossRef]
- Sanmartín, O.; Llombart, B.; Carretero Hernández, G.; Flórez Menéndez, Á.; Botella-Estrada, R.; Herrera Ceballos, E.; Puig, S. Sonidegib in the Treatment of Locally Advanced Basal Cell Carcinoma. Actas Dermo-Sifiliograficas 2021, 112, 295–301. [Google Scholar] [CrossRef]
- Bilgin, Y.M.; de Greef, G.E. Plerixafor for stem cell mobilization: The current status. Curr. Opin. Hematol. 2016, 23, 67–71. [Google Scholar] [CrossRef]
- Romon, I.A.-O.; Castillo, C.A.-O.; Cid, J.A.-O.; Lozano, M.A.-O.X. Use of plerixafor to mobilize haematopoietic progenitor cells in healthy donors. Vox Sang. 2021, 117, 6–16. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.W.M.; Glennie, M.J. Rituximab: Mechanisms and applications. Br. J. Cancer 2001, 85, 1619–1623. [Google Scholar] [CrossRef]
- The Antibody Society. Therapeutic Monoclonal Antibodies Approved or in Regulatory Review. Available online: www.antibodysociety.org/antibody-therapeutics-product-data (accessed on 4 September 2024).
- Rexer, B.N.; Arteaga, C.L. Intrinsic and Acquired Resistance to HER2-Targeted Therapies in HER2 Gene-Amplified Breast Cancer: Mechanisms and Clinical Implications. Crit. Rev.™ Oncog. 2012, 17, 1–16. [Google Scholar] [CrossRef]
- Delgado, M.A.-O.; Garcia-Sanz, J.A.-O. Therapeutic Monoclonal Antibodies against Cancer: Present and Future. Cells 2023, 12, 2837. [Google Scholar] [CrossRef]
- Choong, G.A.-O.; Cullen, G.A.-O.; O’Sullivan, C.A.-O. Evolving standards of care and new challenges in the management of HER2-positive breast cancer. CA A Cancer J. Clin. 2020, 70, 355–374. [Google Scholar] [CrossRef]
- Poole, R.M. Pembrolizumab: First global approval. Drugs 2014, 74, 1973–1981. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Erenumab: First Global Approval. Drugs 2018, 78, 1157–1161. [Google Scholar] [CrossRef]
- Bagherzadeh-Fard, M.; Amin Yazdanifar, M.; Sadeghalvad, M.; Rezaei, N. Erenumab efficacy in migraine headache prophylaxis: A systematic review. Int. Immunopharmacol. 2023, 117, 109366. [Google Scholar] [CrossRef]
- Ureshino, H.; Kamachi, K.; Kimura, S. Mogamulizumab for the Treatment of Adult T-cell Leukemia/Lymphoma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 326–331. [Google Scholar] [CrossRef]
- Kim, Y.H.; Bagot, M.; Pinter-Brown, L.; Rook, A.H.; Porcu, P.; Horwitz, S.M.; Whittaker, S.; Tokura, Y.; Vermeer, M.; Zinzani, P.L.; et al. Mogamulizumab versus vorinostat in previously treated cutaneous T-cell lymphoma (MAVORIC): An international, open-label, randomised, controlled phase 3 trial. Lancet Oncol. 2018, 19, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.K.; Fleming, E.; Gebre, H.; Bangolo, A.I.; Siegel, D.S.; Vesole, D.H.; Biran, N.; Parmar, H.; Phull, P. Real World Outcomes with Talquetamab, a T-Cell-Redirecting GPRC5D Bispecific Antibody: A Single Center Experience for Relapsed/ Refractory Multiple Myeloma (RRMM). Blood 2024, 144, 7047. [Google Scholar] [CrossRef]
- Mateos, M.V.; Weisel, K.; De Stefano, V.; Goldschmidt, H.; Delforge, M.; Mohty, M.; Cavo, M.; Vij, R.; Lindsey-Hill, J.; Dytfeld, D.; et al. LocoMMotion: A prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma. Leukemia 2022, 36, 1371–1376. [Google Scholar] [CrossRef]
- Chari, A.; Minnema, M.C.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodríguez-Otero, P.; Askari, E.; Mateos, M.-V.; Costa, L.J.; Caers, J.; et al. Talquetamab, a T-Cell–Redirecting GPRC5D Bispecific Antibody for Multiple Myeloma. N. Engl. J. Med. 2022, 387, 2232–2244. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Krishnan, A. Talquetamab in multiple myeloma. Haematologica 2024, 109, 718–724. [Google Scholar] [CrossRef]
- Dhody, K.A.-O.; Pourhassan, N.A.-O.; Kazempour, K.A.-O.X.; Green, D.A.-O.; Badri, S.; Mekonnen, H.; Burger, D.A.-O.; Maddon, P.A.-O. PRO 140, a monoclonal antibody targeting CCR5, as a long-acting, single-agent maintenance therapy for HIV-1 infection. HIV Clin. Trials 2018, 19, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Wang, M.; Zhang, Z.; Li, Z.; Ni, D.; Ashton, A.W.; Tang, H.-Y.; Speicher, D.W.; Pestell, R.G. Leronlimab, a humanized monoclonal antibody to CCR5, blocks breast cancer cellular metastasis and enhances cell death induced by DNA damaging chemotherapy. Breast Cancer Res. 2021, 23, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Hamid, R.; Alaziz, M.; Mahal, A.S.; Ashton, A.A.-O.; Halama, N.; Jaeger, D.; Jiao, X.; Pestell, R.A.-O. The Role and Therapeutic Targeting of CCR5 in Breast Cancer. Cells 2023, 12, 2237. [Google Scholar] [CrossRef]
- Basket Study of Leronlimab (PRO 140) in Patients with CCR5+ Locally Advanced or Metastatic Solid Tumours ClinicalTrials.gov Identifier NCT04504942. Available online: https://clinicaltrials.gov/study/NCT04504942?cond=cancer&term=leronlimab&rank=2&tab=history (accessed on 15 August 2024).
- Barnett, A.H. Exenatide. Drugs Today 2005, 41, 563–578. [Google Scholar] [CrossRef]
- Knudsen, L.B.; Lau, J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. 2019, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Kirby, R.S.; Fitzpatrick Jm Fau-Clarke, N.; Clarke, N. Abarelix and other gonadotrophin-releasing hormone antagonists in prostate cancer. BJU Int. 2009, 104, 1580–1584. [Google Scholar] [CrossRef]
- Mariani, P.; Blumberg, J.; Landau, A.; Lebrun-Jezekova, D.; Botton, E.; Beatrix, O.; Mayeur, D.; Herve, R.; Maisonobe, P.; Chauvenet, L. Symptomatic treatment with lanreotide microparticles in inoperable bowel obstruction resulting from peritoneal carcinomatosis: A randomized, double-blind, placebo-controlled phase III study. J. Clin. Oncol. 2012, 30, 4337–4343. [Google Scholar] [CrossRef]
- Cheer, S.M.; Plosker, G.L.; Simpson, D.; Wagstaff, A.J. Goserelin. Drugs 2005, 65, 2639–2655. [Google Scholar] [CrossRef] [PubMed]
- Crees, Z.D.; Stockerl-Goldstein, K.E.; Larson, S.; Illés, Á.; Milone, G.; Martino, M.; Stiff, P.; Sborov, D.W.; Pereira, D.L.; Micallef, I.N.; et al. Motixafortide (BL-8040) and G-CSF Versus Placebo and G-CSF to Mobilize Hematopoietic Stem Cells for Autologous Stem Cell Transplantation in Patients with Multiple Myeloma: The Genesis Trial. Blood 2021, 138, 475. [Google Scholar] [CrossRef]
- Bockorny, B.; Macarulla, T.; Semenisty, V.; Borazanci, E.; Feliu, J.; Ponz-Sarvise, M.; Abad, D.G.; Oberstein, P.; Alistar, A.; Muñoz, A.; et al. Motixafortide and Pembrolizumab Combined to Nanoliposomal Irinotecan, Fluorouracil, and Folinic Acid in Metastatic Pancreatic Cancer: The COMBAT/KEYNOTE-202 Trial. Clin. Cancer Res. 2021, 27, 5020–5027. [Google Scholar] [CrossRef] [PubMed]
- Manji, G.A.; May, M.S.; Pellicciotta, I.; Sta Ana, S.; Sender, N.; Pan, S.M.; Ross, I.; Hu, J.; Shi, Q.; Raufi, A.G. CheMo4METPANC: A phase 2 study with combination chemotherapy (gemcitabine and nab-paclitaxel), chemokine (C-X-C) Motif receptor 4 inhibitor (motixafortide), and immune checkpoint blockade (cemiplimab) in metastatic treatment-naïve pancreas adenocarcinoma. J. Clin. Oncol. 2023, 41, TPS4200. [Google Scholar] [CrossRef]
- Huang, E.H.; Singh, B.; Cristofanilli, M.; Gelovani, J.; Wei, C.; Vincent, L.; Cook, K.R.; Lucci, A. A CXCR4 antagonist CTCE-9908 inhibits primary tumor growth and metastasis of breast cancer. J. Surg. Res. 2008, 155, 231–236. [Google Scholar] [CrossRef]
- Hotte, S.; Hirte, H.; Iacobucci, A.; Wong, D.; Cantin, L.; Korz, W.; Miller, W. Phase I/II study of CTCE-9908, a novel anticancer agent that inhibits CXCR4, in patients with advanced solid cancers. Mol. Cancer Ther. 2007, 6, A153. [Google Scholar]
- Domanska, U.M.; Kruizinga, R.C.; Nagengast, W.B.; Timmer-Bosscha, H.; Huls, G.; de Vries, E.G.E.; Walenkamp, A.M.E. A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur. J. Cancer 2013, 49, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Phase I/II Study of PTX-9908 Injection As an Inhibitor of Cancer Progression in Patients with Non-resectable Hepatocellular Carcinoma Following Transarterial Chemoembolization Treatment. 2019. Available online: https://clinicaltrials.gov/study/NCT03812874 (accessed on 27 September 2024).
- Jin, B.A.-O.; Odongo, S.; Radwanska, M.A.-O.; Magez, S.A.-O. NANOBODIES®: A Review of Diagnostic and Therapeutic Applications. Int. J. Mol. Sci. 2023, 24, 5994. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Qin, X.; Mi, L.-Z. Nanobodies: From structure to applications in non-injectable and bispecific biotherapeutic development. Nanoscale 2022, 14, 7110–7122. [Google Scholar] [CrossRef]
- Mustafa, M.I.; Mohammed, A. Nanobodies: A Game-Changer in Cell-Mediated Immunotherapy for Cancer. SLAS Discov. Adv. Sci. Drug Discov. 2023, 28, 358–364. [Google Scholar] [CrossRef]
- Hollifield, A.L.; Arnall, J.R.; Moore, D.C. Caplacizumab: An anti-von Willebrand factor antibody for the treatment of thrombotic thrombocytopenic purpura. Am. J. Health Pharm. 2020, 77, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, F.; Safarzadeh Kozani, P.; Rahbarizadeh, F. T-cells engineered with a novel VHH-based chimeric antigen receptor against CD19 exhibit comparable tumoricidal efficacy to their FMC63-based counterparts. Front. Immunol. 2023, 14, 1063838. [Google Scholar] [CrossRef] [PubMed]
- Natrajan, K.A.-O.; Kaushal, M.A.-O.X.; George, B.A.-O.; Kanapuru, B.A.-O.; Theoret, M.A.-O. FDA Approval Summary: Ciltacabtagene Autoleucel for Relapsed or Refractory Multiple Myeloma. Clin. Cancer Res. 2024, 30, 2865–2871. [Google Scholar] [CrossRef]
- Jähnichen, S.; Blanchetot, C.; Maussang, D.; Gonzalez-Pajuelo, M.; Chow, K.Y.; Bosch, L.; De Vrieze, S.; Serruys, B.; Ulrichts, H.; Vandevelde, W.; et al. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc. Natl. Acad. Sci. USA 2010, 107, 20565–20570. [Google Scholar] [CrossRef] [PubMed]
- Niquille, D.A.-O.; Fitzgerald, K.A.-O.X.; Gera, N.A.-O. Biparatopic antibodies: Therapeutic applications and prospects. mAbs 2024, 16, 2310890. [Google Scholar] [CrossRef] [PubMed]
- Steeland, S.; Vandenbroucke, R.E.; Libert, C. Nanobodies as therapeutics: Big opportunities for small antibodies. Drug Discov. Today 2016, 21, 1076–1113. [Google Scholar] [CrossRef] [PubMed]
- A Phase I, Single-Centre, Randomised, Single-Blinded, Placebo-Controlled Single Ascending Dose Study, Followed by an Open-label Extension, Evaluating the Safety, Pharmacokinetics, Pharmacodynamics and Efficacy of ALX-0651, Administered Intravenously to Healthy Male Volunteers. 2011. Available online: https://clinicaltrials.gov/study/NCT01374503 (accessed on 4 October 2024).
- Dolgin, E. First GPCR-directed antibody passes approval milestone. Nat. Rev. Drug Discov. 2018, 17, 457–459. [Google Scholar] [CrossRef]
- Bradley, M.E.; Dombrecht, B.; Manini, J.; Willis, J.; Vlerick, D.; De Taeye, S.; Van den Heede, K.; Roobrouck, A.; Grot, E.; Kent, T.C.; et al. Potent and efficacious inhibition of CXCR2 signaling by biparatopic nanobodies combining two distinct modes of action. Mol. Pharmacol. 2015, 87, 251–262. [Google Scholar] [CrossRef]
- Low, S.A.-O.; Wu, H.; Jerath, K.; Tibolla, A.; Fogal, B.A.-O.; Conrad, R.; MacDougall, M.; Kerr, S.; Berger, V.A.-O.; Dave, R.; et al. VHH antibody targeting the chemokine receptor CX3CR1 inhibits progression of atherosclerosis. mAbs 2020, 12, 1709322. [Google Scholar] [CrossRef]
- Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of Single Rising Doses of BI 655088 Administered by Intravenous Infusion in Healthy Male Subjects (Single-blind, Partially Randomised Within Dose Groups, Placebo-controlled, Parallel Group Design). Available online: https://clinicaltrials.gov/study/NCT02696616 (accessed on 30 September 2024).
- Heukers, R.; De Groof, T.W.M.; Smit, M.J. Nanobodies detecting and modulating GPCRs outside in and inside out. Curr. Opin. Cell Biol. 2019, 57, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liao, Z.-X. Research progress of microrobots in tumor drug delivery. Food Med. Homol. 2024, 1, 9420025. [Google Scholar] [CrossRef]
Receptor | Metastatic Cancer | Reference |
---|---|---|
5-HT1A | Prostate | [22] |
5-HT1D | Colorectal | [23] |
5-HT2B | Colorectal | [24] |
5-HT4 | Prostate | [25] |
5-HT7 | Breast, Lung | [26,27] |
A2BR | Breast, Colorectal, Lung, Melanoma | [28,29] |
A3R | Breast, Colorectal | [30] |
ACKR2 | Breast, Lung | [31,32] |
ADGRE1 | Colorectal | [33] |
ADGRF5 | Breast, Colorectal | [34,35] |
ADGRG1 | Breast | [36] |
ADRA2A | Breast | [37] |
ADRA2C | Breast | [37] |
ADRB2 | Breast, Colorectal | [37,38] |
ADRB3 | Lung | [39] |
APNLR | Breast, Lung, Prostate, Melanoma | [40,41,42] |
AVPR1A | Prostate | [43] |
C3AR1 | Breast, Melanoma | [44,45] |
C5AR1 | Breast, Colorectal, Melanoma, | [45,46,47] |
CASR | Breast, Prostate | [48] |
CB2 | Breast, Lung, Prostate | [49,50] |
CCKAR | Lung | [51] |
CCR1 | Breast, Colorectal, Lung, Melanoma, Prostate | [52,53,54] |
CCR2 | Breast, Colorectal, Lung, Melanoma, Prostate | [55,56] |
CCR3 | Breast, Colorectal, Melanoma, Prostate | [57,58,59,60] |
CCR4 | Breast, Colorectal, Melanoma, Prostate | [61,62,63] |
CCR5 | Breast, Colorectal, Lung, Melanoma, Prostate | [64,65] |
CCR6 | Breast, Colorectal, Lung, Melanoma, Prostate | [66,67,68,69] |
CCR7 | Breast, Colorectal, Lung, Melanoma, Prostate | [66,70] |
CCR8 | Breast, Colorectal, Lung, Melanoma | [66,71] |
CCR9 | Breast, Lung, Melanoma, Prostate | [66,72] |
CCR10 | Breast, Lung, Melanoma | [73,74] |
CCRL2 | Colorectal, Prostate | [75,76] |
CRHR1 | Prostate | [77] |
CX3CR1 | Breast, Lung, Prostate | [78,79,80] |
CXCR1 | Breast, Colorectal, Lung, Melanoma, Prostate | [81,82,83] |
CXCR2 | Breast, Colorectal, Lung, Melanoma, Prostate | [81,83,84] |
CXCR3 | Breast, Colorectal, Lung, Melanoma, Prostate | [85,86,87] |
CXCR4 | Breast, Colorectal, Lung, Melanoma, Prostate | [88,89] |
CXCR5 | Breast, Lung, Melanoma, Prostate | [90] |
CXCR6 | Breast, Lung, Melanoma, Prostate | [91,92,93] |
CXCR7 | Colorectal, Lung, Melanoma, Prostate | [94,95,96,97] |
EDNRA | Colorectal | [98] |
EDNRB | Breast, Melanoma | [99,100] |
F2R | Breast, Colorectal Melanoma, Prostate | [101,102,103] |
FFAR1 | Breast, Prostate | [104,105] |
FPR1 | Breast, Colorectal, Lung, Melanoma | [106,107,108,109] |
FPR2 | Breast, Colorectal | [106,110] |
FSH | Breast, Lung, Prostate | [111,112] |
FZD1 | Breast | [113] |
FZD2 | Breast, Colorectal, Lung | [114] |
FZD5 | Prostate | [115] |
FZD7 | Breast, Colorectal, Melanoma, | [116,117,118] |
FZD8 | Breast, Colorectal, Prostate | [119,120,121] |
GABBR2 | Breast | [106] |
GALR1 | Colorectal | [122] |
GNRHR | Breast, Colorectal, Prostate | [123,124] |
GPER | Breast | [125] |
GPR107 | Prostate | [126] |
GPR132 | Breast | [127] |
GPR141 | Breast | [128] |
GPR15 | Colorectal | [129] |
GPR161 | Breast | [130] |
GPR171 | Breast, Lung | [131,132] |
GPR176 | Colorectal | [133] |
GPR18 | Melanoma | [134] |
GPR19 | Breast, Melanoma | [135,136] |
GPR31 | Colorectal | [137] |
GPR34 | Colorectal | [138] |
GPR35 | Colorectal | [139] |
GPR37 | Lung | [140] |
GPR39 | Breast, Prostate | [141,142] |
GPR4 | Colorectal, Melanoma | [143,144] |
GPR50 | Breast | [145] |
GPR55 | Breast | [146] |
GPR65 | Colorectal | [147] |
GPR75 | Prostate | [148] |
GPR78 | Lung | [149] |
GPRC6A | Breast, Prostate | [150,151] |
GRM3 | Breast | [152] |
GRPR | Colorectal | [153] |
GSHR | Lung, Melanoma, Prostate | [154,155,156] |
HCAR1 | Breast | [157] |
HRH1 | Breast, | [158] |
HRH3 | Breast, Lung | [159,160] |
HTR2B | Colorectal | [161] |
LGR4 | Breast, Lung, Prostate | [162,163,164] |
LGR6 | Breast, Colorectal, Lung | [165,166,167] |
LH | Breast, Colorectal | [168,169] |
LPAR1 | Breast, Lung, Melanoma | [170,171,172] |
LPAR2 | Breast | [173] |
LPAR3 | Breast | [174] |
LPAR5 | Breast | [175] |
LPAR6 | Breast | [176] |
LTB4R | Breast | [177] |
M2R | Colorectal, Lung | [178,179] |
M3R | Lung | [180] |
MRGD | Lung | [181] |
NMUR1 | Colorectal | [182] |
NMUR2 | Colorectal | [183] |
NPY1R | Breast, Colorectal, Melanoma, Prostate | [184] |
NPY5R | Breast | [185] |
NTSR1 | Breast, Lung | [186,187] |
OPKR1 | Breast | [188] |
OPN3 | Lung | [189] |
OXER1 | Breast, Prostate | [150,190] |
OXTR | Breast, Melanoma | [191,192] |
P2YR1 | Lung | [193] |
P2YR11 | Breast | [194] |
P2YR6 | Lung | [195] |
PROK1 | Colorectal | [196] |
PROK2 | Colorectal | [197] |
PTAFR | Breast | [198] |
PTGER1 | Colorectal | [199] |
PTGER2 | Prostate | [200] |
PTH1R | Breast, Lung | [201,202] |
QRFPR | Prostate | [203] |
RXFP1 | Breast | [204] |
S1PR1 | Breast, Colorectal | [205,206] |
S1PR3 | Breast, Colorectal | [206,207] |
SUNCR1 | Lung | [208] |
TACR1 | Breast | [209] |
TACR2 | Lung | [210] |
TBXA2R | Breast, Colorectal, Lung, Melanoma, Prostate | [211] |
XCR1 | Breast, Lung | [212,213] |
Name | Target Receptor | Drug Type | Status | Mechanism | Type of Cancer | Reference |
---|---|---|---|---|---|---|
Mogamulizumab | CCR4 | Monoclonal Antibody | Approved | Antagonist | Mycosis fungoides/Sezary syndrome | [279] |
Talquetamab | GPRC5D | Bispecific Antibody | Approved | Agonist | Multiple Myeloma | [280] |
Motixafortide | CXCR4 | Peptide | Approved | Antagonist | Hematopoietic Stem Cell Mobilisation in Multiple Myeloma | [281] |
Goserlin | GNRHR | Synthetic Peptide | Approved | Agonist | Advanced Prostate/Breast Cancer | [282] |
Lanreotide | SSR2 | Synthetic Peptide | Approved | Agonist | Metastatic/Advanced Pancreatic Neuroendocrine Tumours | [283] |
Abralelix | GNRHR | Synthetic Peptide | Approved | Antagonist | Advanced Prostate Cancer | [284] |
Leuprolide | GNRHR | Synthetic Peptide | Approved | Agonist | Advanced Prostate Cancer | [285] |
Degarelix | GNRHR | Synthetic Peptide | Approved | Antagonist | Advanced Prostate Cancer | [286] |
Histrelin | GNRHR | Synthetic Peptide | Approved | Agonist | Advanced Prostate Cancer | [287] |
Triptorelin | GNRHR | Synthetic Peptide | Approved | Agonist | Advanced Prostate Cancer | [288] |
Vismodegib | SMO | Small Molecule | Approved | Antagonist | Metastatic/Advanced Basal Cell Carcinoma | [289,290] |
Sonidegib | SMO | Small Molecule | Approved | Antagonist | Locally Advanced Basal Cell Carcinoma | [291] |
Plerixafor | CXCR4 | Small Molecule | Approved | Antagonist | Hematopoietic Stem Cell Mobilisation in Multiple Myeloma/Non-Hodgkins Lymphoma | [292,293] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McBrien, C.; O’Connell, D.J. The Use of Biologics for Targeting GPCRs in Metastatic Cancers. BioTech 2025, 14, 7. https://doi.org/10.3390/biotech14010007
McBrien C, O’Connell DJ. The Use of Biologics for Targeting GPCRs in Metastatic Cancers. BioTech. 2025; 14(1):7. https://doi.org/10.3390/biotech14010007
Chicago/Turabian StyleMcBrien, Cian, and David J. O’Connell. 2025. "The Use of Biologics for Targeting GPCRs in Metastatic Cancers" BioTech 14, no. 1: 7. https://doi.org/10.3390/biotech14010007
APA StyleMcBrien, C., & O’Connell, D. J. (2025). The Use of Biologics for Targeting GPCRs in Metastatic Cancers. BioTech, 14(1), 7. https://doi.org/10.3390/biotech14010007