Trials and Tribulations in the Frontline Treatment of Older Adults with Acute Myeloid Leukemia
Abstract
:1. Introduction
2. AML in “Older” Adults
2.1. Biology of Disease
2.1.1. Secondary AML
2.1.2. Age
2.2. Comorbidities
2.3. Geriatric Assessment
3. Initial Treatment
3.1. “Fit” Induction Therapy
Study/Author | Phase/Population | Median Age (Years) [Range] | Study Medication | CR | DFS/EFS/PFS/RFS | OS |
---|---|---|---|---|---|---|
Anthracycline + Cytarabine-Based Regimens | ||||||
ECOG E3993; Rowe et al. [40] | III, 348 patients (≥55 years old) with newly diagnosed AML fit to receive 7 + 3 induction chemotherapy | Daunorubicin 67 (56–82) Mitoxantrone 69 (56–84) Idarubicin 67.5 (56–86) | Daunorubicin 45 mg/m2 vs. Mitoxantrone 12 mg/m2 vs. Idarubicin 12 mg/m2.All on days 1–3 All received cytarabine 100 mg/m2 cont. on days 1–7. | All: CR 42% Daunorubicin CR 40% Mitoxantrone CR 46% Idarubicin CR 43% | All: Median DFS 7 mo Daunorubicin Median DFS 5.7 mo Mitoxantrone Median DFS 7.1 mo Idarubicin Median DFS 9.4 mo | All: mOS 7.5 mo Daunorubicin mOS 7.7 mo Mitoxantrone mOS 7.5 mo Idarubicin mOS 7.2 mo |
JALSG AML201; Ohtake et al. [41] | III, 1057 patients (age 15–64 years old) with de novo AML fit to receive 7 + 3 induction chemotherapy | All: 47 (15–64) Daunorubicin 47 (15–64) Idarubicin 47 (15–64) | Daunorubicin 50 mg/m2 days 1–5 vs. Idarubicin 12 mg/m2 days 1–3. All received cytarabine 100 mg/m2 cont. on days 1–7. | All: CR 77.9% Daunorubicin CR 77.5% Idarubicin CR 78.2% | Daunorubicin 5-yr predicted RFS 41% Idarubicin5-yr predicted RFS 41% | Daunorubicin5-yr predicted OS 48% Idarubicin 5-yr predicted OS 48% |
HOVON-43-AMLSAKK 30/01; Lowenberg et al. [25] | III, 813 patients (≥60 years old) with newly diagnosed AML or RAEB with IPS of 1.5 or greater fit to receive 7+3 induction chemotherapy | 67 (60–84) 26% > 70 years | Daunorubicin 45 mg/m2 vs. 90 mg/m2 on days 1–3.All received cytarabine 200 mg/m2 cont. on days 1–7. | 1st cycle CR 35% vs. 52% (p < 0.001) After consolidation CR 54% vs. 64% OR 1.59 [1.18–2.15] (p = 0.002) 60–65 yr old CR51% vs. 73% OR 2.64 [1.63–4.29](p = 0.02) | All EFS 17% vs. 20% (p = 0.12) 60–65 yr old EFS 14% vs. 29% OR 0.68 [0.53–0.87] (p = 0.02) All DFS 29% vs. 30% (p = 0.77) 60–65 yr old DFS 27% vs. 39% (p = 0.43) | All OS 26% vs. 31% (p = 0.16) 60–65 yr old OS 23% vs. 38% OR 0.65 [0.50-0.84] (p = 0.007) |
NCRI-AML17; Burnett et al. [42] | III, 1206 patients (≥16 years old) with newly diagnosed AML or high-risk MDS (>10% blasts) fit to receive 7 + 3 induction chemotherapy | 53 (16–72) 26% ≥ 60 years | Daunorubicin: 60 mg/m2 vs. 90 mg/m2 on days 1–3. All patients received cytarabine 100 mg/m2 q12h on days 1–10. All patients received a second induction containing daunorubicin 50 mg/m2 except subset of adverse-risk pts who received FLAG-IDA. | CR + CRi 82% 84% vs. 81% (p = 0.2) 1st cycle CR + CRi 66% vs. 68% (p = 0.4) CR 75% vs. 73% (p = 0.6) | 2-yr RFS 48% vs. 51% (p = 0.7) | 2-yr OS 60% vs. 59% (p = 0.15) |
NCT01145846;Lee et al. [43] | III, 209 patients (15–65 years old) with newly diagnosed AML fit to receive 7 + 3 induction chemotherapy | Overall 49 (15–65) Daunorubicin 48.5 (15–65) Idarubicin 49 (15–65) | Daunorubicin 90 mg/m2 vs. Idarubicin 12 mg/m2All on days 1–3. All received cytarabine 200 mg/m2 cont. on days 1–7. | OverallCR Total 77.6% 74.7% vs. 80.5% (p = 0.224) CR after 1 induction course Total 69.2% 66.7% vs. 71.1% (p = 0.403) | 4-yr EFS 48.2% 50.8% vs. 45.5% (p = 0.772) | 4-yr OS 52.8% 54.7% vs. 51.1% (p = 0.756) |
ALFA-9801; Pautas et al. [44] | III, 468 adult patients (50–70 years old) with newly diagnosed AML (no prior MPN or MDS) fit to receive 7 + 3 induction chemotherapy | Overall 60 (NR) Idarubicin 3d 59.8 (NR) Idarubicin 4d 60 (NR) Daunorubicin 59.7 (NR) | Idarubicin 12 mg/m2 on days 1–3 vs. 12 mg/m2 on days 1–4 vs. Daunorubicin 80 mg/m2 on days 1–3. All received cytarabine 200 mg/m2 cont. on days 1–7. | CR All 77% 83% vs. 78% vs. 70% OR 1.75 (p = 0.04) p = 0.007 for Idarubicin 3d vs. Daunorubicin | 2-yr EFS 23.5% 4-yr EFS 18% EFS did not differ between 3 arms (p = 0.19) | Median OS 17 mo 2-yr OS 38% 4-yr OS 26.5% OS did not differ between 3 arms (p = 0.19) |
ALFA-0701; Castaigne et al. [45] | III, 278 adult patients (50–70 years old) with de novo AML fit to receive 7 + 3 induction chemotherapy | 62.2 (58.5–66.3) Gemtuzumab 62.8 (59.3–66.8) Control 61.7 (57.4–65.6) | Gemtuzumab ozogamicin 3 mg/m2 [max 5 mg] days 1, 4, 7 for study arm. All received daunorubicin 60 mg/m2 on days 1–3 and cytarabine 200 mg/m2 cont. on days 1–7. | CR + CRp 81% vs. 75% (p = 0.25) CR 73% vs. 72% | 2-yr EFS 40.8% vs. 17.1% HR 0.58 [0.43–0.78] (p = 0.0003) 2-yr RFS 50.3% vs. 22.7% HR 0.52 [0.36–0.75] (p = 0.0003) | 2-yr OS 53.2% vs. 41.9% HR 0.69 [0.49–0.98] (p = 0.0368) |
Hills et al. [46] | Meta-analysis, 3325 patients (≥15 years old) with newly diagnosed AML or high-risk MDS who were enrolled in randomized clinical trials | 58 (15–84) | Gemtuzumab ozogamicin (varying dose schedules) + induction chemotherapy vs. induction chemotherapy alone. | CR + CRp OR 0.91 [0.77–1.07] (p = 0.3) | RFS OR 0.84 [0.76–0.92] (p = 0.0003) | OS Median (All): 22.5 mo OR 0.85 [0.77–0.94] (p = 0.002) Fav Cyto OR 0.47 [0.31–0.74] (p = 0.0006) Intermed Cyto OR 0.84 [0.75–0.95] (p = 0.005) |
ALFA-0701; Lambert et al. [47] | III, 271 adult patients (50–70 years old) with de novo AML fit to receive 7 + 3 induction chemotherapy in modified ITT analysis | 62 (50–70) Gemtuzumab 62 (50–70) Control 61 (50–70) | Same as above. | CR + CRp 81.5% vs. 74.1% (p = 0.15) CR 70.4% vs. 69.9% | Median EFS 17.3 mo vs. 9.5 mo HR 0.56 [0.42–0.76] (p = 0.0002) Median RFS 28.0 mo vs. 11.4 mo HR 0.53 [0.36–0.76] (p = 0.0006) | Median OS 27.5 mo vs. 21.8 mo HR 0.81 [0.60–1.09] (p = 0.16) |
RATIFY; Stone et al. [48] | III, 717 adult patients (age 18–59 years old) with newly diagnosed, FLT3-mutated AML fit to receive 7 + 3 induction chemotherapy | 47.9 (18–60.9) Midostaurin 47.1 (19–59.8) Placebo 48.6 (18–60.9) | Midostaurin 50 mg PO BID vs. placebo PO BID on days 8–21 of induction and consolidation cycles. All patients received daunorubicin 60 mg/m2 on days 1–3 and cytarabine 200 mg/m2 on days 1–7. | CR 59% vs. 54% (p = 0.15) | Median EFS 8.2 mo vs. 3.0 mo HR 0.78 [0.66–0.93] (p = 0.002) 4-yr EFS 28.2% vs. 20.6% Median DFS 26.7 mo vs. 15.5 mo (p = 0.01) | Median OS 74.7 mo vs. 25.6 mo HR 0.78 [0.63–0.96] (p = 0.009) 4-yr OS 51.4% vs. 44.3% |
NCT00788892; Lancet et al. [49] | II, adult patients (60–75 years old) with newly diagnosed AML fit to receive 7 + 3 induction chemotherapy | CPX-351: 68 (60–77) 7 + 3: 68 (61–77) | CPX-351 on days 1, 3, 5 of initial induction vs daunorubicin 60 mg/m2 on days 1–3 and cytarabine 100 mg/m2 on days 1–7 of induction cycle. Consolidation cycles with CPX-351 or 5 + 2 or IDAC. | CR + CRi All 66.7% vs. 51.2% sAML 57.9% vs. 31.6% CR All 48.8% vs. 48.8% sAML 36.7% vs. 31.6% | Median EFS All 6.5 mo vs. 2.0 mo (p = 0.36) sAML 4.5 mo vs. 1.3 mo HR 0.59 (p = 0.08) | Median OS All 14.7 mo vs. 12.9 mo (p = 0.61) sAML 12.1 mo vs. 6.1 mo HR 0.46 (p = 0.01) |
NCT01696084; Lancet et al. [50] | III, 309 adult patients (60–75 years old) with newly diagnosed “high-risk”/sAML fit to receive 7 + 3 induction chemotherapy | CPX-351 67.8 (NR) 7 + 3 67.7 (NR) | Same as above. | CR + CRi 47.7% vs. 33.3% (p = 0.016) CR 37.3% vs. 25.6% (p = 0.04) | Median EFS 2.53 mo vs. 1.31 mo HR 0.74 [0.58–0.96] (p = 0.021) | Median OS 9.56 mo vs. 5.95 mo HR 0.69 [0.52–0.90] (p = 0.003) 1-yr OS 41.5% vs. 27.6% 2-yr OS 31.1% vs. 12.3% |
Benitez et al. [51] | Retrospective, 169 adult patients (≥18 years old) with newly diagnosed sAML | CPX-351 67 (31–80) HIDAC-based 67 (27–82) | CPX-351 vs. regimens with purine analog and HIDAC. | CR + CRi 47.9% vs. 62.7% (p = 0.002 for non-inferiority) CR 41.5% vs. 49.3% (p = 0.352) | Median EFS 4.11 mo vs. 5.56 mo (p = 0.48) | Median OS 9.1 mo vs. 9.8 mo (p = 0.88) 30-day mortality 8.5% vs. 1.3% (p = 0.039) |
FOSSIL; Vulaj et al. [52] | Retrospective, 106 adult patients (>18 years old) with treatment-naïve sAML | FLAG 63 (27–82) 7+3 60 (21–76) | FLAG vs. 7 + 3. | CR + CRi 65% vs. 45% (p = 0.071) ORR (CR + CRi + MLFS) 70% vs. 48% (p = 0.043) | Median RFS 4 mo vs. 5 mo (p = 0.101) | Median OS 8.5 mo vs. 9.1 mo (p = 0.798) |
NCT03214562; Lachowiez et al. [53] | Ib/II, cohort of 24 adult patients (>18 years old) with newly diagnosed AML | 44 | FLAG-IDA + Venetoclax. | CR + CRi + CRh 89% | Median EFS Not reached | Median OS Not reached 1-yr OS 92% |
3.2. Hypomethylating Agent (HMA)-Based Regimens
3.2.1. HMA Only
Study/Author | Phase/Population | Median Age (Years) [Range] | Study Medications | CR | DFS/EFS/PFS/RFS | OS |
---|---|---|---|---|---|---|
Hypomethylating Agent (HMA)-Based Regimens | ||||||
AZA-PH-GL-2003; Fenaux et al. [55] | III parallel group study, 113 adult patients (≥18 years old) with newly diagnosed AML (blast count 20–30%) | Azacitidine: 70 (52–80) LDAC: 71 (56–83) BSC only: 70 (56–81) Anthracycline + Cytarabine: 65 (50–76) | 5-Azacitidine 75 mg/m2 on days 1–7 of 28-day cycle vs. CCRs (LDAC, BSC, or Anthracycline + Cytarabine based intensive chemo) | Morphologic CR: 18% vs. 16% (p = 0.80) | Not reported | Median OS: 24.5 mo vs. 14.6 mo HR 0.47 [0.28–0.79] (p = 0.005) 2-yr OS: 50% vs. 16% (p = 0.001) |
AZA-AML-001; Dombret et al. [56] | III parallel group study, 488 adult patients (≥65 years old) with newly diagnosed AML (blast count >30%) | Azacitidine: 75 (64–91) LDAC: 75 (65–88) BSC only: 78 (67–89) Anthracycline + Cytarabine: 60.5 (65–81) | 5-Azacitidine 75 mg/m2 on days 1–7 of 28-day cycle vs. CCRs (LDAC, BSC, or Anthracycline + Cytarabine based intensive chemo) | CR + CRi: 27.8% vs. 25.1 (all CCRs) (p = 0.5384) CR: 19.5% vs. 21.9% (p = 0.5766) | Median EFS: 6.7 mo vs. 4.6 mo (p = 0.1495) Median RFS: 9.3 mo vs. 10.5 mo (p = 0.5832) | Median OS: 10.4 mo vs. 6.5 mo (p = 0.1009) Median OS (subset censored at time of subsequent AML therapy): 12.1 mo vs. 6.9 mo HR 0.76 [0.60–0.96] (p = 0.019) |
NCT02203773, Dinardo et al. [58] | Ib, 57 adult patients (≥65 years old) with newly diagnosed AML who were ineligible for standard induction chemotherapy | 75 (69–80) | Venetoclax (various doses) + HMA (Decitabine 20 mg/m2 on days 1–5 of 28-day cycle OR 5-Azacitidine 75 mg/m2 on days 1–7 of 28-day cycle) | CR + CRi: 61% CR: 25% | Not reported | Median OS: 12.3 mo |
NCT02203773, Dinardo et al. [59] | Ib, 145 adult patients (≥60 years old) with newly diagnosed AML who were ineligible for standard induction chemotherapy | 74 (65–86) | Same as above | CR + CRi: 67% CR: 37% | Not reported | Median OS: 17.5 mo |
NCT02203773, Pollyea et al. [60] | Ib, cohort of 115 adult patients (≥65 years old) with newly diagnosed AML who were ineligible for standard induction chemotherapy | Ven + AZA: 75 (61–90) Ven + Dec: 72 (65–86) | Venetoclax 400 mg PO daily + HMA (Decitabine 20 mg/m2 on days 1–5 of 28-day cycle OR 5-Azacitidine 75 mg/m2 on days 1–7 of 28-day cycle) | Ven+AZA CR + CRi: 71% CR: 44% Ven+Dec CR + CRi: 74% CR: 55% | Not reported | Ven+AZA Median OS: 16.4 mo Ven+Dec Median OS: 16.2 mo |
VIALE-A; Dinardo et al. [61] | III, 431 adult patients (≥18 years old) with newly diagnosed AML who were ineligible for standard induction chemotherapy | 76 (49–91) AZA + Ven: 76 (49–91) AZA + Placebo: 76 (60–90) | 5-Azacitidine + Venetoclax 400 mg PO daily vs. 5-Azacitidine + Placebo | CR + CRi: 66.4% vs. 28.3% (p < 0.001) CR: 36.7% vs. 17.9% (p < 0.001) | Median EFS: 9.8 mo vs. 7.0 mo HR 0.63 [0.50–0.80] (p < 0.001) | Median OS: 14.7 mo vs. 9.6 mo HR 0.66 [0.52–0.85] (p < 0.001) |
DACO-016; Kantarjian et al. [62] | III, 485 adult patients (≥65 years old) with newly diagnosed AML who were ineligible for standard induction chemotherapy | 73 (64–91) Decitabine: 73 (64–89) BSC: 75 (66–86) LDAC: 73 (64–91) | Decitabine 20 mg/m2 on days 1–5 of 28-day cycle vs. BSC/LDAC | CR + CRp: 17.8% vs. 7.8% OR 2.5 [1.4–4.8] (p = 0.001) CR + CRi + CRp: 27.7% vs. 10.6% CR: 15.7% vs. 7.4% | Not reported | Median OS (planned analysis): 7.7 mo vs. 5.0 mo (p = 0.108) Median OS (unplanned analysis): 7.7 mo vs. 5.0 mo HR 0.82 [0.68–0.99] (p = 0.037) |
NCT03404193; Maiti et al. [63] | II, cohort of 12 adult patients (>60 years old) with newly diagnosed AML | 70 (69–78) | 5-day Decitabine + FLT3 inhibitor + Venetoclax | CR + CRp + CRi: 92% CR: 75% | 18-mo PFS: 59% Median PFS: Not reached | 2-yr OS: 80% Median OS: Not reached |
NCT00492401; Blum et al. [64] | II, adult patients (≥60 years old) with newly diagnosed AML who were ineligible for or refused standard induction chemotherapy | 74 (60–85) | Decitabine 20 mg/m2 on days 1–10 of 28-day cycle | CR: 47% | Median DFS: 46 wks | Median OS: 55 wks |
Ritchie et al. [65] | 52 adult patients (>60 years old, included 2 patients under 60 with numerous comorbidities) with newly diagnosed AML | 75 (45–91) | Decitabine 20 mg/m2 on days 1–10 of 28-day cycle | CR: 40% | Not reported | Median OS: 318 days |
NCT01687400; Welch et al. [66] | II, 116 adult patients with newly diagnosed AML (≥60 years old), relapsed AML (≥18 years old), or transfusion-dependent AMS | 74 (29–88) | 10-day Decitabine | CR + CRi: 34% CR: 13% | Not reported | Median OS: Unfav Risk 11.6 mo Fav/Int Risk 10.0 mo TP53 Mutants 12.7 mo TP53 Wild Type 15.4 mos |
Dinardo et al. [67] | II, cohorts with a total of 85 adult patients (≥60 years old) with newly diagnosed AML or untreated sAML who were ineligible for standard induction chemotherapy | 72 (68–78) | 10-day Decitabine + Venetoclax 400 mg PO daily | CR + CRi: 81% CR: 61% | Not reported | Median OS for newly diagnosed AML: 18.1 mo Median OS for untreated sAML: 7.8 mo |
Maiti et al. [68] | Retrospective propensity-score matched, 170 adult patients with newly diagnosed AML | 10-day Decitabine + Venetoclax: 72 (69–78) Intensive chemotherapy: 73 (67–76) | 10-day Decitabine + Venetoclax 400 mg PO daily vs. intensive chemotherapy containing at least cytarabine ≥ 1 g/m2/d in combination with other agents | CR + CRi: 81% vs. 52% OR 3.78 [1.81–7.88] (p < 0.001) CR: 62% vs. 42% OR 2.21 [1.18–4.16] (p = 0.01) | Median EFS: 9.0 mo vs. 2.3 mo HR 0.47 [0.33–0.67] (p < 0.0001) | Median OS: 12.4 mo vs. 5.0 mo OR 0.48 [0.29–0.79] (p < 0.01) |
Nand et al. [69] | II, 20 adult patients (≥56 years old) with newly diagnosed AML or RAEB-I or RAEB-II MDS | 76 (64–83) | Azacitidine 75 mg/m2 on days 1–7 and Gemtuzumab ozogamicin 3 mg/m2 on day 8 of 28-day cycle + Hydroxyurea (to lower WBC count) | CR + CRi: 70% CR: 55% | Not reported | Median OS: 11 mo |
NCT00658814; Nand et al. [70] | II, 142 adult patients (≥60 years old) with newly diagnosed AML Favorable risk: 60–69 years old or Zubrod PS 0 or 1 (83 pts) Adverse risk: ≥70 years old AND Zubrod PS 2–3 (59 pts) | Favorable Risk 71 (60–88) Adverse Risk 75 (70–87) | Azacitidine 75 mg/m2 on days 1–7 and Gemtuzumab ozogamicin 3 mg/m2 on day 8 of 28-day cycle+ Hydroxyurea (to lower WBC count) | Favorable Risk CR + CRi: 44% CR: 28% Adverse Risk CR + CRi: 35% CR: 20% | Favorable Risk Median RFS: 8.3 mo Adverse Risk Median RFS: 7 mo | Adverse Risk Median OS: 11 mo AdverseRisk Median OS: 11 mo |
NCT02677922; Dinardo et al. [71] | Ib, cohort of 23 adult patients (≥18 years old) with newly-diagnosed, mutant IDH1 AML ineligible for induction chemotherapy | 76 (61–88) 52% ≥75 yrs | 5-AZA 75 mg/m2 on days 1–7 + Ivosidenib 500 mg daily every 28-day cycle | CR + CRh 69.6% CR 60.9% | Median OS Not reached 12-mo OS 82% | |
NCT02677922 (ASH 2019); Dinardo et al. [72] | I/II, cohort of 101 adult patients (≥18 years old) with newly-diagnosed, mutant IDH2 AML ineligible for induction chemotherapy | 74 (62–85) | 5-AZA 75 mg/m2 on days 1–7 + Enasidenib 100 mg daily every 28-day cycle vs. 5-AZA 75 mg/m2 on days 1–7 of 28-day cycle | ORR 68% vs. 42% (p = 0.0155) CR 50% vs. 12% (p = 0.0002) | Not reported | Not reported |
NCT02677922 (ASCO 2020); Dinardo et al. [73] | Updated results from phase I/II study above | 75 (57–85) | Same as above | ORR 71% vs. 42% (p < 0.01) CR 53% vs. 12% (p < 0.01) | Median EFS 17.2 vs. 10.8 mo HR 0.59 [0.30–1.17] (p = 0.13) | Median OS 22 mo [both arms] |
3.2.2. HMA-Venetoclax
3.2.3. HMA-IDH Inhibitors
3.3. Other Treatment Approaches, Including Targeted Onotherapy or Other Combinations
3.3.1. LDAC +/− Glasdegib
Study/Author | Phase/Population | Median Age (Years) [Range] | Study Medications | CR | DFS/EFS/PFS/RFS | OS |
---|---|---|---|---|---|---|
Other Agents | ||||||
EORTC-GIMEMA AML-19; Amadori et al. [81] | III, 237 adult patients (>60 years old) with newly diagnosed AML | Overall: 77 (62–88) GO: 77 (62–88) BSC: 77 (66–88) | GO 6 mg/m2 on day 1, 3 mg/m2 on day 8, followed by 2 mg/m2 monthly (up to 8 months) vs. BSC (Hydroxyurea could be used in BSC arm only) | CR + CRi: 27% CR: 8.1% | Median PFS: 2.8 mo (GO arm only) | Median OS: 4.9 mo vs. 3.6 mo HR 0.69 [0.53–0.90] (p = 0.005) 1-yr OS: 24.3% vs. 9.7% |
NCRI AML-14; Burnett et al. [79] | Cohort of 217 adult patients with newly diagnosed AML or high-risk MDS (>10% BM blasts) who were deemed unfit for intensive chemotherapy by local investigator | 74 (51–90) 4 patients <60 years old and 165 patients >70 years old | LDAC 20 mg BID for 10 days every 28–42 days vs. BSC (Hydroxyurea) Both arms were also randomized to receive or not receive ATRA for 60 days | CR: 18% vs. 1% OR 0.15 [0.06–0.37] (p < 0.00006) | Not reported | Median not reported OR 0.60 [0.44–0.81] (p = 0.0009) |
NCT01546038; Cortes et al. [80] | II, 132 adult patients (≥55 years old) with newly diagnosed AML (116 pts) or high-risk MDS who were ineligible for standard induction chemotherapy | LDAC + Glasdegib: 77 (63–92) LDAC alone: 75 (58–93) | LDAC 20 mg BID for 10 days of every 28-day cycle + Glasdegib 100 mg PO daily vs. LDAC 20 mg BID for 10 days of every 28-day cycle | CR: 17% vs. 1% (p = 0.0142) | Not reported | Median OS: All: 8.8 mo vs. 4.9 mo HR 0.513 [0.394–0.666] (p = 0.0004) AML cohort: 8.3 mo vs. 4.3 mo HR 0.46 [0.35–0.62] (p = 0.0002) |
NCT02287233; Wei et al. [82] | Ib/II, 82 adult patients (≥60 years old) with previously untreated AML who were ineligible for intensive chemotherapy 49% sAML | 74 (63–90) | LDAC 20 mg BID for 10 days + Venetoclax 600 mg PO daily every 28-day cycle | CR + CRi: 54% CR: 26% | Not reported | Median OS: 10.1 mo |
VIALE-C; Wei et al. [83] | III, 211 adult patients (≥18 years old) with newly diagnosed AML who were ineligible for intensive chemotherapy with 2:1 randomization sAML: 41% vs. 34% | 76 (36–93) Venetoclax arm: 76 (36–93) Placebo arm:76 (41–88) | LDAC 20 mg BID for 10 days + Venetoclax 600 mg PO daily every 28-day cycle vs. LDAC 20 mg BID for 10 days + Placebo | CR + CRi: 48% vs. 13% (p < 0.001) CR + CRh: 47% vs. 15% (p < 0.001) CR: 27% vs. 7% (p < 0.001) | Median EFS: 4.7 mo vs. 2.0 mo (p = 0.002) | Pre-planned Median OS analysis: 7.2 mo vs. 4.1 mo HR 0.67 [0.47–0.96] (p = 0.03) Additional 6-mo follow-up Median OS analysis: 8.4 mo vs. 4.1 mo HR 0.70 [0.50–0.99] (p = 0.04) |
Scappaticci et al. [84] | Retrospective case-control study, adult patients (≥60 years old) with newly diagnosed AML who were ineligible for standard induction chemotherapy | Clofarabine: 72.7 (60.7–80.9) FLAG: 70.2 (60.1–83.0) | Clofarabine vs. FLAG | CR + CRi: 65.6% vs. 37.5% (p = 0.045) CR: 56.3% vs. 31.3% (p = 0.077) | Median EFS: 7.0 mo vs. 2.8 mo (p = 0.110) | Median OS: 7.9 mo vs. 2.8 mo (p = 0.085) |
3.3.2. Venetoclax +/− LDAC
3.3.3. GO +/− HMA
4. Consolidation Treatment
4.1. Chemotherapy
Study/Author | Phase/Population | Median Age (Years) [Range] | Medications | CR + CRi/CR | DFS/EFS/PFS/RFS | OS |
---|---|---|---|---|---|---|
CALGB-8525; Mayer et al. [10] | III, 1088 patients (≥16 years old) with newly diagnosed primary AML who received intensive induction chemotherapy 596 adult patients in CR went on to be randomized to one of three post-remission cytarabine doses | 52 (16–86) 32% patients were >60 | All patients received induction with 7-days of continuous cytarabine 200 mg/m2 infusion and 3-days of bolus daunorubicin (45 mg/m2 for ≤60 years old and 30 mg/m2 for >60 years old) Patients in CR after induction were randomized to one of three Cytarabine regimens (four 28-day cycles): (1) 100 mg/m2 continuous infusion for 5 days (2) 400 mg/m2 continuous infusion for 5 days (3) 3 g/m2 over 3h q12h on days 1,3,5 | After Induction CR <40 yrs: 75% 40–60 yrs: 68>60 yrs: 47% | 4-yr DFS (pts who received consolidation) All: 21% vs. 25% vs. 39% (p = 0.003) Stratified by age <40 yrs: 32% 40–60 yrs: 29% >60 yrs: 14% (p < 0.001) Over 60 yrs (n = 129): 16% or less for all three doses (p = 0.19) | 4-yr OS (entire study) Stratified by Age: <40 yrs: 38% 40–60 yrs: 27% >60 yrs: 9% (p < 0.001) 4-yr OS (pts who received consolidation) All: 31% vs. 35% vs. 46% (p = 0.04) HR 0.74 [0.57–0.96] (for 3 g/m2 vs. 100 mg/m2) HR 0.78 [0.61–1.00] (for 400 mg/m2 vs. 100 mg/m2) |
Sperr et al. [67] | 79 adult patients (≥60 years old) with de novo AML of whom 49 patients had CR following intensive induction chemotherapy at a single institution | 70 (60–89) | Cytarabine 2 g/m2 over 3 h q12 h on days 1, 3, 5 every 28-days for 4 cycles | CR (after induction) 62% Median Continuous CR (CCR) 15.9 mo 5-yr CCR 30% | Median DFS 15.5 mo 5-yr DFS 22% | Median OS (all pts) 10.6 mo 5-yr OS (all pts) 18% Median OS (consolidation pts) 31.8 mo 5-yr OS (consolidation pts) 34% |
Fukushima et al. [75] | 26 adult patients (≥18 years old) with newly diagnosed AML 21 of these patients were randomized to HIDAC or modified IDAC (mIDAC) | HIDAC Arm 48 (26–43) mIDAC Arm 50 (20–64) | Multiagent chemotherapy including remission-induction, consolidation, and intensification regimens containing two cycles of either: HIDAC 2 g/m2 q12h on days 1–5 or mIDAC 1 g/m2 q12h on days 1–5 | CR 84.6% | 4-yr RFS 49% vs. 56% (p = 0.86) | Not reported |
AMLSG 07–04; Jaramillo et al. [68] | II/III, 568 adult patients (18–60 years old) with newly diagnosed AML in CR cohorts after induction with ICE chemotherapy ± ATRA | German Intergroup Arm 41.6 (19–60) HIDAC 123 Arm 47.7 (18–61) HIDAC 135 Arm 47.6 (18–61) | HIDAC 3 g/m2 q12 h on days 1–3 with pegfilgrastim vs. days 1, 3, 5 with or without pegfilgrastim (Standard German Intergroup Arm) | Not applicable | 2-yr RFS 50% vs. 51% 4-yr RFS 41% vs. 46% 6-yr RFS 40% vs. 44% (p = 0.48) | 2-yr OS 75% vs. 74% 4-yr OS62% vs. 64% 6-yr OS 60% vs. 59% (p = 0.90) |
4.2. Hematopoietic Stem Cell Transplantation
5. Maintenance Treatment
Study/Author | Phase/Population | Median Age (Years) [Range] | Medications | DFS/EFS/PFS/RFS | OS |
---|---|---|---|---|---|
HOVON97; Huls et al. [112] | III, 116 adult patients (≥60 years old) with newly diagnosed AML or MDS-RAEB in CR/CRi after at least 2 cycles of intensive chemotherapy | 69 (60–81) | 5-AZA SC 50 mg/m2 on days 1–5 of 28-day cycle (max 12 cycles) vs. observation | Median DFS 15.9 mo vs. 10.3 mo HR 0.62 [0.41–0.95] (p = 0.026) 12-mo DFS 64% vs. 42% (p = 0.04) | 12-mo OS 84% vs. 70% (p = 0.69) HR 0.91 [0.58–1.44] (p = 0.69) |
QUAZAR AML-001; Wei et al. [114] | III, 472 adult patients (≥55 years old) with AML in CR/CRi after induction chemotherapy with or without consolidation and were not being evaluated for allo-SCT | 68 (55–86) | CC-486 (oral form of azacitidine) 300 mg PO vs. placebo PO daily for days 1–14 of 28-day cycle | Median RFS 10.2 mo vs. 4.8 mo (p < 0.001) | Median OS 24.7 mo vs. 14.8 mo (p < 0.001) |
NCT00887068; Oran et al. [113] | I/II, 187 adult patients (18–75 years old) with AML/MDS in CR with “high-risk features” between 42–100 days after allo-SCT | AZA arm: 57 (19–72) Obs arm: 57.5 (20–75) | SC 5-AZA 32 mg/m2 on days 1–5 vs. of 28-day cycle (max 12 cycles) vs. observation | Median RFS 2.07 yr vs. 1.28 yr (p = 0.43) HR 0.73 [0.49–1.1] (p = 0.14) | Median OS 2.52 yr vs. 2.56 yr (p = 0.85) HR 0.84 [0.55–1.29] (p = 0.43) |
Reville et al. [115] | II, 15 adult patients (≥18 years old) with “high-risk” AML in CR/CRi/PR who were not being considered for allo-SCT | 56(31–71) | Nivolumab 3 mg/kg IV q2w for 6 cycles then q4w for cycles 7–12, then q3mo after cycle 12 | Median RFS 8.48 mo 6-mo RFS 57.1% | Median OS Not reached |
6. Measurable Residual Disease (MRD)
7. Supportive Care
Role of Integrated Palliative Care
8. Future Directions
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NCCN. Clinical Practice Guidelines in Oncology (NCCN Guidelines): Acute Myeloid Leukemia; National Comprehensive Cancer Network: Fort Washington, PA, USA, 2021. [Google Scholar]
- Sekeres, M.A.; Guyatt, G.; Abel, G.; Alibhai, S.; Altman, J.K.; Buckstein, R.; Choe, H.; Desai, P.; Erba, H.; Hourigan, C.S.; et al. American Society of Hematology 2020 guidelines for treating newly diagnosed acute myeloid leukemia in older adults. Blood Adv. 2020, 4, 3528–3549. [Google Scholar] [CrossRef]
- Pinto, A.; Zagonel, V.; Ferrara, F. Acute myeloid leukemia in the elderly: Biology and therapeutic strategies. Crit. Rev. Oncol./Hematol. 2001, 39, 275–287. [Google Scholar] [CrossRef]
- Suarez, L.; Vidriales, M.B.; Moreno, M.J.; Lopez, A.; Garcia-Larana, J.; Perez-Lopez, C.; Tormo, M.; Lavilla, E.; Lopez-Berges, M.C.; Santiago, M.D.; et al. Differences in anti-apoptotic and multidrug resistance phenotypes in elderly and young acute myeloid leukemia patients are related to the maturation of blast cells. Haematologica 2005, 90, 54–59. [Google Scholar] [PubMed]
- Godwin, J.E.; Kopecky, K.J.; Head, D.R.; Willman, C.L.; Leith, C.P.; Hynes, H.E.; Balcerzak, S.P.; Appelbaum, F.R. A Double-Blind Placebo-Controlled Trial of Granulocyte Colony-Stimulating Factor in Elderly Patients with Previously Untreated Acute Myeloid Leukemia: A Southwest Oncology Group Study (9031). Blood 1998, 91, 3607–3615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farag, S.S.; Archer, K.J.; Mrózek, K.; Ruppert, A.S.; Carroll, A.J.; Vardiman, J.W.; Pettenati, M.J.; Baer, M.R.; Qumsiyeh, M.B.; Koduru, P.R.; et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: Results from Cancer and Leukemia Group B 8461. Blood 2006, 108, 63–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frohling, S.; Schlenk, R.F.; Kayser, S.; Morhardt, M.; Benner, A.; Dohner, K.; Dohner, H.; for the German-Austrian AML Study Group. Cytogenetics and age are major determinants of outcome in intensively treated acute myeloid leukemia patients older than 60 years: Results from AMLSG trial AML HD98-B. Blood 2006, 108, 3280–3288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prassek, V.V.; Rothenberg-Thurley, M.; Sauerland, M.C.; Herold, T.; Janke, H.; Ksienzyk, B.; Konstandin, N.P.; Goerlich, D.; Krug, U.; Faldum, A.; et al. Genetics of acute myeloid leukemia in the elderly: Mutation spectrum and clinical impact in intensively treated patients aged 75 years or older. Haematologica 2018, 103, 1853–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paschka, P.; Schlenk, R.F.; Gaidzik, V.I.; Habdank, M.; Krönke, J.; Bullinger, L.; Späth, D.; Kayser, S.; Zucknick, M.; Götze, K.; et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J. Clin. Oncol. 2010, 28, 3636–3643. [Google Scholar] [CrossRef] [PubMed]
- Eisfeld, A.K.; Kohlschmidt, J.; Mrózek, K.; Blachly, J.S.; Walker, C.J.; Nicolet, D.; Orwick, S.; Maharry, S.E.; Carroll, A.J.; Stone, R.M.; et al. Mutation patterns identify adult patients with de novo acute myeloid leukemia aged 60 years or older who respond favorably to standard chemotherapy: An analysis of Alliance studies. Leukemia 2018, 32, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Juliusson, G.; Jädersten, M.; Deneberg, S.; Lehmann, S.; Möllgård, L.; Wennström, L.; Antunovic, P.; Cammenga, J.; Lorenz, F.; Ölander, E.; et al. The prognostic impact of FLT3-ITD and NPM1 mutation in adult AML is age-dependent in the population-based setting. Blood Adv. 2020, 4, 1094–1101. [Google Scholar] [CrossRef] [Green Version]
- Ostronoff, F.; Othus, M.; Lazenby, M.; Estey, E.; Appelbaum, F.R.; Evans, A.; Godwin, J.; Gilkes, A.; Kopecky, K.J.; Burnett, A.; et al. Prognostic significance of NPM1 mutations in the absence of FLT3-internal tandem duplication in older patients with acute myeloid leukemia: A SWOG and UK National Cancer Research Institute/Medical Research Council report. J. Clin. Oncol. 2015, 33, 1157–1164. [Google Scholar] [CrossRef] [Green Version]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Østgård, L.S.G.; Medeiros, B.C.; Sengeløv, H.; Nørgaard, M.; Andersen, M.K.; Dufva, I.H.; Friis, L.S.; Kjeldsen, E.; Marcher, C.W.; Preiss, B.; et al. Epidemiology and Clinical Significance of Secondary and Therapy-Related Acute Myeloid Leukemia: A National Population-Based Cohort Study. J. Clin. Oncol. 2015, 33, 3641–3649. [Google Scholar] [CrossRef]
- Hulegårdh, E.; Nilsson, C.; Lazarevic, V.; Garelius, H.; Antunovic, P.; Rangert Derolf, Å.; Möllgård, L.; Uggla, B.; Wennström, L.; Wahlin, A.; et al. Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: A report from the Swedish Acute Leukemia Registry. Am. J. Hematol. 2015, 90, 208–214. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Walter, M.J.; Shen, D.; Ding, L.; Shao, J.; Koboldt, D.C.; Chen, K.; Larson, D.E.; McLellan, M.D.; Dooling, D.; Abbott, R.; et al. Clonal Architecture of Secondary Acute Myeloid Leukemia. N. Engl. J. Med. 2012, 366, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Othus, M.; Wood, B.L.; Walter, R.B.; Becker, P.S.; Percival, M.-E.; Abkowitz, J.L.; Appelbaum, F.R.; Estey, E.H. Comparison of myeloid blast counts and variant allele frequencies of gene mutations in myelodysplastic syndrome with excess blasts and secondary acute myeloid leukemia. Leuk. Lymphoma 2021, 62, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, A.J.; Rampal, R.K.; Levine, R. Leukemia secondary to myeloproliferative neoplasms. Blood 2020, 136, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Menssen, A.J.; Walter, M.J. Genetics of progression from MDS to secondary leukemia. Blood 2020, 136, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Rai, K.R.; Holland, J.F.; Glidewell, O.J.; Weinberg, V.; Brunner, K.; Obrecht, J.P.; Preisler, H.D.; Nawabi, I.W.; Prager, D.; Carey, R.W.; et al. Treatment of Acute Myelocytic Leukemia: A Study by Cancer and Leukemia Group, B. Blood 1981, 58, 1203–1212. [Google Scholar] [CrossRef] [Green Version]
- Yates, J.; Glidewell, O.; Wiernik, P.; Cooper, M.; Steinberg, D.; Dosik, H.; Levy, R.; Hoagland, C.; Henry, P.; Gottlieb, A.; et al. Cytosine arabinoside with daunorubicin or adriamycin for therapy of acute myelocytic leukemia: A CALGB study. Blood 1982, 60, 454–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, R.J.; Davis, R.B.; Schiffer, C.A.; Berg, D.T.; Powell, B.L.; Schulman, P.; Omura, G.A.; Moore, J.O.; McIntyre, O.R.; Frei, E. Intensive Postremission Chemotherapy in Adults with Acute Myeloid Leukemia. N. Engl. J. Med. 1994, 331, 896–903. [Google Scholar] [CrossRef]
- Kuhlman, P.; Isom, S.; Pardee, T.S.; Burns, C.; Tawfik, B.; Lamar, Z.S.; Powell, B.L.; Klepin, H.D. Association between glycemic control, age, and outcomes among intensively treated patients with acute myeloid leukemia. Support. Care Cancer 2019, 27, 2877–2884. [Google Scholar] [CrossRef]
- Löwenberg, B.; Ossenkoppele, G.J.; van Putten, W.; Schouten, H.C.; Graux, C.; Ferrant, A.; Sonneveld, P.; Maertens, J.; Jongen-Lavrencic, M.; von Lilienfeld-Toal, M.; et al. High-Dose Daunorubicin in Older Patients with Acute Myeloid Leukemia. N. Engl. J. Med. 2009, 361, 1235–1248. [Google Scholar] [CrossRef]
- Fernandez, H.F.; Sun, Z.; Yao, X.; Litzow, M.R.; Luger, S.M.; Paietta, E.M.; Racevskis, J.; Dewald, G.W.; Ketterling, R.P.; Bennett, J.M.; et al. Anthracycline Dose Intensification in Acute Myeloid Leukemia. N. Engl. J. Med. 2009, 361, 1249–1259. [Google Scholar] [CrossRef] [Green Version]
- Thein, M.S.; Ershler, W.B.; Jemal, A.; Yates, J.W.; Baer, M.R. Outcome of older patients with acute myeloid leukemia. Cancer 2013, 119, 2720–2727. [Google Scholar] [CrossRef] [PubMed]
- Elliot, K.; Tooze, J.A.; Geller, R.; Powell, B.L.; Pardee, T.S.; Ritchie, E.; Kennedy, L.; Callahan, K.E.; Klepin, H.D. The prognostic importance of polypharmacy in older adults treated for acute myelogenous leukemia (AML). Leuk. Res. 2014, 38, 1184–1190. [Google Scholar] [CrossRef] [Green Version]
- Giles, F.J.; Borthakur, G.; Ravandi, F.; Faderl, S.; Verstovsek, S.; Thomas, D.; Wierda, W.; Ferrajoli, A.; Kornblau, S.; Pierce, S.; et al. The haematopoietic cell transplantation comorbidity index score is predictive of early death and survival in patients over 60 years of age receiving induction therapy for acute myeloid leukaemia. Br. J. Haematol. 2007, 136, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Ramjaun, A.; Nassif, M.O.; Krotneva, S.; Huang, A.R.; Meguerditchian, A.N. Improved targeting of cancer care for older patients: A systematic review of the utility of comprehensive geriatric assessment. J. Geriatr. Oncol. 2013, 4, 271–281. [Google Scholar] [CrossRef]
- Takahashi, M.; Takahashi, M.; Komine, K.; Yamada, H.; Kasahara, Y.; Chikamatsu, S.; Okita, A.; Ito, S.; Ouchi, K.; Okada, Y.; et al. The G8 screening tool enhances prognostic value to ECOG performance status in elderly cancer patients: A retrospective, single institutional study. PLoS ONE 2017, 12, e0179694. [Google Scholar] [CrossRef] [Green Version]
- Klepin, H.D.; Geiger, A.M.; Tooze, J.A.; Kritchevsky, S.B.; Williamson, J.D.; Ellis, L.R.; Levitan, D.; Pardee, T.S.; Isom, S.; Powell, B.L.; et al. The feasibility of inpatient geriatric assessment for older adults receiving induction chemotherapy for acute myelogenous leukemia. J. Am. Geriatr. Soc. 2011, 59, 1837–1846. [Google Scholar] [CrossRef]
- Klepin, H.D.; Geiger, A.M.; Tooze, J.A.; Kritchevsky, S.B.; Williamson, J.D.; Pardee, T.S.; Ellis, L.R.; Powell, B.L. Geriatric assessment predicts survival for older adults receiving induction chemotherapy for acute myelogenous leukemia. Blood 2013, 121, 4287–4294. [Google Scholar] [CrossRef]
- Hamaker, M.E.; Prins, M.C.; Stauder, R. The relevance of a geriatric assessment for elderly patients with a haematological malignancy—A systematic review. Leuk. Res. 2014, 38, 275–283. [Google Scholar] [CrossRef]
- Deschler, B.; Ihorst, G.; Platzbecker, U.; Germing, U.; Marz, E.; de Figuerido, M.; Fritzsche, K.; Haas, P.; Salih, H.R.; Giagounidis, A.; et al. Parameters detected by geriatric and quality of life assessment in 195 older patients with myelodysplastic syndromes and acute myeloid leukemia are highly predictive for outcome. Haematologica 2013, 98, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Klepin, H.D.; Ritchie, E.; Major-Elechi, B.; Le-Rademacher, J.; Seisler, D.; Storrick, L.; Sanford, B.L.; Marcucci, G.; Zhao, W.; Geyer, S.A.; et al. Geriatric assessment among older adults receiving intensive therapy for acute myeloid leukemia: Report of CALGB 361006 (Alliance). J. Geriatr. Oncol. 2020, 11, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Saad, M.; Loh, K.P.; Tooze, J.A.; Pardee, T.S.; Ellis, L.R.; Powell, B.L.; Bhave, R.R.; Geiger, A.M.; Williamson, J.D.; Kritchevsky, S.; et al. Geriatric assessment and survival among older adults receiving postremission therapy for acute myeloid leukemia. Blood 2020, 136, 2715–2719. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, E.R.M.; Vondeling, A.M.; Thielen, N.; Griend, R.v.d.; Stauder, R.; Hamaker, M.E. Geriatric assessment in older patients with a hematologic malignancy: A systematic review. Haematologica 2020, 105, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, V.R.; Wichman, C.; Al-Kadhimi, Z.S.; Koll, T.T.; Berger, A.; Armitage, J.O.; Holstein, S.A.; Gundabolu, K.; Maness, L.J. Integrating Geriatric Assessment and Genetic Profiling to Personalize Therapy Selection in Older Adults with Acute Myeloid Leukemia (AML). Blood 2019, 134, 120. [Google Scholar] [CrossRef]
- Rowe, J.M.; Neuberg, D.; Friedenberg, W.; Bennett, J.M.; Paietta, E.; Makary, A.Z.; Liesveld, J.L.; Abboud, C.N.; Dewald, G.; Hayes, F.A.; et al. A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: A trial by the Eastern Cooperative Oncology Group. Blood 2004, 103, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Ohtake, S.; Miyawaki, S.; Fujita, H.; Kiyoi, H.; Shinagawa, K.; Usui, N.; Okumura, H.; Miyamura, K.; Nakaseko, C.; Miyazaki, Y.; et al. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: The JALSG AML201 Study. Blood 2011, 117, 2358–2365. [Google Scholar] [CrossRef] [Green Version]
- Burnett, A.K.; Russell, N.H.; Hills, R.K.; Kell, J.; Cavenagh, J.; Kjeldsen, L.; McMullin, M.-F.; Cahalin, P.; Dennis, M.; Friis, L.; et al. A randomized comparison of daunorubicin 90 mg/m2 vs. 60 mg/m2 in AML induction: Results from the UK NCRI AML17 trial in 1206 patients. Blood 2015, 125, 3878–3885. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, H.; Joo, Y.-D.; Lee, W.-S.; Bae, S.H.; Zang, D.Y.; Kwon, J.; Kim, M.K.; Lee, J.; Lee, G.W.; et al. Prospective Randomized Comparison of Idarubicin and High-Dose Daunorubicin in Induction Chemotherapy for Newly Diagnosed Acute Myeloid Leukemia. J. Clin. Oncol. 2017, 35, 2754–2763. [Google Scholar] [CrossRef]
- Pautas, C.; Merabet, F.; Thomas, X.; Raffoux, E.; Gardin, C.; Corm, S.; Bourhis, J.-H.; Reman, O.; Turlure, P.; Contentin, N.; et al. Randomized Study of Intensified Anthracycline Doses for Induction and Recombinant Interleukin-2 for Maintenance in Patients With Acute Myeloid Leukemia Age 50 to 70 Years: Results of the ALFA-9801 Study. J. Clin. Oncol. 2010, 28, 808–814. [Google Scholar] [CrossRef] [PubMed]
- Castaigne, S.; Pautas, C.; Terré, C.; Raffoux, E.; Bordessoule, D.; Bastie, J.-N.; Legrand, O.; Thomas, X.; Turlure, P.; Reman, O.; et al. Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): A randomised, open-label, phase 3 study. Lancet 2012, 379, 1508–1516. [Google Scholar] [CrossRef]
- Hills, R.K.; Castaigne, S.; Appelbaum, F.R.; Delaunay, J.; Petersdorf, S.; Othus, M.; Estey, E.H.; Dombret, H.; Chevret, S.; Ifrah, N.; et al. Addition of gemtuzumab ozogamicin to induction chemotherapy in adult patients with acute myeloid leukaemia: A meta-analysis of individual patient data from randomised controlled trials. Lancet Oncol. 2014, 15, 986–996. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.; Pautas, C.; Terré, C.; Raffoux, E.; Turlure, P.; Caillot, D.; Legrand, O.; Thomas, X.; Gardin, C.; Gogat-Marchant, K.; et al. Gemtuzumab ozogamicin for de novo acute myeloid leukemia: Final efficacy and safety updates from the open-label, phase III ALFA-0701 trial. Haematologica 2019, 104, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Stone, R.M.; Mandrekar, S.J.; Sanford, B.L.; Laumann, K.; Geyer, S.; Bloomfield, C.D.; Thiede, C.; Prior, T.W.; Döhner, K.; Marcucci, G.; et al. Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation. N. Engl. J. Med. 2017, 377, 454–464. [Google Scholar] [CrossRef]
- Lancet, J.E.; Cortes, J.E.; Hogge, D.E.; Tallman, M.S.; Kovacsovics, T.J.; Damon, L.E.; Komrokji, R.; Solomon, S.R.; Kolitz, J.E.; Cooper, M.; et al. Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs. cytarabine/daunorubicin in older adults with untreated AML. Blood 2014, 123, 3239–3246. [Google Scholar] [CrossRef]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients With Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018, 36, 2684–2692. [Google Scholar] [CrossRef]
- Benitez, L.L.; Perissinotti, A.J.; Rausch, C.R.; Klaus, J.; Clark, S.M.; Filtz, M.; Ratermann, K.; Treptow, C.; Griffin, S.; Olson, M.; et al. Multicenter comparison of high-dose cytarabine-based regimens versus liposomal daunorubicin and cytarabine (CPX-351) in patients with secondary acute myeloid leukemia. Leuk. Lymphoma 2021, 1–9. [Google Scholar] [CrossRef]
- Vulaj, V.; Perissinotti, A.J.; Uebel, J.R.; Nachar, V.R.; Scappaticci, G.B.; Crouch, A.; Bixby, D.L.; Burke, P.W.; Maillard, I.; Talpaz, M.; et al. The FOSSIL Study: FLAG or standard 7+3 induction therapy in secondary acute myeloid leukemia. Leuk. Res. 2018, 70, 91–96. [Google Scholar] [CrossRef]
- Lachowiez, C.; Konopleva, M.; Kadia, T.M.; Daver, N.; Loghavi, S.; Wang, S.A.; Adeoti, M.; Pierce, S.A.; Takahashi, K.; Short, N.J.; et al. Interim Analysis of the Phase 1b/2 Study of the BCL-2 Inhibitor Venetoclax in Combination with Standard Intensive AML Induction/Consolidation Therapy with FLAG-IDA in Patients with Newly Diagnosed or Relapsed/Refractory AML. Blood 2020, 136, 18–20. [Google Scholar] [CrossRef]
- Kadia, T.M.; Borthakur, G.; Takahashi, K.; DiNardo, C.D.; Daver, N.; Pemmaraju, N.; Jabbour, E.; Jain, N.; Short, N.J.; Qiao, W.; et al. Phase II Study of CPX-351 Plus Venetoclax in Patients with Acute Myeloid Leukemia (AML). Blood 2020, 136, 20–22. [Google Scholar] [CrossRef]
- Fenaux, P.; Mufti, G.J.; Hellström-Lindberg, E.; Santini, V.; Gattermann, N.; Germing, U.; Sanz, G.; List, A.F.; Gore, S.; Seymour, J.F.; et al. Azacitidine Prolongs Overall Survival Compared with Conventional Care Regimens in Elderly Patients with Low Bone Marrow Blast Count Acute Myeloid Leukemia. J. Clin. Oncol. 2010, 28, 562–569. [Google Scholar] [CrossRef] [PubMed]
- Dombret, H.; Seymour, J.F.; Butrym, A.; Wierzbowska, A.; Selleslag, D.; Jang, J.H.; Kumar, R.; Cavenagh, J.; Schuh, A.C.; Candoni, A.; et al. International phase 3 study of azacitidine vs. conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 2015, 126, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döhner, H.; Dolnik, A.; Tang, L.; Seymour, J.F.; Minden, M.D.; Stone, R.M.; del Castillo, T.B.; Al-Ali, H.K.; Santini, V.; Vyas, P.; et al. Cytogenetics and gene mutations influence survival in older patients with acute myeloid leukemia treated with azacitidine or conventional care. Leukemia 2018, 32, 2546–2557. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Pratz, K.W.; Letai, A.; Jonas, B.A.; Wei, A.H.; Thirman, M.; Arellano, M.; Frattini, M.G.; Kantarjian, H.; Popovic, R.; et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. Lancet Oncol. 2018, 19, 216–228. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Pratz, K.; Pullarkat, V.; Jonas, B.A.; Arellano, M.; Becker, P.S.; Frankfurt, O.; Konopleva, M.; Wei, A.H.; Kantarjian, H.M.; et al. Venetoclax combined with decitabine or azacitidine in treatment-naive, elderly patients with acute myeloid leukemia. Blood 2019, 133, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Pollyea, D.A.; Pratz, K.; Letai, A.; Jonas, B.A.; Wei, A.H.; Pullarkat, V.; Konopleva, M.; Thirman, M.J.; Arellano, M.; Becker, P.S.; et al. Venetoclax with azacitidine or decitabine in patients with newly diagnosed acute myeloid leukemia: Long term follow-up from a phase 1b study. Am. J. Hematol. 2021, 96, 208–217. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- Kantarjian, H.M.; Thomas, X.G.; Dmoszynska, A.; Wierzbowska, A.; Mazur, G.; Mayer, J.; Gau, J.-P.; Chou, W.-C.; Buckstein, R.; Cermak, J.; et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J. Clin. Oncol. 2012, 30, 2670–2677. [Google Scholar] [CrossRef] [Green Version]
- Maiti, A.; DiNardo, C.D.; Daver, N.G.; Rausch, C.R.; Ravandi, F.; Kadia, T.M.; Pemmaraju, N.; Borthakur, G.; Bose, P.; Issa, G.C.; et al. Triplet therapy with venetoclax, FLT3 inhibitor and decitabine for FLT3-mutated acute myeloid leukemia. Blood Cancer J. 2021, 11, 25. [Google Scholar] [CrossRef]
- Blum, W.; Garzon, R.; Klisovic, R.B.; Schwind, S.; Walker, A.; Geyer, S.; Liu, S.; Havelange, V.; Becker, H.; Schaaf, L.; et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc. Natl. Acad. Sci. USA 2010, 107, 7473–7478. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, E.K.; Feldman, E.J.; Christos, P.J.; Rohan, S.D.; Lagassa, C.B.; Ippoliti, C.; Scandura, J.M.; Carlson, K.; Roboz, G.J. Decitabine in patients with newly diagnosed and relapsed acute myeloid leukemia. Leuk. Lymphoma 2013, 54, 2003–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welch, J.S.; Petti, A.A.; Miller, C.A.; Fronick, C.C.; O’Laughlin, M.; Fulton, R.S.; Wilson, R.K.; Baty, J.D.; Duncavage, E.J.; Tandon, B.; et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N. Engl. J. Med. 2016, 375, 2023–2036. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Maiti, A.; Rausch, C.R.; Pemmaraju, N.; Naqvi, K.; Daver, N.G.; Kadia, T.M.; Borthakur, G.; Ohanian, M.; Alvarado, Y.; et al. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: A single-centre, phase 2 trial. Lancet Haematol. 2020, 7, e724–e736. [Google Scholar] [CrossRef]
- Maiti, A.; Qiao, W.; Sasaki, K.; Ravandi, F.; Kadia, T.M.; Jabbour, E.J.; Daver, N.G.; Borthakur, G.; Garcia-Manero, G.; Pierce, S.A.; et al. Venetoclax with decitabine vs. intensive chemotherapy in acute myeloid leukemia: A propensity score matched analysis stratified by risk of treatment-related mortality. Am. J. Hematol. 2021, 96, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Nand, S.; Godwin, J.; Smith, S.; Barton, K.; Michaelis, L.; Alkan, S.; Veerappan, R.; Rychlik, K.; Germano, E.; Stiff, P. Hydroxyurea, azacitidine and gemtuzumab ozogamicin therapy in patients with previously untreated non-M3 acute myeloid leukemia and high-risk myelodysplastic syndromes in the elderly: Results from a pilot trial. Leuk. Lymphoma 2008, 49, 2141–2147. [Google Scholar] [CrossRef]
- Nand, S.; Othus, M.; Godwin, J.E.; Willman, C.L.; Norwood, T.H.; Howard, D.S.; Coutre, S.E.; Erba, H.P.; Appelbaum, F.R. A phase 2 trial of azacitidine and gemtuzumab ozogamicin therapy in older patients with acute myeloid leukemia. Blood 2013, 122, 3432–3439. [Google Scholar] [CrossRef] [Green Version]
- DiNardo, C.D.; Stein, A.S.; Stein, E.M.; Fathi, A.T.; Frankfurt, O.; Schuh, A.C.; Döhner, H.; Martinelli, G.; Patel, P.A.; Raffoux, E.; et al. Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination with Azacitidine for Newly Diagnosed Acute Myeloid Leukemia. J. Clin. Oncol. 2021, 39, 57–65. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Schuh, A.C.; Stein, E.M.; Fernandez, P.M.; Wei, A.; De Botton, S.; Zeidan, A.M.; Fathi, A.T.; Quek, L.; Kantarjian, H.M.; et al. Enasidenib Plus Azacitidine Significantly Improves Complete Remission and Overall Response Compared with Azacitidine Alone in Patients with Newly Diagnosed Acute Myeloid Leukemia (AML) with Isocitrate Dehydrogenase 2 (IDH2) Mutations: Interim Phase II Results from an Ongoing, Randomized Study. Blood 2019, 134, 643. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Schuh, A.C.; Stein, E.M.; Montesinos, P.; Wei, A.; Botton, S.D.; Zeidan, A.M.; Fathi, A.T.; Quek, L.; Kantarjian, H.M.; et al. Effect of enasidenib (ENA) plus azacitidine (AZA) on complete remission and overall response versus AZA monotherapy in mutant-IDH2 (mIDH2) newly diagnosed acute myeloid leukemia (ND-AML). J. Clin. Oncol. 2020, 38, 7501. [Google Scholar] [CrossRef]
- Wei, Y.; Cao, Y.; Sun, R.; Cheng, L.; Xiong, X.; Jin, X.; He, X.; Lu, W.; Zhao, M. Targeting Bcl-2 Proteins in Acute Myeloid Leukemia. Front. Oncol. 2020, 10, 2137. [Google Scholar] [CrossRef]
- Maiti, A.; DiNardo, C.D.; Wang, S.A.; Jorgensen, J.; Kadia, T.M.; Daver, N.G.; Short, N.J.; Yilmaz, M.; Pemmaraju, N.; Borthakur, G.; et al. Prognostic value of measurable residual disease after venetoclax and decitabine in acute myeloid leukemia. Blood Adv. 2021, 5, 1876–1883. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Lugthart, S.; Kavelaars, F.G.; Schelen, A.; Koenders, J.E.; Zeilemaker, A.; van Putten, W.J.L.; Rijneveld, A.W.; Löwenberg, B.; Valk, P.J.M. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: Prevalence and prognostic value. Blood 2010, 116, 2122–2126. [Google Scholar] [CrossRef] [PubMed]
- Kattih, B.; Shirvani, A.; Klement, P.; Garrido, A.M.; Gabdoulline, R.; Liebich, A.; Brandes, M.; Chaturvedi, A.; Seeger, T.; Thol, F.; et al. IDH1/2 mutations in acute myeloid leukemia patients and risk of coronary artery disease and cardiac dysfunction—a retrospective propensity score analysis. Leukemia 2021, 35, 1301–1316. [Google Scholar] [CrossRef] [PubMed]
- Burd, A.; Levine, R.L.; Ruppert, A.S.; Mims, A.S.; Borate, U.; Stein, E.M.; Patel, P.; Baer, M.R.; Stock, W.; Deininger, M.; et al. Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: Feasibility and preliminary efficacy of the Beat AML Master Trial. Nat. Med. 2020, 26, 1852–1858. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.K.; Milligan, D.; Prentice, A.G.; Goldstone, A.H.; McMullin, M.F.; Hills, R.K.; Wheatley, K. A comparison of low-dose cytarabine and hydroxyurea with or without all-trans retinoic acid for acute myeloid leukemia and high-risk myelodysplastic syndrome in patients not considered fit for intensive treatment. Cancer 2007, 109, 1114–1124. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.E.; Heidel, F.H.; Hellmann, A.; Fiedler, W.; Smith, B.D.; Robak, T.; Montesinos, P.; Pollyea, D.A.; DesJardins, P.; Ottmann, O.; et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 2019, 33, 379–389. [Google Scholar] [CrossRef] [Green Version]
- Amadori, S.; Suciu, S.; Selleslag, D.; Aversa, F.; Gaidano, G.; Musso, M.; Annino, L.; Venditti, A.; Voso, M.T.; Mazzone, C.; et al. Gemtuzumab Ozogamicin Versus Best Supportive Care in Older Patients With Newly Diagnosed Acute Myeloid Leukemia Unsuitable for Intensive Chemotherapy: Results of the Randomized Phase III EORTC-GIMEMA AML-19 Trial. J. Clin. Oncol. 2016, 34, 972–979. [Google Scholar] [CrossRef]
- Wei, A.H.; Jr, S.A.S.; Hou, J.-Z.; Fiedler, W.; Lin, T.L.; Walter, R.B.; Enjeti, A.; Tiong, I.S.; Savona, M.; Lee, S.; et al. Venetoclax Combined With Low-Dose Cytarabine for Previously Untreated Patients With Acute Myeloid Leukemia: Results From a Phase Ib/II Study. J. Clin. Oncol. 2019, 37, 1277–1284. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Montesinos, P.; Ivanov, V.; DiNardo, C.D.; Novak, J.; Laribi, K.; Kim, I.; Stevens, D.A.; Fiedler, W.; Pagoni, M.; et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial. Blood 2020, 135, 2137–2145. [Google Scholar] [CrossRef]
- Scappaticci, G.B.; Marini, B.L.; Nachar, V.R.; Uebel, J.R.; Vulaj, V.; Crouch, A.; Bixby, D.L.; Talpaz, M.; Perissinotti, A.J. Outcomes of previously untreated elderly patients with AML: A propensity score-matched comparison of clofarabine vs. FLAG. Ann. Hematol. 2018, 97, 573–584. [Google Scholar] [CrossRef]
- Konopleva, M.; Pollyea, D.A.; Potluri, J.; Chyla, B.; Hogdal, L.; Busman, T.; McKeegan, E.; Salem, A.H.; Zhu, M.; Ricker, J.L.; et al. Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discov. 2016, 6, 1106–1117. [Google Scholar] [CrossRef] [Green Version]
- Egan, P.C.; Reagan, J.L. The return of gemtuzumab ozogamicin: A humanized anti-CD33 monoclonal antibody-drug conjugate for the treatment of newly diagnosed acute myeloid leukemia. OncoTargets Ther. 2018, 11, 8265–8272. [Google Scholar] [CrossRef] [Green Version]
- Bloomfield, C.D.; Lawrence, D.; Byrd, J.C.; Carroll, A.; Pettenati, M.J.; Tantravahi, R.; Patil, S.R.; Davey, F.R.; Berg, D.T.; Schiffer, C.A.; et al. Frequency of Prolonged Remission Duration after High-Dose Cytarabine Intensification in Acute Myeloid Leukemia Varies by Cytogenetic Subtype. Cancer Res. 1998, 58, 4173–4179. [Google Scholar] [PubMed]
- Neubauer, A.; Maharry, K.; Mrózek, K.; Thiede, C.; Marcucci, G.; Paschka, P.; Mayer, R.J.; Larson, R.A.; Liu, E.T.; Bloomfield, C.D. Patients with Acute Myeloid Leukemia and RAS Mutations Benefit Most from Postremission High-Dose Cytarabine: A Cancer and Leukemia Group B Study. J. Clin. Oncol. 2008, 26, 4603–4609. [Google Scholar] [CrossRef] [Green Version]
- Sperr, W.R.; Piribauer, M.; Wimazal, F.; Fonatsch, C.; Thalhammer-Scherrer, R.; Schwarzinger, I.; Geissler, K.; Knoebl, P.; Jäger, U.; Lechner, K.; et al. A Novel Effective and Safe Consolidation for Patients over 60 Years with Acute Myeloid Leukemia. Clin. Cancer Res. 2004, 10, 3965–3971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, T.; Urasaki, Y.; Yamaguchi, M.; Ueda, M.; Morinaga, K.; Haba, T.; Sugiyama, T.; Nakao, S.; Origasa, H.; Umehara, H.; et al. A Randomized Comparison of Modified Intermediate-dose Ara-C versus High-dose Ara-C in Post-remission Therapy for Acute Myeloid Leukemia. Anticancer Res. 2012, 32, 643–647. [Google Scholar] [PubMed]
- Jaramillo, S.; Benner, A.; Krauter, J.; Martin, H.; Kindler, T.; Bentz, M.; Salih, H.R.; Held, G.; Köhne, C.H.; Götze, K.; et al. Condensed versus standard schedule of high-dose cytarabine consolidation therapy with pegfilgrastim growth factor support in acute myeloid leukemia. Blood Cancer J. 2017, 7, e564. [Google Scholar] [CrossRef] [PubMed]
- Muffly, L.; Pasquini, M.C.; Martens, M.; Brazauskas, R.; Zhu, X.; Adekola, K.; Aljurf, M.; Ballen, K.K.; Bajel, A.; Baron, F.; et al. Increasing use of allogeneic hematopoietic cell transplantation in patients aged 70 years and older in the United States. Blood 2017, 130, 1156–1164. [Google Scholar] [CrossRef]
- McClune, B.L.; Weisdorf, D.J.; Pedersen, T.L.; Silva, G.T.d.; Tallman, M.S.; Sierra, J.; DiPersio, J.; Keating, A.; Gale, R.P.; George, B.; et al. Effect of Age on Outcome of Reduced-Intensity Hematopoietic Cell Transplantation for Older Patients With Acute Myeloid Leukemia in First Complete Remission or With Myelodysplastic Syndrome. J. Clin. Oncol. 2010, 28, 1878–1887. [Google Scholar] [CrossRef] [Green Version]
- Lim, Z.; Brand, R.; Martino, R.; Biezen, A.v.; Finke, J.; Bacigalupo, A.; Beelen, D.; Devergie, A.; Alessandrino, E.; Willemze, R.; et al. Allogeneic Hematopoietic Stem-Cell Transplantation for Patients 50 Years or Older with Myelodysplastic Syndromes or Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2010, 28, 405–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modi, D.; Deol, A.; Kim, S.; Ayash, L.; Alavi, A.; Ventimiglia, M.; Bhutani, D.; Ratanatharathorn, V.; Uberti, J.P. Age does not adversely influence outcomes among patients older than 60 years who undergo allogeneic hematopoietic stem cell transplant for AML and myelodysplastic syndrome. Bone Marrow Transplant. 2017, 52, 1530–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorror, M.L.; Sandmaier, B.M.; Storer, B.E.; Franke, G.N.; Laport, G.G.; Chauncey, T.R.; Agura, E.; Maziarz, R.T.; Langston, A.; Hari, P.; et al. Long-term Outcomes among Older Patients Following Nonmyeloablative Conditioning and Allogeneic Hematopoietic Cell Transplantation for Advanced Hematologic Malignancies. JAMA 2011, 306, 1874–1883. [Google Scholar] [CrossRef] [PubMed]
- Luger, S.M.; Ringdén, O.; Zhang, M.J.; Pérez, W.S.; Bishop, M.R.; Bornhauser, M.; Bredeson, C.N.; Cairo, M.S.; Copelan, E.A.; Gale, R.P.; et al. Similar outcomes using myeloablative vs. reduced-intensity allogeneic transplant preparative regimens for AML or MDS. Bone Marrow Transpl. 2012, 47, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Shimoni, A.; Shem-Tov, N.; Volchek, Y.; Danylesko, I.; Yerushalmi, R.; Nagler, A. Allo-SCT for AML and MDS with treosulfan compared with BU-based regimens: Reduced toxicity vs. reduced intensity. Bone Marrow Transplant. 2012, 47, 1274–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martino, R.; de Wreede, L.; Fiocco, M.; van Biezen, A.; von dem Borne, P.A.; Hamladji, R.M.; Volin, L.; Bornhäuser, M.; Robin, M.; Rocha, V.; et al. Comparison of conditioning regimens of various intensities for allogeneic hematopoietic SCT using HLA-identical sibling donors in AML and MDS with <10% BM blasts: A report from EBMT. Bone Marrow Transpl. 2013, 48, 761–770. [Google Scholar] [CrossRef] [Green Version]
- Devine, S.M.; Owzar, K.; Blum, W.; Mulkey, F.; Stone, R.M.; Hsu, J.W.; Champlin, R.E.; Chen, Y.-B.; Vij, R.; Slack, J.; et al. Phase II Study of Allogeneic Transplantation for Older Patients with Acute Myeloid Leukemia in First Complete Remission Using a Reduced-Intensity Conditioning Regimen: Results from Cancer and Leukemia Group B 100103 (Alliance for Clinical Trials in Oncology)/Blood and Marrow Transplant Clinical Trial Network 0502. J. Clin. Oncol. 2015, 33, 4167–4175. [Google Scholar] [CrossRef]
- Rashidi, A.; DiPersio, J.F.; Westervelt, P.; Vij, R.; Schroeder, M.A.; Cashen, A.F.; Fehniger, T.A.; Romee, R. Comparison of Outcomes after Peripheral Blood Haploidentical versus Matched Unrelated Donor Allogeneic Hematopoietic Cell Transplantation in Patients with Acute Myeloid Leukemia: A Retrospective Single-Center Review. Biol. Blood Marrow Transplant. 2016, 22, 1696–1701. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, K.S.; Brunstein, C.; DeFor, T.; Bejanyan, N.; Arora, M.; Warlick, E.; Weisdorf, D.; Ustun, C. Umbilical Cord Blood Transplantation Outcomes in Acute Myelogenous Leukemia/Myelodysplastic Syndrome Patients Aged ≥70 Years. Biol. Blood Marrow Transplant. 2016, 22, 390–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Versluis, J.; in ‘t Hout, F.E.M.; Devillier, R.; van Putten, W.L.J.; Manz, M.G.; Vekemans, M.C.; Legdeur, M.C.; Passweg, J.R.; Maertens, J.; Kuball, J.; et al. Comparative value of post-remission treatment in cytogenetically normal AML subclassified by NPM1 and FLT3-ITD allelic ratio. Leukemia 2017, 31, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Scott, B.L.; Pasquini, M.C.; Logan, B.R.; Wu, J.; Devine, S.M.; Porter, D.L.; Maziarz, R.T.; Warlick, E.D.; Fernandez, H.F.; Alyea, E.P.; et al. Myeloablative Versus Reduced-Intensity Hematopoietic Cell Transplantation for Acute Myeloid Leukemia and Myelodysplastic Syndromes. J. Clin. Oncol. 2017, 35, 1154–1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, W.; Huang, L.; Meng, F.; Liu, Z.; Zhou, J.; Sun, H. Reduced-intensity and myeloablative conditioning allogeneic hematopoietic stem cell transplantation in patients with acute myeloid leukemia and myelodysplastic syndrome: A meta-analysis and systematic review. Int. J. Clin. Exp. Med. 2014, 7, 4357–4368. [Google Scholar] [PubMed]
- Keating, A.; DaSilva, G.; Pérez, W.S.; Gupta, V.; Cutler, C.S.; Ballen, K.K.; Cairo, M.S.; Camitta, B.M.; Champlin, R.E.; Gajewski, J.L.; et al. Autologous blood cell transplantation versus HLA-identical sibling transplantation for acute myeloid leukemia in first complete remission: A registry study from the Center for International Blood and Marrow Transplantation Research. Haematologica 2013, 98, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Saraceni, F.; Labopin, M.; Gorin, N.-C.; Blaise, D.; Tabrizi, R.; Volin, L.; Cornelissen, J.; Cahn, J.-Y.; Chevallier, P.; Craddock, C.; et al. Matched and mismatched unrelated donor compared to autologous stem cell transplantation for acute myeloid leukemia in first complete remission: A retrospective, propensity score-weighted analysis from the ALWP of the EBMT. J. Hematol. Oncol. 2016, 9, 79. [Google Scholar] [CrossRef] [PubMed]
- Saraceni, F.; Bruno, B.; Lemoli, R.M.; Meloni, G.; Arcese, W.; Falda, M.; Ciceri, F.; Alessandrino, E.P.; Specchia, G.; Scimè, R.; et al. Autologous stem cell transplantation is still a valid option in good- and intermediate-risk AML: A GITMO survey on 809 patients autografted in first complete remission. Bone Marrow Transplant. 2016, 52, 163–166. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, M.; Hara, M.; Fujita, H.; Aoki, J.; Kanamori, H.; Ohashi, K.; Usuki, K.; Fukuda, T.; Chou, T.; Tanaka, J.; et al. Comparable outcomes between autologous and allogeneic transplant for adult acute myeloid leukemia in first CR. Bone Marrow Transplant. 2016, 51, 645–653. [Google Scholar] [CrossRef]
- Oriol, A.; Ribera, J.M.; Esteve, J.; Guardia, R.; Brunet, S.; Bueno, J.; Pedro, C.; Llorente, A.; Tormo, M.; Besalduch, J.; et al. Feasibility and results of autologous stem cell transplantation in de novo acute myeloid leukemia in patients over 60 years old. Results of the CETLAM AML-99 protocol. Haematologica 2004, 89, 791–800. [Google Scholar] [CrossRef]
- Heini, A.D.; Berger, M.D.; Seipel, K.; Taleghani, B.M.; Baerlocher, G.M.; Leibundgut, K.; Banz, Y.; Novak, U.; Pabst, T. Consolidation with autologous stem cell transplantation in first remission is safe and effective in AML patients above 65 years. Leuk. Res. 2017, 53, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Huls, G.; Chitu, D.A.; Havelange, V.; Jongen-Lavrencic, M.; van de Loosdrecht, A.A.; Biemond, B.J.; Sinnige, H.; Hodossy, B.; Graux, C.; Kooy, R.v.M.; et al. Azacitidine maintenance after intensive chemotherapy improves DFS in older AML patients. Blood 2019, 133, 1457–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oran, B.; de Lima, M.; Garcia-Manero, G.; Thall, P.F.; Lin, R.; Popat, U.; Alousi, A.M.; Hosing, C.; Giralt, S.; Rondon, G.; et al. A phase 3 randomized study of 5-azacitidine maintenance vs. observation after transplant in high-risk AML and MDS patients. Blood Adv. 2020, 4, 5580–5588. [Google Scholar] [CrossRef] [PubMed]
- Wei, A.H.; Döhner, H.; Pocock, C.; Montesinos, P.; Afanasyev, B.; Dombret, H.; Ravandi, F.; Sayar, H.; Jang, J.-H.; Porkka, K.; et al. Oral Azacitidine Maintenance Therapy for Acute Myeloid Leukemia in First Remission. N. Engl. J. Med. 2020, 383, 2526–2537. [Google Scholar] [CrossRef] [PubMed]
- Reville, P.K.; Kantarjian, H.M.; Ravandi, F.; Jabbour, E.; DiNardo, C.D.; Daver, N.; Pemmaraju, N.; Ohanian, M.; Alvarado, Y.; Xiao, L.; et al. Nivolumab maintenance in high-risk acute myeloid leukemia patients: A single-arm, open-label, phase II study. Blood Cancer J. 2021, 11, 60. [Google Scholar] [CrossRef]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.-C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef] [Green Version]
- Percival, M.-E.; Lai, C.; Estey, E.; Hourigan, C.S. Bone marrow evaluation for diagnosis and monitoring of acute myeloid leukemia. Blood Rev. 2017, 31, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Ivey, A.; Hills, R.K.; Simpson, M.A.; Jovanovic, J.V.; Gilkes, A.; Grech, A.; Patel, Y.; Bhudia, N.; Farah, H.; Mason, J.; et al. Assessment of Minimal Residual Disease in Standard-Risk AML. N. Engl. J. Med. 2016, 374, 422–433. [Google Scholar] [CrossRef] [Green Version]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.J.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef] [PubMed]
- Yoest, J.M.; Shirai, C.L.; Duncavage, E.J. Sequencing-Based Measurable Residual Disease Testing in Acute Myeloid Leukemia. Front. Cell Dev. Biol. 2020, 8, 249. [Google Scholar] [CrossRef] [PubMed]
- Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of Conditioning Intensity of Allogeneic Transplantation for Acute Myeloid Leukemia with Genomic Evidence of Residual Disease. J. Clin. Oncol. 2019, 38, 1273–1283. [Google Scholar] [CrossRef]
- Patkar, N.; Kakirde, C.; Shaikh, A.F.; Salve, R.; Bhanshe, P.; Chatterjee, G.; Rajpal, S.; Joshi, S.; Chaudhary, S.; Kodgule, R.; et al. Clinical impact of panel-based error-corrected next generation sequencing versus flow cytometry to detect measurable residual disease (MRD) in acute myeloid leukemia (AML). Leukemia 2021, 35, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Gökbuget, N.; Dombret, H.; Bonifacio, M.; Reichle, A.; Graux, C.; Faul, C.; Diedrich, H.; Topp, M.S.; Brüggemann, M.; Horst, H.-A.; et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 2018, 131, 1522–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, K.; Wang, F.; Jahn, K.; Hu, T.; Tanaka, T.; Sasaki, Y.; Kuipers, J.; Loghavi, S.; Wang, S.A.; Yan, Y.; et al. Clonal evolution of acute myeloid leukemia revealed by high-throughput single-cell genomics. Nat. Commun. 2020, 11, 5327. [Google Scholar] [CrossRef] [PubMed]
- Hasserjian, R.P.; Steensma, D.P.; Graubert, T.A.; Ebert, B.L. Clonal hematopoiesis and measurable residual disease assessment in acute myeloid leukemia. Blood 2020, 135, 1729–1738. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Tang, J.-L.; Tien, F.-M.; Kuo, Y.-Y.; Wu, D.-C.; Lin, C.-C.; Tseng, M.-H.; Peng, Y.-L.; Hou, M.-F.; Chuang, Y.-K.; et al. Clinical implications of sequential MRD monitoring by NGS at 2 time points after chemotherapy in patients with AML. Blood Adv. 2021, 5, 2456–2466. [Google Scholar] [CrossRef]
- Godwin, C.D.; Zhou, Y.; Othus, M.; Asmuth, M.M.; Shaw, C.M.; Gardner, K.M.; Wood, B.L.; Walter, R.B.; Estey, E.H. Acute myeloid leukemia measurable residual disease detection by flow cytometry in peripheral blood vs. bone marrow. Blood 2021, 137, 569–572. [Google Scholar] [CrossRef]
- LeBlanc, T.W.; El-Jawahri, A. When and why should patients with hematologic malignancies see a palliative care specialist? Hematology 2015, 2015, 471–478. [Google Scholar] [CrossRef] [Green Version]
- El-Jawahri, A.; Nelson, A.M.; Gray, T.F.; Lee, S.J.; LeBlanc, T.W. Palliative and End-of-Life Care for Patients With Hematologic Malignancies. J. Clin. Oncol. 2020, 38, 944–953. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, T.W.; Ritchie, C.S.; Friedman, F.; Bull, J.; Kutner, J.S.; Johnson, K.S.; Kamal, A.H.; Aslakson, R.A.; Ast, K.; Elk, R.; et al. Adherence to Measuring What Matters Items When Caring for Patients with Hematologic Malignancies versus Solid Tumors. J. Pain Symptom Manag. 2016, 52, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Rao, V.B.; Belanger, E.; Egan, P.C.; LeBlanc, T.W.; Olszewski, A.J. Early Palliative Care Services and End-of-Life Care in Medicare Beneficiaries with Hematologic Malignancies: A Population-Based Retrospective Cohort Study. J. Palliat. Med. 2021, 24, 63–70. [Google Scholar] [CrossRef]
- El-Jawahri, A.; LeBlanc, T.W.; Kavanaugh, A.; Webb, J.A.; Jackson, V.A.; Campbell, T.C.; O’Connor, N.; Luger, S.M.; Gafford, E.; Gustin, J.; et al. Effectiveness of Integrated Palliative and Oncology Care for Patients with Acute Myeloid Leukemia: A Randomized Clinical Trial. JAMA Oncol. 2021, 7, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Uy, G.L.; Yin, J.; Klepin, H.D.; Dinner, S.; Jaslowski, A.J.; Strickland, S.A.; Liesveld, J.L.; Byrd, J.C.; Stone, R.M. Alliance A041701 —A Randomized Phase 2/3 Study of Conventional Chemotherapy +/− Uproleselan (GMI-1271) in Older Adults with Acute Myeloid Leukemia (AML) Receiving Intensive Induction Chemotherapy. Blood 2019, 134, 1366. [Google Scholar] [CrossRef]
- DeAngelo, D.J.; Erba, H.P.; Jonas, B.A.; O’Dwyer, M.; Marlton, P.; Huls, G.A.; Liesveld, J.; Cooper, B.W.; Bhatnagar, B.; Armstrong, M.; et al. A phase III trial to evaluate the efficacy of uproleselan (GMI-1271) with chemotherapy in patients with relapsed/refractory acute myeloid leukemia. J. Clin. Oncol. 2019, 37, TPS7066. [Google Scholar] [CrossRef]
- Cluzeau, T.; Sebert, M.; Rahmé, R.; Cuzzubbo, S.; Lehmann-Che, J.; Madelaine, I.; Peterlin, P.; Bève, B.; Attalah, H.; Chermat, F.; et al. Eprenetapopt Plus Azacitidine in TP53-Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Phase II Study by the Groupe Francophone des Myélodysplasies (GFM). J. Clin. Oncol. 2021, 39, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Sallman, D.A.; DeZern, A.E.; Garcia-Manero, G.; Steensma, D.P.; Roboz, G.J.; Sekeres, M.A.; Cluzeau, T.; Sweet, K.L.; McLemore, A.; McGraw, K.L.; et al. Eprenetapopt (APR-246) and Azacitidine in TP53-Mutant Myelodysplastic Syndromes. J. Clin. Oncol. 2021, 39, 1584–1594. [Google Scholar] [CrossRef]
- Zayac, A.; Egan, P.C.; Ollila, T.A.; Olszewski, A.J.; Barth, P.; Quesenberry, M.I.; Butera, J.; Fast, L.D.; Niroula, R.; Quesenberry, P.J.; et al. BrUOG 345: Fractionated Gemtuzumab Ozogamicin Followed by Non-Engraftment Donor Leukocyte Infusions for Relapsed/Refractory Acute Myeloid Leukemia. Blood 2019, 134, 4460. [Google Scholar] [CrossRef]
- Cummins, K.D.; Gill, S. Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: How close to reality? Haematologica 2019, 104, 1302–1308. [Google Scholar] [CrossRef] [Green Version]
- Center for International Blood and Marrow Transplant Research; National Marrow Donor Program; St. Baldrick’s Foundation. Study of Anti-CD33 Chimeric Antigen Receptor-Expressing T Cells (CD33CART) in Children and Young Adults with Relapsed/Refractory Acute Myeloid Leukemia; National Library of Medicine: Bethesda, MD, USA, 2020. [Google Scholar]
- He, X.; Feng, Z.; Ma, J.; Ling, S.; Cao, Y.; Gurung, B.; Wu, Y.; Katona, B.W.; O’Dwyer, K.P.; Siegel, D.L.; et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood 2020, 135, 713–723. [Google Scholar] [CrossRef]
- Wermke, M.; Kraus, S.; Ehninger, A.; Bargou, R.C.; Goebeler, M.-E.; Middeke, J.M.; Kreissig, C.; von Bonin, M.; Koedam, J.; Pehl, M.; et al. Proof of concept for a rapidly switchable universal CAR-T platform with UniCAR-T-CD123 in relapsed/refractory AML. Blood 2021, 137, 3145–3148. [Google Scholar] [CrossRef] [PubMed]
- Sauer, T.; Parikh, K.; Sharma, S.; Omer, B.; Sedloev, D.N.; Chen, Q.; Angenendt, L.; Schliemann, C.; Schmitt, M.; Müller-Tidow, C.; et al. CD70-specific CAR T-cells have potent activity against Acute Myeloid Leukemia (AML) without HSC toxicity. Blood 2021, 138, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.Y.; Pong, E.; Chen, H.; Phung, S.; Chan, E.W.; Endo, N.A.; Rashid, R.; Bonzon, C.; Leung, I.W.L.; Muchhal, U.S.; et al. Immunotherapy with Long-Lived Anti-CD123 × Anti-CD3 Bispecific Antibodies Stimulates Potent T Cell-Mediated Killing of Human AML Cell Lines and of CD123+ Cells in Monkeys: A Potential Therapy for Acute Myelogenous Leukemia. Blood 2014, 124, 2316. [Google Scholar] [CrossRef]
- Guy, D.G.; Uy, G.L. Bispecific Antibodies for the Treatment of Acute Myeloid Leukemia. Curr. Hematol. Malig. Rep. 2018, 13, 417–425. [Google Scholar] [CrossRef]
- Clark, M.C.; Stein, A. CD33 directed bispecific antibodies in acute myeloid leukemia. Best Pract. Res. Clin. Haematol. 2020, 33, 101224. [Google Scholar] [CrossRef] [PubMed]
- Hoseini, S.S.; Cheung, N.K. Acute myeloid leukemia targets for bispecific antibodies. Blood Cancer J. 2017, 7, e522. [Google Scholar] [CrossRef]
- Yeung, Y.A.; Krishnamoorthy, V.; Dettling, D.; Sommer, C.; Poulsen, K.; Ni, I.; Pham, A.; Chen, W.; Liao-Chan, S.; Lindquist, K.; et al. An Optimized Full-Length FLT3/CD3 Bispecific Antibody Demonstrates Potent Anti-leukemia Activity and Reversible Hematological Toxicity. Mol. Ther. 2020, 28, 889–900. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayac, A.S.; Reagan, J.L. Trials and Tribulations in the Frontline Treatment of Older Adults with Acute Myeloid Leukemia. Hemato 2021, 2, 515-544. https://doi.org/10.3390/hemato2030033
Zayac AS, Reagan JL. Trials and Tribulations in the Frontline Treatment of Older Adults with Acute Myeloid Leukemia. Hemato. 2021; 2(3):515-544. https://doi.org/10.3390/hemato2030033
Chicago/Turabian StyleZayac, Adam S., and John L. Reagan. 2021. "Trials and Tribulations in the Frontline Treatment of Older Adults with Acute Myeloid Leukemia" Hemato 2, no. 3: 515-544. https://doi.org/10.3390/hemato2030033
APA StyleZayac, A. S., & Reagan, J. L. (2021). Trials and Tribulations in the Frontline Treatment of Older Adults with Acute Myeloid Leukemia. Hemato, 2(3), 515-544. https://doi.org/10.3390/hemato2030033