Differences and Similarities in Treatment Paradigms and Goals between AL Amyloidosis and Multiple Myeloma
Abstract
:1. Introduction
2. Epidemiology
3. Prognostic Systems
4. Plasma Cell Characteristics
5. IgM AL Amyloidosis
6. Treatment: General Principles and Goals
7. Intensive Therapy with High-Dose Melphalan and Autologous SCT
8. Treatment of ASCT-Ineligible Patients
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Gertz, M.A.; Comenzo, R.; Falk, R.H.; Fermand, J.P.; Hazenberg, B.P.; Hawkins, P.N.; Merlini, G.; Moreau, P.; Ronco, P.; Sanchorawala, V.; et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): A consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am. J. Hematol. 2005, 79, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Dispenzieri, A.; Gertz, M.A.; Kumar, S.; Wechalekar, A.; HawkinsStefan Schönland, P.N.; Hegenbart, U.; Comenzo, R.; Kastritis, E.; Dimopoulos, M.A.; et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: Impact on survival outcomes. J. Clin. Oncol. 2012, 30, 4541–4549. [Google Scholar] [CrossRef] [PubMed]
- Comenzo, R.L.; Reece, D.; Palladini, G.; Seldin, D.; Sanchorawala, V.; Landau, H.; Falk, R.; Wells, K.; Solomon, A.; Wechalekar, A.; et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia 2012, 26, 2317–2325. [Google Scholar] [CrossRef] [Green Version]
- Wechalekar, A.D.; Gillmore, J.D.; Hawkins, P.N. Systemic amyloidosis. Lancet 2016, 387, 2641–2654. [Google Scholar] [CrossRef]
- Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.-I.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Amyloid fibril proteins and amyloidosis: Chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid 2016, 23, 209–213. [Google Scholar] [CrossRef]
- Lachmann, H.J.; Booth, D.R.; Booth, S.E.; Bybee, A.; Gilbertson, J.A.; Gillmore, J.D.; Pepys, M.B.; Hawkins, P.N. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N. Engl. J. Med. 2002, 346, 1786–1791. [Google Scholar] [CrossRef] [Green Version]
- Gertz, M.A.; Dispenzieri, A. Systemic Amyloidosis Recognition, Prognosis, and Therapy: A Systematic Review. JAMA 2020, 324, 79–89. [Google Scholar] [CrossRef]
- Brink, M. A nationwide, population-based register of systemic al amyloidosis patients in The Netherlands, Preliminary results of 205 patients diagnosed in 2017 and 2018. Hemasphere 2020, 293514, EP1024. [Google Scholar]
- Ludwig, H.; Novis Durie, S.; Meckl, A.; Hinke, A.; Durie, B. Multiple Myeloma Incidence and Mortality Around the Globe, Interrelations Between Health Access and Quality, Economic Resources, and Patient Empowerment. Oncologist 2020, 25, e1406–e1413. [Google Scholar] [CrossRef] [Green Version]
- Palladini, G.; Kyle, R.A.; Larson, D.R.; Therneau, T.M.; Merlini, G.; Gertz, M.A. Multicentre versus single centre approach to rare diseases: The model of systemic light chain amyloidosis. Amyloid 2005, 12, 120–126. [Google Scholar] [CrossRef]
- Rutten, K.H.G.; Raymakers, R.A.P.; Hazenberg, B.P.C.; Nienhuis, H.L.A.; Vellenga, E.; Minnema, M.C. Haematological response and overall survival in two consecutive Dutch patient cohorts with AL amyloidosis diagnosed between 2008 and 2016. Amyloid 2018, 25, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Lousada, I.; Comenzo, R.L.; Landau, H.; Guthrie, S.; Merlini, G. Light Chain Amyloidosis: Patient Experience Survey from the Amyloidosis Research Consortium. Adv. Ther. 2015, 32, 920–928. [Google Scholar] [CrossRef] [Green Version]
- Howell, D.A.; Smith, A.G.; Jack, A.; Patmore, R.; Macleod, U.; Mironska, E.; Roman, E. Time-to-diagnosis and symptoms of myeloma, lymphomas and leukaemias: A report from the Haematological Malignancy Research Network. BMC Hematol. 2013, 13, 9. [Google Scholar] [CrossRef] [Green Version]
- Corre, J.; Perrot, A.; Hulin, C.; Caillot, D.; Stoppa, A.-M.; Facon, T.; Leleu, X.; Dib, M.; Karlin, L.; Moreau, P.; et al. Improved survival in multiple myeloma during the 2005–2009 and 2010–2014 periods. Leukemia 2021, 2021, 1–4. [Google Scholar] [CrossRef]
- Sanchorawala, V.; Sun, F.; Quillen, K.; Sloan, J.M.; Berk, J.L.; Seldin, D.C. Long-term outcome of patients with AL amyloidosis treated with high-dose melphalan and stem cell transplantation: 20-year experience. Blood 2015, 126, 2345–2347. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Kumar, S.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Colby, C.; Laumann, K.; Zeldenrust, S.R.; Leung, N.; Dingli, D.; et al. Revised prognostic staging system for light chain amyloidosis incorporating cardiac biomarkers and serum free light chain measurements. J. Clin. Oncol. 2012, 30, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Wechalekar, A.D.; Schonland, S.O.; Kastritis, E.; Gillmore, J.D.; Dimopoulos, M.A.; Lane, T.; Foli, A.; Foard, D.; Milani, P.; Rannigan, L.; et al. A European collaborative study of treatment outcomes in 346 patients with cardiac stage III AL amyloidosis. Blood 2013, 121, 3420–3427. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Moon, S.Y.; Lee, J.H.; Park, H.-K.; Kong, S.-Y.; Bang, S.-M.; Lee, J.H.; Yoon, S.-S.; Lee, D.S. Discrepancies between the percentage of plasma cells in bone marrow aspiration and BM biopsy: Impact on the revised IMWG diagnostic criteria of multiple myeloma. Blood Cancer J. 2017, 7, e530. [Google Scholar] [CrossRef]
- Hwa, Y.L.; Kumar, S.K.; Gertz, M.A.; Lacy, M.Q.; Buadi, F.K.; Kourelis, T.V.; Gonsalves, W.I.; Rajkumar, S.V.; Go, R.S.; Leung, N.; et al. Induction therapy pre-autologous stem cell transplantation in immunoglobulin light chain amyloidosis: A retrospective evaluation. Am. J. Hematol. 2016, 91, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Kourelis, T.V.; Kumar, S.K.; Gertz, M.A.; Lacy, M.Q.; Buadi, F.K.; Hayman, S.R.; Zeldenrust, S.; Leung, N.; Kyle, R.A.; Russell, S.; et al. Coexistent multiple myeloma or increased bone marrow plasma cells define equally high-risk populations in patients with immunoglobulin light chain amyloidosis. J. Clin. Oncol. 2013, 31, 4319–4324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desikan, K.R.; Dhodapkar, M.V.; Hough, A.; Jagannath, W.S.T.; Siegel, D.; Barlogie, B.; Tricot, G. Incidence and impact of light chain associated (AL) amyloidosis on the prognosis of patients with multiple myeloma treated with autologous transplantation. Leuk. Lymphoma 1997, 27, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Petruzziello, F.; Zeppa, P.; Catalano, L.; Cozzolino, I.; Gargiulo, G.; Musto, P.; D’Auria, F.; Liso, V.; Rizzi, R.; Caruso, N.; et al. Amyloid in bone marrow smears of patients affected by multiple myeloma. Ann. Hematol. 2010, 89, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Kyle, R.A.; Greipp, P.R.; Lust, J.A.; Witzig, T.E.; Lacy, M.Q.; Zeldenrust, S.R.; Rajkumar, S.V.; Russel, S.J.; Hayman, S.R.; Buadi, F.; et al. Asymptomatic immunoglobulin light chain amyloidosis (AL) at the time of diagnostic bone marrow biopsy in newly diagnosed patients with multiple myeloma and smoldering myeloma. A series of 144 cases and a review of the literature. Ann. Hematol. 2011, 90, 101–106. [Google Scholar]
- Chakraborty, R.; Gertz, M.A.; Dispenzieri, A.; Gonsalves, W.I.; Zeldenrust, S.R.; Russell, S.J.; Go, R.S.; Kapoor, P.; Rajkumar, V.S.; Hayman, S.R.; et al. Natural history of amyloidosis isolated to fat and bone marrow aspirate. Br. J. Haematol. 2017, 179, 170–172. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Gertz, M.A.; Kyle, R.A. Primary systemic amyloidosis with delayed progression to multiple myeloma. Cancer 1998, 82, 1501–1505. [Google Scholar] [CrossRef]
- Rutten, K.H.G.; Raymakers, R.A.P.; Minnema, M.C. ‘Transformation’ from amyloid light chain amyloidosis to symptomatic multiple myeloma. Neth. J. Med. 2018, 76, 249–250. [Google Scholar]
- Bahlis, N.J.; Lazarus, H.M. Multiple myeloma-associated AL amyloidosis: Is a distinctive therapeutic approach warranted? Bone Marrow Transplant. 2006, 38, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Gertz, M.A.; Kyle, R.A.; Greipp, P.R. The plasma cell labeling index: A valuable tool in primary systemic amyloidosis. Blood 1989, 74, 1108–1111. [Google Scholar] [CrossRef] [Green Version]
- Abraham, R.S.; Ballman, K.V.; Dispenzieri, A.; Grill, D.E.; Manske, M.K.; Price-Troska, T.L.; Paz, N.G.; Gertz, M.A.; Fonseca, R. Functional gene expression analysis of clonal plasma cells identifies a unique molecular profile for light chain amyloidosis. Blood 2005, 105, 794–803. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Andrade, M.; Becerril-Lujan, B.; Sanchez-Lopez, R.; Ceceña-Álvarez, H.; Pérez-Carreón, J.I.; Ortiz, E.; Fernández-Velasco, D.A.; Pozo-Yauner, L.d. Mutational and genetic determinants of lambda6 light chain amyloidogenesis. FEBS J. 2013, 280, 6173–6183. [Google Scholar] [CrossRef]
- Granzow, M.; Hegenbart, U.; Hinderhofer, K.; Hose, D.; Seckinger, A.; Bochtler, T.; Hemminki, K.; Goldschmidt, H.; Schönland, S.O.; Jauch, A. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: First results from a genome-wide copy number array analysis. Haematologica 2017, 102, 1281–1290. [Google Scholar] [CrossRef] [Green Version]
- Avet-Loiseau, H.; Attal, M.; Moreau, P.; Charbonnel, C.; Garban, F.; Hulin, C.; Leyvraz, S.; Michallet, M.; Yakoub-Agha, I.; Garderet, L.; et al. Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myelome. Blood 2007, 109, 3489–3495. [Google Scholar] [CrossRef] [Green Version]
- Bochtler, T.; Hegenbart, U.; Cremer, F.W.; Heiss, C.; Benner, A.; Hose, D.; Moos, M.; Bila, J.; Bartram, C.R.; Ho, A.D.; et al. Evaluation of the cytogenetic aberration pattern in amyloid light chain amyloidosis as compared with monoclonal gammopathy of undetermined significance reveals common pathways of karyotypic instability. Blood 2008, 111, 4700–4705. [Google Scholar] [CrossRef] [Green Version]
- Bochtler, T.; Hegenbart, U.; Heiss, C.; Benner, A.; Moos, M.; Seckinger, A.; Pschowski-Zuck, S.; Kirn, D.; Neben, K.; Bartram, C.R.; et al. Hyperdiploidy is less frequent in AL amyloidosis compared with monoclonal gammopathy of undetermined significance and inversely associated with translocation t(11;14). Blood 2011, 117, 3809–3815. [Google Scholar] [CrossRef]
- Warsame, R.; Kumar, S.K.; Gertz, M.A.; Lacy, M.Q.; Buadi, F.K.; Hayman, S.R.; Leung, N.; Dingli, D.; Lust, J.A.; Ketterling, R.P.; et al. Abnormal FISH in patients with immunoglobulin light chain amyloidosis is a risk factor for cardiac involvement and for death. Blood Cancer J. 2015, 5, e310. [Google Scholar] [CrossRef]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Benner, A.; Seckinger, A.; Dietrich, S.; Granzow, M.; Neben, K.; Goldschmidt, H.; Ho, A.D.; et al. Gain of chromosome 1q21 is an independent adverse prognostic factor in light chain amyloidosis patients treated with melphalan/dexamethasone. Amyloid 2014, 21, 9–17. [Google Scholar] [CrossRef]
- Bryce, A.H.; Ketterling, R.P.; Gertz, M.A.; Lacy, M.; Knudson, R.A.; Zeldenrust, S.; Kumar, S.; Hayman, S.; Buadi, F.; Kyle, R.A.; et al. Translocation t(11;14) and survival of patients with light chain (AL) amyloidosis. Haematologica 2009, 94, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Granzow, M.; Benner, A.; Seckinger, A.; Kimmich, C.; Goldschmidt, H.; Ho, A.D.; Hose, D.; et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J. Clin. Oncol. 2015, 33, 1371–1378. [Google Scholar] [CrossRef]
- Kastritis, E.; Palladini, G.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Sanchorawala, V.; Gibbs, S.; Mollee, P.; Venner, C.P.; et al. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. N. Engl. J. Med. 2021, 385, 46–58. [Google Scholar] [CrossRef]
- Palladini, G.; Milani, P.; Merlini, G. Management of AL amyloidosis in 2020. Blood 2020, 136, 2620–2627. [Google Scholar] [CrossRef]
- Sidiqi, M.H.; Al Saleh, A.S.; Leung, N.; Jevremovic, D.; Aljama, M.A.; Gonsalves, W.I.; Buadi, F.K.; Kourelis, T.V.; Warsame, R.; Muchtar, E.; et al. Venetoclax for the treatment of translocation (11;14) AL amyloidosis. Blood Cancer J. 2020, 10, 55. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Baz, R.; Harrison, S.J.; Quach, H.; Ho, S.-J.; Vangsted, A.J.; Plesner, T.; Moreau, P.; Gibbs, S.D.; Coppola, S.; et al. Phase I Study of Venetoclax Plus Daratumumab and Dexamethasone, With or Without Bortezomib, in Patients With Relapsed or Refractory Multiple Myeloma With and Without t(11;14). J. Clin. Oncol. 2021, 39, 3602–3612. [Google Scholar] [CrossRef]
- Pasquer, H.; Belhadj, K.; Dupuis, J.; Oghina, S.; Galat, A.; Ladaique, A.; Maarek, A.; Roulin, L.; Gounot, R.; Poulot, E.; et al. Venetoclax induces profound and sustained responses in patients with relapsed/refractory light-chain amyloidosis. Br. J. Haematol. 2021, 193, 674–677. [Google Scholar] [CrossRef]
- Premkumar, V.J.; Lentzsch, S.; Pan, S.; Bhutani, D.; Richter, J.; Jagannath, S.; Liedtke, M.; Jaccard, A.; Wechalekar, A.D.; Comenzo, R.; et al. Venetoclax induces deep hematologic remissions in t(11;14) relapsed/refractory AL amyloidosis. Blood Cancer J. 2021, 11, 10. [Google Scholar] [CrossRef]
- Sidana, S.; Larson, D.P.; Greipp, P.T.; He, R.; McPhail, E.D.; Dispenzieri, A.; Murray, D.L.; Dasari, S.; Ansell, S.M.; Muchtar, E.; et al. IgM AL amyloidosis: Delineating disease biology and outcomes with clinical, genomic and bone marrow morphological features. Leukemia 2020, 34, 1373–1382. [Google Scholar] [CrossRef]
- Sachchithanantham, S.; Roussel, M.; Palladini, G.; Klersy, C.; Mahmood, S.; Venner, C.P.; Gibbs, S.; Gillmore, J.; Lachmann, H.; Hawkins, P.N.; et al. European Collaborative Study Defining Clinical Profile Outcomes and Novel Prognostic Criteria in Monoclonal Immunoglobulin M-Related Light Chain Amyloidosis. J. Clin. Oncol. 2016, 34, 2037–2045. [Google Scholar] [CrossRef]
- Zanwar, S.; Abeykoon, J.P.; Ansell, S.M.; Gertz, M.A.; Dispenzieri, A.; Muchtar, E.; Sidana, S.; Tandon, N.; Rajkumar, S.V.; Dingli, D.; et al. Primary systemic amyloidosis in patients with Waldenström macroglobulinemia. Leukemia 2019, 33, 790–794. [Google Scholar] [CrossRef]
- Sidana, S.; Dasari, S.; Kourelis, T.V.; Dispenzieri, A.; Murray, D.L.; King, R.L.; McPhail, E.D.; Ramirez-Alvarado, M.; Kumar, S.K.; Gertz, M.A. IGVL gene region usage correlates with distinct clinical presentation in IgM vs non-IgM light chain amyloidosis. Blood Adv. 2021, 5, 2101–2105. [Google Scholar] [CrossRef]
- Milani, P.; Schonland, S.; Merlini, G.; Kimmich, C.; Foli, A.; Dittrich, T.; Basset, M.; Müller-Tidow, C.; Bochtler, T.; Palladini, G.; et al. Treatment of AL amyloidosis with bendamustine: A study of 122 patients. Blood 2018, 132, 1988–1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentzsch, S.; Lagos, G.G.; Comenzo, R.L.; Zonder, J.A.; Osman, K.; Pan, S.; Bhutani, D.; Pregja, S.; Sanchorawala, V.; Landau, H. Bendamustine with Dexamethasone in Relapsed/Refractory Systemic Light-Chain Amyloidosis: Results of a Phase II Study. J. Clin. Oncol. 2020, 38, 1455–1462. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Foli, A.; Russo, P.; Milani, P.; Obici, L.; Lavatelli, F.; Merlini, G. Treatment of IgM-associated AL amyloidosis with the combination of rituximab, bortezomib, and dexamethasone. Clin. Lymphoma Myeloma Leuk. 2011, 11, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Pika, T.; Hegenbart, U.; Flodrova, P.; Maier, B.; Kimmich, C.; Schönland, S.O. First report of ibrutinib in IgM-related amyloidosis: Few responses, poor tolerability, and short survival. Blood 2018, 131, 368–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leguit, R.J.; Vink, A.; de Jonge, N.; Minnema, M.C.; Oerlemans, M.I.F. Endomyocardial biopsy with co-localization of a lymphoplasmacytic lymphoma and AL amyloidosis. Cardiovasc. Pathol. 2021, 53, 107348. [Google Scholar] [CrossRef] [PubMed]
- Sidiqi, M.H.; Buadi, F.K.; Dispenzieri, A.; Warsame, R.; Lacy, M.Q.; Dingli, D.; Leung, N.; Gonsalves, W.I.; Kapoor, P.; Kourelis, T.V.; et al. Autologous Stem Cell Transplant for IgM-Associated Amyloid Light-Chain Amyloidosis. Biol. Blood Marrow Transplant. 2019, 25, e108–e111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imperlini, E.; Gnecchi, M.; Rognoni, P.; Sabidò, E.; Ciuffreda, M.C.; Palladini, G.; Espadas, G.; Mancuso, F.M.; Bozzola, M.; Malpasso, G.; et al. Proteotoxicity in cardiac amyloidosis: Amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci. Rep. 2017, 7, 15661. [Google Scholar] [CrossRef]
- Palladini, G.; Schönland, S.O.; Sanchorawala, V.; Kumar, S.; Wechalekar, A.; Hegenbart, U.; Milan, P.; Ando, Y.; Westermark, P.; Dispenzieri, A.; et al. Clarification on the definition of complete haematologic response in light-chain (AL) amyloidosis. Amyloid 2021, 28, 1–2. [Google Scholar] [CrossRef]
- Lachmann, H.J.; Gallimore, R.; Gillmore, J.D.; Carr-Smith, H.-D.; Bradwell, A.R.; Pepys, M.B.; Hawkins, P.N. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br. J. Haematol. 2003, 122, 78–84. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.-V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Staron, A.; Burks, E.J.; Lee, J.C.; Sarosiek, S.; Sloan, J.M.; Sanchorawala, V. Assessment of minimal residual disease using multiparametric flow cytometry in patients with AL amyloidosis. Blood Adv. 2020, 4, 880–884. [Google Scholar] [CrossRef] [Green Version]
- Palladini, G.; Merlini, G. When should treatment of AL amyloidosis start at relapse? Early, to prevent organ progression. Blood Adv. 2019, 3, 212–215. [Google Scholar] [CrossRef] [Green Version]
- Sanchorawala, V. Delay treatment of AL amyloidosis at relapse until symptomatic: Devil is in the details. Blood Adv. 2019, 3, 216–218. [Google Scholar] [CrossRef]
- Palladini, G.; Merlini, G. What is new in diagnosis and management of light chain amyloidosis? Blood 2016, 128, 159–168. [Google Scholar] [CrossRef]
- Wechalekar, A.D.; Gillmore, J.D.; Bird, J.; Cavenagh, J.; Hawkins, S.; Kazmi, M.; Lachmann, H.J.; Hawkins, P.N.; Pratt, G. Guidelines on the management of AL amyloidosis. Br. J. Haematol. 2015, 168, 186–206. [Google Scholar] [CrossRef]
- Minnema, M.C.; Nasserinejad, K.; Hazenberg, B.; Hegenbart, U.; Vlummens, P.; Ypma, P.F.; Kröger, N.; Wu, K.L.; Kersten, M.J.; Schaafsma, M.R.; et al. Bortezomib-based induction followed by stem cell transplantation in light chain amyloidosis: Results of the multicenter HOVON 104 trial. Haematologica 2019, 104, 2274–2282. [Google Scholar] [CrossRef]
- Cibeira, M.T.; Sanchorawala, V.; Seldin, D.C.; Quillen, K.; Berk, J.L.; Dember, L.M.; Segal, A.; Ruberg, F.; Meier-Ewert, H.; Andrea, N.T.; et al. Outcome of AL amyloidosis after high-dose melphalan and autologous stem cell transplantation: Long-term results in a series of 421 patients. Blood 2011, 118, 4346–4352. [Google Scholar] [CrossRef]
- Reece, D.E.; Hegenbart, U.; Sanchorawala, V.; Merlini, G.; Palladini, G.; Bladé, J.; Fermand, J.-P.; Hassoun, H.; Heffner, L.; Vescio, R.A.; et al. Efficacy and safety of once-weekly and twice-weekly bortezomib in patients with relapsed systemic AL amyloidosis: Results of a phase 1/2 study. Blood 2011, 118, 865–873. [Google Scholar] [CrossRef] [Green Version]
- Kastritis, E.; Leleu, X.; Arnulf, B.; Zamagni, E.; Cibeira, M.T.; Kwok, F.; Mollee, P.; Hájek, R.; Moreau, P.; Jaccard, A.; et al. Bortezomib, Melphalan, and Dexamethasone for Light-Chain Amyloidosis. J. Clin. Oncol. 2020, 38, 3252–3260. [Google Scholar] [CrossRef]
- Palladini, G.; Sachchithanantham, S.; Milani, P.; Gillmore, J.; Foli, A.; Lachmann, H.; Basset, M.; Hawkins, P.; Merlini, G.; Wechalekar, A.D.; et al. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood 2015, 126, 612–615. [Google Scholar] [CrossRef] [Green Version]
- Manwani, R.; Cohen, O.; Sharpley, F.; Mahmood, S.; Sachchithanantham, S.; Foard, D.; Lachmann, H.J.; Quarta, C.; Fontana, M.; Gillmore, J.D.; et al. A prospective observational study of 915 patients with systemic AL amyloidosis treated with upfront bortezomib. Blood 2019, 134, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Lacy, M.Q.; Zeldenrust, S.R.; Hayman, S.R.; Kumar, S.K.; Geyer, S.M.; Lust, J.A.; Allred, J.B.; Witzig, T.E.; Rajkumar, S.V.; et al. The activity of lenalidomide with or without dexamethasone in patients with primary systemic amyloidosis. Blood 2007, 109, 465–470. [Google Scholar] [CrossRef] [PubMed]
AL Amyloidosis | Multiple Myeloma | |
---|---|---|
Incidence per million patients/year | 6–12 | 50–60 |
Median age at diagnosis | 68 years | 70 years |
Men/women | 62%/38% | 63%/37% |
Median survival | 3.8 years | 7–10 years |
Estimated diagnostic delay | 180–441 days | 163 days |
Expression lambda | 70% | 40% |
Cytogenetics | t(11:14) in ≈ 60% hyperdiploidy ≈ 20% | t(11:14) in ≈ 20% hyperdiploidy ≈ 50% |
Bone marrow infiltration, median | 7–10% | 40% |
Drug | Multiple Myeloma | AL Amyloidosis |
---|---|---|
bortezomib | 1.3 mg/m2 day 1,4,8,11/21 days | 1.3 mg/m2 day 1,8,15,21/28 days |
ixazomib | 4 mg day 1,8,15/28 days | 4 mg day 1,8,15/28 days |
carfilzomib | Maximal 20/56 day 1,2,8,9,15,16/28 days | drug not preferred |
melphalan | Diverse dosing, po and iv | Similar dosing po and iv |
cyclophosphamide | 500 mg/m2, iv, per week | 300 mg/m2, max 500 mg, p.o, per week |
dexamethasone | 40 mg per week | 10–20 mg per week |
thalidomide | 200 mg daily | 50-100 mg daily |
lenalidomide | 25 mg 1–21/28 days | 15 mg 1–21/28 days |
pomalidomide | 4 mg 1–21/28 days | 4 mg 1–21/28 days |
daratumumab | 1800 mg sc or 16 mg/kg iv | 1800 mg sc or 16 mg/kg iv |
isatuximab | 10–20 mg/kg iv | 20 mg/kg iv |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minnema, M.C.; Oostvogels, R.; Raymakers, R.; Jak, M. Differences and Similarities in Treatment Paradigms and Goals between AL Amyloidosis and Multiple Myeloma. Hemato 2021, 2, 680-691. https://doi.org/10.3390/hemato2040045
Minnema MC, Oostvogels R, Raymakers R, Jak M. Differences and Similarities in Treatment Paradigms and Goals between AL Amyloidosis and Multiple Myeloma. Hemato. 2021; 2(4):680-691. https://doi.org/10.3390/hemato2040045
Chicago/Turabian StyleMinnema, Monique C., Rimke Oostvogels, Reinier Raymakers, and Margot Jak. 2021. "Differences and Similarities in Treatment Paradigms and Goals between AL Amyloidosis and Multiple Myeloma" Hemato 2, no. 4: 680-691. https://doi.org/10.3390/hemato2040045
APA StyleMinnema, M. C., Oostvogels, R., Raymakers, R., & Jak, M. (2021). Differences and Similarities in Treatment Paradigms and Goals between AL Amyloidosis and Multiple Myeloma. Hemato, 2(4), 680-691. https://doi.org/10.3390/hemato2040045