Treatment in AL Amyloidosis: Moving towards Individualized and Clone-Directed Therapy
Abstract
:1. Introduction
2. Staging of AL Amyloidosis and Characterization of the Underlying Clone
3. Clone-Directed Treatment in AL Amyloidosis
4. Alkylators
5. Proteasome Inhibitors (PIs)
6. Immunomodulatory Agents (IMiDs)
7. Monoclonal Antibodies
8. Bispecific Antibodies and CAR-T-Cells
9. Pathway-Inhibition
10. Anti-Amyloid Treatment
11. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palladini, G.; Milani, P.; Merlini, G. Management of AL amyloidosis in 2020. Blood 2020, 136, 2620–2627. [Google Scholar] [CrossRef] [PubMed]
- Murray, D.L.; Dasari, S. Clinical mass spectrometry approaches to myeloma and amyloidosis. Clin. Lab. Med. 2021, 41, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Puig, N.; Paiva, B.; Lasa, M.; Burgos, L.; Perez, J.J.; Merino, J.; Moreno, C.; Vidriales, M.-B.; Toboso, D.G.; Cedena, M.-T.; et al. Flow cytometry for fast screening and automated risk assessment in systemic light-chain amyloidosis. Leukemia 2019, 33, 1256–1267. [Google Scholar] [CrossRef]
- Lisenko, K.; Schönland, S.; Jauch, A.; Andrulis, M.; Röcken, C.; Ho, A.D.; Goldschmidt, H.; Hegenbart, U.; Hundemer, M. Flow cytometry-based characterization of underlying clonal B and plasma cells in patients with light chain amyloidosis. Cancer Med. 2016, 5, 1464–1472. [Google Scholar] [CrossRef]
- Bochtler, T.; Merz, M.; Hielscher, T.; Granzow, M.; Hoffmann, K.; Krämer, A.; Raab, M.-S.; Hillengass, J.; Seckinger, A.; Kimmich, C.; et al. Cytogenetic intraclonal heterogeneity of plasma cell dyscrasia in AL amyloidosis as compared with multiple myeloma. Blood Adv. 2018, 2, 2607–2618. [Google Scholar] [CrossRef] [Green Version]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Granzow, M.; Benner, A.; Seckinger, A.; Kimmich, C.; Goldschmidt, H.; Ho, A.D.; Hose, D.; et al. Translocation t(11;14) is associated with adverse outcome in patients with newly diagnosed AL amyloidosis when treated with bortezomib-based regimens. J. Clin. Oncol. 2015, 33, 1371–1378. [Google Scholar] [CrossRef]
- Bertamini, L.; D’Agostino, M.; Gay, F. MRD assessment in multiple myeloma: Progress and challenges. Curr. Hematol. Malig. Rep. 2021, 16, 162–171. [Google Scholar] [CrossRef]
- Bagratuni, T.; Ntanasis-Stathopoulos, I.; Gavriatopoulou, M.; Mavrianou-Koutsoukou, N.; Liacos, C.; Patseas, D.; Kanellias, N.; Migkou, M.; Ziogas, D.C.; Eleutherakis-Papaiakovou, E.; et al. Detection of MYD88 and CXCR4 mutations in cell-free DNA of patients with IgM monoclonal gammopathies. Leukemia 2018, 32, 2617–2625. [Google Scholar] [CrossRef]
- Palladini, G.; Milani, P.; Foli, A.; Obici, L.; Lavatelli, F.; Nuvolone, M.; Caccialanza, R.; Perlini, S.; Merlini, G. Oral melphalan and dexamethasone grants extended survival with minimal toxicity in AL amyloidosis: Long-term results of a risk-adapted approach. Haematologica 2014, 99, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastritis, E.; Leleu, X.; Arnulf, B.; Zamagni, E.; Cibeira, M.T.; Kwok, F.; Mollee, P.; Hájek, R.; Moreau, P.; Jaccard, A.; et al. Bortezomib, melphalan, and dexamethasone for light-chain amyloidosis. J. Clin. Oncol. 2020, 38, 3252–3260. [Google Scholar] [CrossRef]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Benner, A.; Seckinger, A.; Dietrich, S.; Granzow, M.; Neben, K.; Goldschmidt, H.; Ho, A.D.; et al. Gain of chromosome 1q21 is an independent adverse prognostic factor in light chain amyloidosis patients treated with melpha-lan/dexamethasone. Amyloid 2014, 21, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Sanchorawala, V. High-dose melphalan and autologous peripheral blood stem cell transplantation in AL amyloidosis. Acta Haematol. 2020, 143, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Hwa, Y.L.; Kumar, S.K.; Gertz, M.A.; Lacy, M.Q.; Buadi, F.K.; Kourelis, T.V.; Gonsalves, W.I.; Rajkumar, S.V.; Go, R.S.; Leung, N.; et al. Induction therapy preautologous stem cell transplantation in immunoglobulin light chain amyloidosis: A retrospective evaluation. Am. J. Hematol. 2016, 91, 984–988. [Google Scholar] [CrossRef] [PubMed]
- Afrough, A.; Saliba, R.M.; Hamdi, A.; Honhar, M.; Varma, A.; Cornelison, A.M.; Rondon, G.; Parmar, S.; Shah, N.D.; Bashir, Q.; et al. Impact of induction therapy on the outcome of immunoglobulin light chain amyloidosis after autologous hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2018, 24, 2197–2203. [Google Scholar] [CrossRef] [Green Version]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Benner, A.; Kimmich, C.; Seckinger, A.; Hose, D.; Goldschmidt, H.; Granzow, M.; Dreger, P.; et al. Prognostic impact of cytogenetic aberrations in AL amyloidosis patients after high-dose melphalan: A long-term follow-up study. Blood 2016, 128, 594–602. [Google Scholar] [CrossRef] [Green Version]
- Sanchorawala, V.; Boccadoro, M.; Gertz, M.; Hegenbart, U.; Kastritis, E.; Landau, H.; Mollee, P.; Wechalekar, A.; Palladini, G. Guidelines for high dose chemotherapy and stem cell transplantation for systemic AL amyloidosis: EHA-ISA working group guidelines. Amyloid 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sanchorawala, V.; Sun, F.; Quillen, K.; Sloan, J.M.; Berk, J.L.; Seldin, D.C. Long-term outcome of patients with AL amyloidosis treated with high-dose melphalan and stem cell transplantation: 20-year experience. Blood 2015, 126, 2345–2347. [Google Scholar] [CrossRef] [Green Version]
- Minnema, M.C.; Nasserinejad, K.; Hazenberg, B.; Hegenbart, U.; Vlummens, P.; Ypma, P.F.; Kröger, N.; Wu, K.L.; Kersten, M.J.; Schaafsma, M.R.; et al. Bortezomib-based induction followed by stem cell transplantation in light chain amyloidosis: Results of the multicenter HOVON 104 trial. Haematologica 2019, 104, 2274–2282. [Google Scholar] [CrossRef]
- Milani, P.; Schönland, S.; Merlini, G.; Kimmich, C.; Foli, A.; Dittrich, T.; Basset, M.; Müller-Tidow, C.; Bochtler, T.; Palladini, G.; et al. Treatment of AL amyloidosis with bendamustine: A study of 122 patients. Blood 2018, 132, 1988–1991. [Google Scholar] [CrossRef] [Green Version]
- Lentzsch, S.; Lagos, G.G.; Comenzo, R.L.; Zonder, J.A.; Osman, K.; Pan, S.; Bhutani, D.; Pregja, S.; Sanchorawala, V.; Landau, H. Bendamustine with dexamethasone in relapsed/refractory systemic light-chain amyloidosis: Results of a phase II study. J. Clin. Oncol. 2020, 38, 1455–1462. [Google Scholar] [CrossRef]
- Palladini, G.; Sachchithanantham, S.; Milani, P.; Gillmore, J.; Foli, A.; Lachmann, H.; Basset, M.; Hawkins, P.; Merlini, G.; Wechalekar, A.D. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood 2015, 126, 612–615. [Google Scholar] [CrossRef] [Green Version]
- Muchtar, E.; Dispenzieri, A.; Kumar, S.K.; Ketterling, R.P.; Dingli, D.; Lacy, M.Q.; Buadi, F.K.; Hayman, S.R.; Kapoor, P.; Leung, N.; et al. Interphase fluorescence in situ hybridization in untreated AL amyloidosis has an independent prognostic impact by abnormality type and treatment category. Leukemia 2017, 31, 1562–1569. [Google Scholar] [CrossRef] [PubMed]
- Dispenzieri, A.; Kastritis, E.; Wechalekar, A.D.; Schönland, S.O.; Kim, K.; Sanchorawala, V.; Landau, H.J.; Kwok, F.; Suzuki, K.; Comenzo, R.L.; et al. A randomized phase 3 study of ixazomib-dexamethasone versus physician’s choice in relapsed or refractory AL amyloidosis. Leukemia 2021, 1–11. [Google Scholar] [CrossRef]
- Manwani, R.; Mahmood, S.; Sachchithanantham, S.; Lachmann, H.J.; Gillmore, J.D.; Yong, K.; Rabin, N.; Popat, R.; Kyriakou, C.; Worthington, S.; et al. Carfilzomib is an effective upfront treatment in AL amyloidosis patients with peripheral and autonomic neuropathy. Br. J. Haematol. 2019, 187, 638–641. [Google Scholar] [CrossRef]
- Wechalekar, A.D.; Goodman, H.J.B.; Lachmann, H.; Offer, M.; Hawkins, P.N.; Gillmore, J.D. Safety and efficacy of risk-adapted cyclophosphamide, thalidomide, and dexamethasone in systemic AL amyloidosis. Blood 2007, 109, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Sanchorawala, V.; Wright, D.G.; Rosenzweig, M.; Finn, K.T.; Fennessey, S.; Zeldis, J.B.; Skinner, M.; Seldin, D.C. Lenalidomide and dexamethasone in the treatment of AL amyloidosis: Results of a phase 2 trial. Blood 2007, 109, 492–496. [Google Scholar] [CrossRef]
- Basset, M.; Kimmich, C.R.; Schreck, N.; Krzykalla, J.; Dittrich, T.; Veelken, K.; Goldschmidt, H.; Seckinger, A.; Hose, D.; Jauch, A.; et al. Lenalidomide and dexamethasone in relapsed/refractory immunoglobulin light chain (AL) amyloidosis: Results from a large cohort of patients with long follow-up. Br. J. Haematol. 2021, 195, 230–243. [Google Scholar] [CrossRef]
- Hegenbart, U.; Bochtler, T.; Benner, A.; Becker, N.; Kimmich, C.; Kristen, A.V.; Beimler, J.; Hund, E.; Zorn, M.; Freiberger, A.; et al. Lenalidomide/melphalan/dexamethasone in newly diagnosed patients with immunoglobulin light chain amyloidosis: Results of a prospective phase 2 study with long-term follow up. Haematologica 2017, 102, 1424–1431. [Google Scholar] [CrossRef]
- Kimmich, C.R.; Terzer, T.; Benner, A.; Hansen, T.; Carpinteiro, A.; Dittrich, T.; Veelken, K.; Jauch, A.; Huhn, S.; Basset, M.; et al. Daratumumab, lenalidomide, and dexamethasone in systemic light-chain amyloidosis: High efficacy, relevant toxicity and main adverse effect of gain 1q21. Am. J. Hematol. 2021, 96, E253–E257. [Google Scholar] [CrossRef] [PubMed]
- Milani, P.; Sharpley, F.; Schönland, S.O.; Basset, M.; Mahmood, S.; Nuvolone, M.; Kimmich, C.; Foli, A.; Sachchithanantham, S.; Merlini, G.; et al. Pomalidomide and dexamethasone grant rapid haematologic responses in patients with relapsed and refractory AL amyloidosis: A European retrospective series of 153 patients. Amyloid 2020, 27, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Wäsch, R.; Munder, M.; Goldschmidt, H.; Raab, M.S. Novel immunotherapies in multiple myeloma—Chances and challenges. Haematologica 2021, 106, 2555–2565. [Google Scholar] [CrossRef] [PubMed]
- Kimmich, C.R.; Terzer, T.; Benner, A.; Dittrich, T.; Veelken, K.; Carpinteiro, A.; Hansen, T.; Gold-schmidt, H.; Seckinger, A.; Hose, D.; et al. Daratumumab for systemic AL amyloidosis: Prognostic factors and adverse outcome with nephrotic-range albuminuria. Blood 2020, 135, 1517–1530. [Google Scholar] [CrossRef]
- Kastritis, E.; Palladini, G.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Sanchorawala, V.; Gibbs, S.; Mollee, P.; Venner, C.P.; et al. Daratumumab-based treatment for immunoglobulin light-chain amyloidosis. N. Engl. J. Med. 2021, 385, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Milani, P.; Malavasi, F.; Merlini, G. Daratumumab in the treatment of light-chain (AL) amyloidosis. Cells 2021, 10, 545. [Google Scholar] [CrossRef]
- Godara, A.; Palladini, G. Monoclonal antibody therapies in systemic light-chain amyloidosis. Hematol. Oncol. Clin. N. Am. 2020, 34, 1145–1159. [Google Scholar] [CrossRef]
- Bochtler, T.; Hegenbart, U.; Heiss, C.; Benner, A.; Moos, M.; Seckinger, A.; Pschowski-Zuck, S.; Kirn, D.; Neben, K.; Bartram, C.R.; et al. Hyperdiploidy is less frequent in AL amyloidosis compared with monoclonal gammopathy of undetermined significance and inversely associated with translocation t(11;14). Blood 2011, 117, 3809–3815. [Google Scholar] [CrossRef]
- Perini, G.F.; Feres, C.C.P.; Teixeira, L.L.C.; Hamerschlak, N. BCL-2 Inhibition as treatment for chronic lymphocytic leukemia. Curr. Treat. Options Oncol. 2021, 22, 1–9. [Google Scholar] [CrossRef]
- Othman, T.A.; Azenkot, T.; Moskoff, B.N.; Tenold, M.E.; Jonas, B.A. Venetoclax-based combinations for the treatment of newly diagnosed acute myeloid leukemia. Future Oncol. 2021, 17, 2989–3005. [Google Scholar] [CrossRef] [PubMed]
- Sidiqi, M.H.; Al Saleh, A.S.; Kumar, S.K.; Leung, N.; Jevremovic, D.; Muchtar, E.; Gonsalves, W.I.; Kou-relis, T.V.; Warsame, R.; Buadi, F.K.; et al. Venetoclax for the treatment of multiple myeloma: Outcomes outside of clinical trials. Am. J. Hematol. 2021, 96, 1131–1136. [Google Scholar] [CrossRef]
- Sidiqi, M.H.; Al Saleh, A.S.; Leung, N.; Jevremovic, D.; Aljama, M.A.; Gonsalves, W.I.; Buadi, F.K.; Kourelis, T.V.; Warsame, R.; Muchtar, E.; et al. Venetoclax for the treatment of translocation (11;14) AL amyloidosis. Blood Cancer J. 2020, 10, 1–4. [Google Scholar] [CrossRef]
- Premkumar, V.J.; Lentzsch, S.; Pan, S.; Bhutani, D.; Richter, J.; Jagannath, S.; Liedtke, M.; Jaccard, A.; Wechalekar, A.D.; Comenzo, R.; et al. Venetoclax induces deep hematologic remissions in t(11;14) relapsed/refractory AL amyloidosis. Blood Cancer J. 2021, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Pika, T.; Hegenbart, U.; Flodrova, P.; Maier, B.; Kimmich, C.; Schönland, S.O. First report of ibrutinib in IgM-related amyloidosis: Few responses, poor tolerability, and short survival. Blood 2018, 131, 368–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegenbart, U.; aus dem Siepen, F.; Benner, A.; Wink, M.; Buss, S.; Mereles, D.; Aurich, M.; Kimmich, C.; Andre, F.; Ho, A.D.; et al. EGCG treatment in patients with cardiac AL amyloidosis: First results of a randomized and placebo-controlled clinical trial of Germany. The XVI. Int. Symp. Amyloidosis 2018, 2018, e287. [Google Scholar]
- D’Souza, A.; Szabo, A.; Flynn, K.E.; Dhakal, B.; Chhabra, S.; Pasquini, M.C.; Weihrauch, D.; Hari, P.N. Adjuvant doxycycline to enhance anti-amyloid effects: Results from the dual phase 2 trial. EClinicalMedicine 2020, 23, 100361. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.N.; Fu, W.J.; Wu, Y.; Dong, Y.J.; Huang, Z.X.; Wei, Y.Q.; Li, C.R.; Sun, C.Y.; Chen, Y.; Miao, H.L.; et al. Doxycycline combined with bortezomib-cyclophosphamide-dexamethasone chemotherapy for newly diagnosed cardiac light-chain amyloidosis: A multicenter randomized controlled trial. Circulation 2021. [CrossRef] [PubMed]
- Richards, D.B.; Cookson, L.M.; Berges, A.C.; Barton, S.V.; Lane, T.; Ritter, J.M.; Fontana, M.; Moon, J.C.; Pin-zani, M.; Gillmore, J.D.; et al. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N. Engl. J. Med. 2015, 373, 1106–1114. [Google Scholar] [CrossRef] [Green Version]
- Gertz, M.A.; Landau, H.J.; Weiss, B.M. Organ response in patients with AL amyloidosis treated with NEOD001, an amyloid-directed monoclonal antibody. Am. J. Hematol. 2016, 91, E506–E508. [Google Scholar] [CrossRef]
- Edwards, C.V.; Rao, N.; Bhutani, D.; Mapara, M.Y.; Radhakrishnan, J.; Shames, S.; Maurer, M.S.; Leng, S.; Solomon, A.; Lentzsch, S.; et al. Phase 1a/b study of monoclonal antibody CAEL-101 (11-1F4) in patients with AL amyloidosis. Blood 2021. [CrossRef]
Method | Significance |
---|---|
Measurement of immunofixation in serum and urine as well as free light chains in serum | Standard non-invasive method to evaluate monoclonal gammopathy in the daily practice without sampling error |
Bone marrow examination | |
Cytology | Number of cells, phenotype |
Biopsy | Number of clonal cells (light chain restriction), phenotype |
FACS | Phenotype, differentiation between clonal plasma and B cells, measurement of minimal residual disease [3,4] |
iFISH | Detection of cytogenetic aberrations (gain of 1,5,15,19; deletion 13 and 17, translocations) [5,6] |
Serum mass spectrometry | Qualitative detection of small amounts of amyloidogenic proteins in serum [2] Measurement of minimal residual disease [7] |
MYD88 L265P, CXCR4 | Clonal markers for IgM gammopathies [8] |
Identifier | Target | Drug Combinations | Type | Institution |
---|---|---|---|---|
NCT04895917 | CD38 | Dara + pomalidomide | Second line | Amyloidosis Center Pavia, Italy |
NCT04474938 | CD38 | Dara-bortezomib–dexamethason | Upfront, Mayo Stage 4 | University Beijing, China |
NCT04131309 | CD38 | Dara-bortezomib–dexamethason | Upfront, Mayo Stage IIIb | Multicenter Europe |
NCT03283917 | CD38 | Dara-ixazomib–dexamethason | Upfront and relapsed/refractory | MD Anderson, Houston, USA |
NCT04270175 | CD38 | Dara-pomalidomide–dexamethason | relapsed/refractory | Multicenter USA |
NCT04754945 | CD38 | Isatuximab | High-risk | Multicenter USA |
NCT04617925 | BCMA | Belantamab–mafodotin | Phase II, pre-treated | Multicenter Europe |
none | SLAMF7 | Elotuzumab | ||
none | CD20 | Rituximab |
Drug | Pro | Con |
---|---|---|
High-dose melphalan and ASCT | High rate of hematologic remission and organ response Long-term efficacy, probably cure in some patients | Only available for selected patients Increased treatment-related mortality and morbidity Risk of secondary malignancies |
Proteasome-inhibitors | Fast reduction of the tumor burden Subcutaneous application | Risk of polyneuropathy Reduced efficacy in patients with t(11;14) |
IMID’s | Effective in combination therapies Oral application | Reduced efficacy in patients with gain 1q21 Cardiac and renal side effects |
CD38 antibodies | High rate of CR/VGPR and organ responses in combination with chemotherapy Approved therapy in many countries Few side effects | No long term data available |
Bcl-2 inhibitors | High efficacy in patients with t(11;14) | No long term data available |
Drug (and Reference) | Mechanism of Action | Current Status |
---|---|---|
Epigallocatechinegallat (EGCG), green tea substance [43] | Inhibition of amyloid formation and/or degradation | Clinical trial not successful. Compound cannot be applied in high dosages due to liver toxicity. Poor intestinal resorption. |
Doxycycline [44] | Inhibition of fibril formation | One clinical trial ongoing (NCT03474458), no effect in one randomized clinical trial [45] |
Miridesap + dezamizumab [46] | SAP depletion in plasma + SAP removal from the tissue | Phase III trial was closed due to toxicity issues |
Birtamimab [47] | Immunoglobulin G1 kappa monoclonal antibody, binds to light chain aggregates | Two clinical trials closed due to missing efficacy in interim analysis; one ongoing prospective Phase III trial in patients with cardiac stage Mayo IV |
CAEL-101 [48] | Chimeric immunoglobulin G1 kappa monoclonal antibody binds to a cryptic epitope at light chain proteins that adopt a non-native structure | Two ongoing prospective Phase III trials in patients with cardiac AL patients, ongoing (NCT02245867) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegenbart, U.; Raab, M.S.; Schönland, S.O. Treatment in AL Amyloidosis: Moving towards Individualized and Clone-Directed Therapy. Hemato 2021, 2, 739-747. https://doi.org/10.3390/hemato2040050
Hegenbart U, Raab MS, Schönland SO. Treatment in AL Amyloidosis: Moving towards Individualized and Clone-Directed Therapy. Hemato. 2021; 2(4):739-747. https://doi.org/10.3390/hemato2040050
Chicago/Turabian StyleHegenbart, Ute, Marc S. Raab, and Stefan O. Schönland. 2021. "Treatment in AL Amyloidosis: Moving towards Individualized and Clone-Directed Therapy" Hemato 2, no. 4: 739-747. https://doi.org/10.3390/hemato2040050
APA StyleHegenbart, U., Raab, M. S., & Schönland, S. O. (2021). Treatment in AL Amyloidosis: Moving towards Individualized and Clone-Directed Therapy. Hemato, 2(4), 739-747. https://doi.org/10.3390/hemato2040050