Monitoring Patients with Light Chain (AL) Amyloidosis during and after Therapy: Response Assessment and Identification of Relapse
Abstract
:1. Introduction
2. Hematologic Response Assessment
3. Hematologic Response Assessment for Patients with Non-Measurable Disease
4. New Proposed Hematologic Response Criteria Based on FLC Measurement
5. Hematologic Response Based on New Tools for Assessment
6. Organ Response Assessment
7. Hematologic and Organ Progression Criteria
8. Monitoring Response Assessment during and off Treatment
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Merlini, G.; Dispenzieri, A.; Sanchorawala, V.; Schonland, S.O.; Palladini, G.; Hawkins, P.N.; Gertz, M.A. Systemic immunoglobulin light chain amyloidosis. Nat. Rev. Dis. Primers 2018, 4, 38. [Google Scholar] [CrossRef]
- Mishra, S.; Guan, J.; Plovie, E.; Seldin, D.C.; Connors, L.H.; Merlini, G.; Falk, R.H.; MacRae, C.A.; Liao, R. Human amyloidogenic light chain proteins result in cardiac dysfunction, cell death, and early mortality in zebrafish. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H95–H103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palladini, G.; Milani, P.; Merlini, G. Management of AL amyloidosis in 2020. Blood 2020, 136, 2620–2627. [Google Scholar] [CrossRef]
- Milani, P.; Basset, M.; Russo, F.; Foli, A.; Merlini, G.; Palladini, G. Patients with light-chain amyloidosis and low free light-chain burden have distinct clinical features and outcome. Blood 2017, 130, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Dittrich, T.; Bochtler, T.; Kimmich, C.; Becker, N.; Jauch, A.; Goldschmidt, H.; Ho, A.D.; Hegenbart, U.; Schonland, S.O. AL amyloidosis patients with low amyloidogenic free light chain levels at first diagnosis have an excellent prognosis. Blood 2017, 130, 632–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palladini, G.; Paiva, B.; Wechalekar, A.; Massa, M.; Milani, P.; Lasa, M.; Ravichandran, S.; Krsnik, I.; Basset, M.; Burgos, L.; et al. Minimal residual disease negativity by next-generation flow cytometry is associated with improved organ response in AL amyloidosis. Blood Cancer J. 2021, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Milani, P.; Merlini, G.; Palladini, G. What does minimal residual disease mean in AL amyloidosis? Expert Opin. Orphan Drugs 2018, 6, 703–705. [Google Scholar] [CrossRef]
- Muchtar, E.; Dispenzieri, A.; Leung, N.; Lacy, M.Q.; Buadi, F.K.; Dingli, D.; Grogan, M.; Hayman, S.R.; Kapoor, P.; Hwa, Y.L.; et al. Depth of organ response in AL amyloidosis is associated with improved survival: Grading the organ response criteria. Leukemia 2018, 32, 2240–2249. [Google Scholar] [CrossRef]
- Gertz, M.A.; Comenzo, R.; Falk, R.H.; Fermand, J.P.; Hazenberg, B.P.; Hawkins, P.N.; Merlini, G.; Moreau, P.; Ronco, P.; Sanchorawala, V.; et al. Definition of organ involvement and treatment response in immunoglobulin light chain amyloidosis (AL): A consensus opinion from the 10th International Symposium on Amyloid and Amyloidosis, Tours, France, 18–22 April 2004. Am. J. Hematol. 2005, 79, 319–328. [Google Scholar] [CrossRef]
- Lachmann, H.J.; Gallimore, R.; Gillmore, J.D.; Carr-Smith, H.D.; Bradwell, A.R.; Pepys, M.B.; Hawkins, P.N. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br. J. Haematol. 2003, 122, 78–84. [Google Scholar] [CrossRef]
- Sanchorawala, V.; Seldin, D.C.; Magnani, B.; Skinner, M.; Wright, D.G. Serum free light-chain responses after high-dose intravenous melphalan and autologous stem cell transplantation for AL (primary) amyloidosis. Bone Marrow Transpl. 2005, 36, 597–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dispenzieri, A.; Lacy, M.Q.; Katzmann, J.A.; Rajkumar, S.V.; Abraham, R.S.; Hayman, S.R.; Kumar, S.K.; Clark, R.; Kyle, R.A.; Litzow, M.R.; et al. Absolute values of immunoglobulin free light chains are prognostic in patients with primary systemic amyloidosis undergoing peripheral blood stem cell transplantation. Blood 2006, 107, 3378–3383. [Google Scholar] [CrossRef]
- Palladini, G.; Dispenzieri, A.; Gertz, M.A.; Kumar, S.; Wechalekar, A.; Hawkins, P.N.; Schonland, S.; Hegenbart, U.; Comenzo, R.; Kastritis, E.; et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: Impact on survival outcomes. J. Clin. Oncol. 2012, 30, 4541–4549. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Schonland, S.O.; Sanchorawala, V.; Kumar, S.; Wechalekar, A.; Hegenbart, U.; Milani, P.; Ando, Y.; Westermark, P.; Dispenzieri, A.; et al. Clarification on the definition of complete haematologic response in light-chain (AL) amyloidosis. Amyloid 2021, 28, 1–2. [Google Scholar] [CrossRef]
- Tovar, N.; De Larrea, C.F.; Arostegui, J.I.; Cibeira, M.T.; Rosinol, L.; Rovira, M.; Elena, M.; Filella, X.; Yague, J.; Blade, J. Natural history and prognostic impact of oligoclonal humoral response in patients with multiple myeloma after autologous stem cell transplantation: Long-term results from a single institution. Haematologica 2013, 98, 1142–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Lobato, L.G.; Fernandez de Larrea, C.; Cibeira, M.T.; Tovar, N.; Arostegui, J.I.; Rosinol, L.; Diaz, T.; Lozano, E.; Elena, M.; Yague, J.; et al. Impact of Autologous Stem Cell Transplantation on the Incidence and Outcome of Oligoclonal Bands in Patients with Light-Chain Amyloidosis. Biol. Blood Marrow Transpl. 2017, 23, 1269–1275. [Google Scholar] [CrossRef]
- Kastritis, E.; Leleu, X.; Arnulf, B.; Zamagni, E.; Cibeira, M.T.; Kwok, F.; Mollee, P.; Hajek, R.; Moreau, P.; Jaccard, A.; et al. Bortezomib, Melphalan, and Dexamethasone for Light-Chain Amyloidosis. J. Clin. Oncol. 2020, 38, 3252–3260. [Google Scholar] [CrossRef]
- Dispenzieri, A.; Kastritis, E.; Wechalekar, A.D.; Schonland, S.O.; Kim, K.; Sanchorawala, V.; Landau, H.J.; Kwok, F.; Suzuki, K.; Comenzo, R.L.; et al. A randomized phase 3 study of ixazomib-dexamethasone versus physician’s choice in relapsed or refractory AL amyloidosis. Leukemia 2021, 36, 225–235. [Google Scholar] [CrossRef]
- Kastritis, E.; Palladini, G.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Sanchorawala, V.; Gibbs, S.; Mollee, P.; Venner, C.P.; et al. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. N. Engl. J. Med. 2021, 385, 46–58. [Google Scholar] [CrossRef]
- Tate, J.; Bazeley, S.; Sykes, S.; Mollee, P. Quantitative serum free light chain assay-analytical issues. Clin. Biochem. Rev. 2009, 30, 131–140. [Google Scholar]
- Comenzo, R.L.; Reece, D.; Palladini, G.; Seldin, D.; Sanchorawala, V.; Landau, H.; Falk, R.; Wells, K.; Solomon, A.; Wechalekar, A.; et al. Consensus guidelines for the conduct and reporting of clinical trials in systemic light-chain amyloidosis. Leukemia 2012, 26, 2317–2325. [Google Scholar] [CrossRef] [Green Version]
- Sidana, S.; Tandon, N.; Dispenzieri, A.; Gertz, M.A.; Buadi, F.K.; Lacy, M.Q.; Dingli, D.; Fonder, A.L.; Hayman, S.R.; Hobbs, M.A.; et al. Clinical presentation and outcomes in light chain amyloidosis patients with non-evaluable serum free light chains. Leukemia 2018, 32, 729–735. [Google Scholar] [CrossRef]
- Nguyen, V.P.; Rosenberg, A.; Mendelson, L.M.; Comenzo, R.L.; Varga, C.; Sanchorawala, V. Outcomes of patients with AL amyloidosis and low serum free light chain levels at diagnosis. Amyloid 2018, 25, 156–159. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, C.L.; Shen, K.N.; Su, W.; Feng, J.; Zhang, L.; Cao, X.X.; Li, J. Clinical presentation and prognosis of light-chain amyloidosis patients with unmeasurable free light-chain levels. Ann. Hematol. 2018, 97, 2465–2470. [Google Scholar] [CrossRef] [PubMed]
- Manwani, R.; Cohen, O.; Sharpley, F.; Mahmood, S.; Sachchithanantham, S.; Foard, D.; Lachmann, H.J.; Quarta, C.; Fontana, M.; Gillmore, J.D.; et al. A prospective observational study of 915 patients with systemic AL amyloidosis treated with upfront bortezomib. Blood 2019, 134, 2271–2280. [Google Scholar] [CrossRef] [PubMed]
- Muchtar, E.; Dispenzieri, A.; Leung, N.; Lacy, M.Q.; Buadi, F.K.; Dingli, D.; Hayman, S.R.; Kapoor, P.; Hwa, Y.L.; Fonder, A.; et al. Optimizing deep response assessment for AL amyloidosis using involved free light chain level at end of therapy: Failure of the serum free light chain ratio. Leukemia 2019, 33, 527–531. [Google Scholar] [CrossRef]
- Sidana, S.; Dispenzieri, A.; Murray, D.L.; Go, R.S.; Buadi, F.K.; Lacy, M.Q.; Gonsalves, W.I.; Dingli, D.; Warsame, R.; Kourelis, T.; et al. Revisiting complete response in light chain amyloidosis. Leukemia 2019, 34, 1472–1475. [Google Scholar] [CrossRef]
- Godara, A.R.B.; Varga, C.; Kugelmass, A.; Zhou, P.; Fogaren, T.; Comenzo, R.L. In Systemic Light-Chain Amyloidosis Complete and Very Good Partial Responses Are Not Enough: Involved Free Light Chain (iFLC) Levels < 10 mg/L Are Associated with Optimal Long-Term Survival. Blood 2019, 134, 4369a. [Google Scholar]
- Milani, P.; Basset, M.; Nuvolone, M.; Benigna, F.; Rodigari, L.; Lavatelli, F.; Foli, A.; Merlini, G.; Palladini, G. Indicators of profound hematologic response in AL amyloidosis: Complete response remains the goal of therapy. Blood Cancer J. 2020, 10, 90. [Google Scholar] [CrossRef]
- Sarosiek, S.; Zheng, L.; Sloan, J.M.; Quillen, K.; Brauneis, D.; Sanchorawala, V. Comparing measures of hematologic response after high-dose melphalan and stem cell transplantation in AL amyloidosis. Blood Cancer J. 2020, 10, 88. [Google Scholar] [CrossRef]
- Paiva, B.; Vidriales, M.B.; Perez, J.J.; Lopez-Berges, M.C.; Garcia-Sanz, R.; Ocio, E.M.; De Las Heras, N.; Cuello, R.; Garcia De Coca, A.; Pardal, E.; et al. The clinical utility and prognostic value of multiparameter flow cytometry immunophenotyping in light-chain amyloidosis. Blood 2011, 117, 3613–3616. [Google Scholar] [CrossRef] [PubMed]
- Lisenko, K.; Schonland, S.O.; Jauch, A.; Andrulis, M.; Rocken, C.; Ho, A.D.; Goldschmidt, H.; Hegenbart, U.; Hundemer, M. Flow cytometry-based characterization of underlying clonal B and plasma cells in patients with light chain amyloidosis. Cancer Med. 2016, 5, 1464–1472. [Google Scholar] [CrossRef] [PubMed]
- Muchtar, E.; Jevremovic, D.; Dispenzieri, A.; Dingli, D.; Buadi, F.K.; Lacy, M.Q.; Gonsalves, W.; Hayman, S.R.; Kapoor, P.; Leung, N.; et al. The prognostic value of multiparametric flow cytometry in AL amyloidosis at diagnosis and at the end of first-line treatment. Blood 2017, 129, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Kastritis, E.; Kostopoulos, I.V.; Terpos, E.; Paiva, B.; Fotiou, D.; Gavriatopoulou, M.; Kanellias, N.; Ziogas, D.C.; Roussou, M.; Migkou, M.; et al. Evaluation of minimal residual disease using next-generation flow cytometry in patients with AL amyloidosis. Blood Cancer J. 2018, 8, 46. [Google Scholar] [CrossRef]
- Sidana, S.; Muchtar, E.; Sidiqi, M.H.; Jevremovic, D.; Dispenzieri, A.; Gonsalves, W.; Buadi, F.; Lacy, M.Q.; Hayman, S.R.; Kourelis, T.; et al. Impact of minimal residual negativity using next generation flow cytometry on outcomes in light chain amyloidosis. Am. J. Hematol. 2020, 95, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Muchtar, E.; Dispenzieri, A.; Jevremovic, D.; Dingli, D.; Buadi, F.K.; Lacy, M.Q.; Gonsalves, W.; Warsame, R.; Kourelis, T.V.; Hayman, S.R.; et al. Survival impact of achieving minimal residual negativity by multi-parametric flow cytometry in AL amyloidosis. Amyloid 2020, 27, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Kostopoulos, I.V.; Theodorakakou, F.; Fotiou, D.; Gavriatopoulou, M.; Migkou, M.; Tselegkidi, M.I.; Roussou, M.; Papathoma, A.; Eleutherakis-Papaioakovou, E.; et al. Next generation flow cytometry for MRD detection in patients with AL amyloidosis. Amyloid 2020, 28, 19–23. [Google Scholar] [CrossRef]
- Paiva, B.; Van Dongen, J.J.; Orfao, A. New criteria for response assessment: Role of minimal residual disease in multiple myeloma. Blood 2015, 125, 3059–3068. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Blade, J.; Mateos, M.V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; Garcia-Sanchez, O.; Bottcher, S.; Van Der Velden, V.H.J.; Perez-Moran, J.J.; Vidriales, M.B.; Garcia-Sanz, R.; et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef] [Green Version]
- Paiva, B.; Puig, N.; Cedena, M.T.; Rosiñol, L.; Cordón, L.; Vidriales, M.B.; Burgos, L.; Flores-Montero, J.; Sanoja-Flores, L.; Lopez-Anglada, L.; et al. Measurable Residual Disease by Next-Generation Flow Cytometry in Multiple Myeloma. J. Clin. Oncol. 2019, 38, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Facon, T.; Lee, J.H.; Moreau, P.; Niesvizky, R.; Dimopoulos, M.; Hajek, R.; Pour, L.; Jurczyszyn, A.; Qiu, L.; Klippel, Z.; et al. Carfilzomib or bortezomib with melphalan-prednisone for transplant-ineligible patients with newly diagnosed multiple myeloma. Blood 2019, 133, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Harousseau, J.L.; Avet-Loiseau, H. Minimal Residual Disease Negativity Is a New End Point of Myeloma Therapy. J. Clin. Oncol. 2017, 35, 2863–2865. [Google Scholar] [CrossRef] [PubMed]
- Staron, A.; Burks, E.J.; Lee, J.C.; Sarosiek, S.; Sloan, J.M.; Sanchorawala, V. Assessment of minimal residual disease using multiparametric flow cytometry in patients with AL amyloidosis. Blood Adv. 2020, 4, 880–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarosiek, S.; Varga, C.; Jacob, A.; Fulciniti, M.T.; Munshi, N.; Sanchorawala, V. Detection of minimal residual disease by next generation sequencing in AL amyloidosis. Blood Cancer J. 2021, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.R.; Kohlhagen, M.C.; Dasari, S.; Vanderboom, P.M.; Kyle, R.A.; Katzmann, J.A.; Willrich, M.A.; Barnidge, D.R.; Dispenzieri, A.; Murray, D.L. Comprehensive Assessment of M-Proteins Using Nanobody Enrichment Coupled to MALDI-TOF Mass Spectrometry. Clin. Chem. 2016, 62, 1334–1344. [Google Scholar] [CrossRef] [Green Version]
- Kohlhagen, M.C.; Barnidge, D.R.; Mills, J.R.; Stoner, J.; Gurtner, K.M.; Liptac, A.M.; Lofgren, D.I.; Vanderboom, P.M.; Dispenzieri, A.; Katzmann, J.A.; et al. Screening Method for M-Proteins in Serum Using Nanobody Enrichment Coupled to MALDI-TOF Mass Spectrometry. Clin. Chem. 2016, 62, 1345–1352. [Google Scholar] [CrossRef] [Green Version]
- Milani, P.; Murray, D.L.; Barnidge, D.R.; Kohlhagen, M.C.; Mills, J.R.; Merlini, G.; Dasari, S.; Dispenzieri, A. The utility of MASS-FIX to detect and monitor monoclonal proteins in the clinic. Am. J. Hematol. 2017, 92, 772–779. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Murray, D.; Dasari, S.; Milani, P.; Barnidge, D.; Madden, B.; Kourelis, T.; Arendt, B.; Merlini, G.; Ramirez-Alvarado, M.; et al. Assay to rapidly screen for immunoglobulin light chain glycosylation: A potential path to earlier AL diagnosis for a subset of patients. Leukemia 2019, 33, 254–257. [Google Scholar] [CrossRef]
- Kourelis, T.; Murray, D.L.; Dasari, S.; Kumar, S.; Barnidge, D.; Madden, B.; Arendt, B.; Milani, P.; Merlini, G.; Ramirez-Alvarado, M.; et al. MASS-FIX may allow identification of patients at risk for light chain amyloidosis before the onset of symptoms. Am. J. Hematol. 2018, 93, E368–E370. [Google Scholar] [CrossRef] [Green Version]
- Dispenzieri, A.; Arendt, B.; Dasari, S.; Kohlhagen, M.; Kourelis, T.; Kumar, S.K.; Leung, N.; Muchtar, E.; Buadi, F.K.; Warsame, R.; et al. Blood mass spectrometry detects residual disease better than standard techniques in light-chain amyloidosis. Blood Cancer J. 2020, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharpley, F.A.; Manwani, R.; Mahmood, S.; Sachchithanantham, S.; Lachmann, H.J.; Gillmore, J.D.; Whelan, C.J.; Fontana, M.; Hawkins, P.N.; Wechalekar, A.D. A novel mass spectrometry method to identify the serum monoclonal light chain component in systemic light chain amyloidosis. Blood Cancer J. 2019, 9, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derman, B.A.; Stefka, A.T.; Jiang, K.; McIver, A.; Kubicki, T.; Jasielec, J.K.; Jakubowiak, A.J. Measurable residual disease assessed by mass spectrometry in peripheral blood in multiple myeloma in a phase II trial of carfilzomib, lenalidomide, dexamethasone and autologous stem cell transplantation. Blood Cancer J. 2021, 11, 19. [Google Scholar] [CrossRef]
- Lilleness, B.; Doros, G.; Ruberg, F.L.; Sanchorawala, V. Establishment of brain natriuretic peptide-based criteria for evaluating cardiac response to treatment in light chain (AL) amyloidosis. Br. J. Haematol. 2020, 188, 424–427. [Google Scholar] [CrossRef]
- Palladini, G.; Hegenbart, U.; Milani, P.; Kimmich, C.; Foli, A.; Ho, A.D.; Vidus Rosin, M.; Albertini, R.; Moratti, R.; Merlini, G.; et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood 2014, 124, 2325–2332. [Google Scholar] [CrossRef] [Green Version]
- Kastritis, E.; Gavriatopoulou, M.; Roussou, M.; Migkou, M.; Fotiou, D.; Ziogas, D.C.; Kanellias, N.; Eleutherakis-Papaiakovou, E.; Panagiotidis, I.; Giannouli, S.; et al. Renal Outcomes in Patients with AL Amyloidosis: Prognostic Factors, Renal response and the Impact of Therapy. Am. J. Hematol. 2017, 92, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Drosou, M.E.; Vaughan, L.E.; Muchtar, E.; Buadi, F.K.; Dingli, D.; Dispenzieri, A.; Fonder, A.L.; Gertz, M.A.; Go, R.S.; Gonsalves, W.I.; et al. Comparison of the current renal staging, progression and response criteria to predict renal survival in AL amyloidosis using a Mayo cohort. Am. J. Hematol. 2021, 96, 446–454. [Google Scholar] [CrossRef]
- Sidana, S.; Milani, P.; Binder, M.; Basset, M.; Tandon, N.; Foli, A.; Dispenzieri, A.; Gertz, M.A.; Hayman, S.R.; Buadi, F.K.; et al. A validated composite organ and hematologic response model for early assessment of treatment outcomes in light chain amyloidosis. Blood Cancer J. 2020, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Papassotiriou, I.; Merlini, G.; Milani, P.; Terpos, E.; Basset, M.; Akalestos, A.; Russo, F.; Psimenou, E.; Apostolakou, F.; et al. Growth differentiation factor-15 is a new biomarker for survival and renal outcomes in light chain amyloidosis. Blood 2018, 131, 1568–1575. [Google Scholar] [CrossRef]
- Milani, P.; Gertz, M.A.; Merlini, G.; Dispenzieri, A. Attitudes about when and how to treat patients with AL amyloidosis: An international survey. Amyloid 2017, 24, 213–216. [Google Scholar] [CrossRef]
- Palladini, G.; Merlini, G. When should treatment of AL amyloidosis start at relapse? Early, to prevent organ progression. Blood Adv. 2019, 3, 212–215. [Google Scholar] [CrossRef] [Green Version]
- Sanchorawala, V. Delay treatment of AL amyloidosis at relapse until symptomatic: Devil is in the details. Blood Adv. 2019, 3, 216–218. [Google Scholar] [CrossRef]
- Palladini, G.; Milani, P.; Foli, A.; Basset, M.; Russo, F.; Perlini, S.; Merlini, G. Presentation and outcome with second-line treatment in AL amyloidosis previously sensitive to nontransplant therapies. Blood 2018, 131, 525–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, S.; Quillen, K.; Sloan, J.M.; Doros, G.; Sarosiek, S.; Sanchorawala, V. Hematologic relapse in AL amyloidosis after high-dose melphalan and stem cell transplantation. Blood 2017, 130, 1383–1386. [Google Scholar] [CrossRef] [Green Version]
- Hwa, Y.L.; Warsame, R.; Gertz, M.A.; Buadi, F.K.; Lacy, M.Q.; Kumar, S.K.; Dingli, D.; Zeldenrust, S.R.; Leung, N.; Hayman, S.R.; et al. Delineation of the timing of second-line therapy post-autologous stem cell transplant in patients with AL amyloidosis. Blood 2017, 130, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Sanchorawala, V.; McCausland, K.L.; White, M.K.; Bayliss, M.S.; Guthrie, S.D.; Lo, S.; Skinner, M. A longitudinal evaluation of health-related quality of life in patients with AL amyloidosis: Associations with health outcomes over time. Br. J. Haematol. 2017, 179, 461–470. [Google Scholar] [CrossRef]
- Hari, P.; Lin, H.M.; Asche, C.V.; Ren, J.; Yong, C.; Luptakova, K.; Faller, D.V.; Sanchorawala, V. Treatment patterns and health care resource utilization among patients with relapsed/refractory systemic light chain amyloidosis. Amyloid 2018, 25, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Sachchithanantham, S.; Milani, P.; Gillmore, J.; Foli, A.; Lachmann, H.; Basset, M.; Hawkins, P.; Merlini, G.; Wechalekar, A.D. A European collaborative study of cyclophosphamide, bortezomib, and dexamethasone in upfront treatment of systemic AL amyloidosis. Blood 2015, 126, 612–615. [Google Scholar] [CrossRef] [Green Version]
- Palladini, G.; Celant, S.; Milani, P.; Summa, V.; Affronti, G.; Olimpieri, P.P.; Petraglia, S.; Foli, A.; Nuvolone, M.; Merlini, G.; et al. A nationwide prospective registry of bortezomib-based therapy in light chain (AL) amyloidosis. Leuk. Lymphoma 2021. [Google Scholar] [CrossRef]
- Kimmich, C.R.; Terzer, T.; Benner, A.; Dittrich, T.; Veelken, K.; Carpinteiro, A.; Hansen, T.; Goldschmidt, H.; Seckinger, A.; Hose, D.; et al. Daratumumab for systemic AL amyloidosis: Prognostic factors and adverse outcome with nephrotic-range albuminuria. Blood 2020, 135, 1517–1530. [Google Scholar] [CrossRef]
- Milani, P.; Fazio, F.; Basset, M.; Berno, T.; Larocca, A.; Foli, A.; Riva, M.; Benigna, F.; Oliva, S.; Nuvolone, M.; et al. High rate of profound clonal and renal responses with daratumumab treatment in heavily pre-treated patients with light chain (AL) amyloidosis and high bone marrow plasma cell infiltrate. Am. J. Hematol. 2020, 95, 900–905. [Google Scholar] [CrossRef] [PubMed]
Response Categories | 2005 Criteria [9] | 2012 Criteria [13] |
---|---|---|
Complete response (aCR) | Both criteria must be met:
| Both criteria must be met:
|
Very good partial response (VGPR) | Not reported | dFLC concentration < 40 mg/L |
Partial response (PR) |
| dFLC decrease > 50% compared to baseline |
Stable/No response | No CR, no PR, no progression *. | All other patients. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milani, P.; Cibeira, M.T. Monitoring Patients with Light Chain (AL) Amyloidosis during and after Therapy: Response Assessment and Identification of Relapse. Hemato 2022, 3, 98-108. https://doi.org/10.3390/hemato3010008
Milani P, Cibeira MT. Monitoring Patients with Light Chain (AL) Amyloidosis during and after Therapy: Response Assessment and Identification of Relapse. Hemato. 2022; 3(1):98-108. https://doi.org/10.3390/hemato3010008
Chicago/Turabian StyleMilani, Paolo, and M. Teresa Cibeira. 2022. "Monitoring Patients with Light Chain (AL) Amyloidosis during and after Therapy: Response Assessment and Identification of Relapse" Hemato 3, no. 1: 98-108. https://doi.org/10.3390/hemato3010008
APA StyleMilani, P., & Cibeira, M. T. (2022). Monitoring Patients with Light Chain (AL) Amyloidosis during and after Therapy: Response Assessment and Identification of Relapse. Hemato, 3(1), 98-108. https://doi.org/10.3390/hemato3010008