The Effects of the Incorporation of Luminescent Vanadate Nanoparticles in Lithium Borate Glass Matrices by Various Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis
- Method I—sintering of glass powders and vanadate nanoparticles. In this method, we used the pre-synthesized xLi2O-yV2O5-(100−x−y)B2O3 LVBG reported in [31,32] and La1−xRExVO4 vanadate nanoparticles reported in [33,34]. According to previous studies, the compositions of the glass matrix and crystalline nanoparticles were chosen to yield the most intense luminescent emission. The glass compositions used for the synthesis of the Method I samples contain 48% Li2O (x = 48) and 2% V2O5 (y = 2). For the crystalline nanoparticles, x = 0.1. The initial glass was broken, ground, and then mixed with crystalline nanoparticles. The MSE PRO 2L (4 × 500 mL) Vertical High Energy Planetary Ball Mill was used to promote the effective interaction of the crystalline nanoparticles and glass components to obtain high-quality glass-ceramic samples. The applied milling parameters were as follows: 100 rpm milling speed, steel mortar and balls, the ball-to-powder-weight ratio (BPR) = 15:1, and the milling time was 120 min. After milling, the obtained mixture was heated to 950 °C, held for 1 h at this temperature, and then quickly quenched on a non-magnetic metal plate.
- Method II uses a previously described melt quenching procedure [31,32]. The chemically pure reagents of boric acid H3BO3, lithium carbonate Li2CO3, and vanadium pentoxide V2O5 were used for the synthesis. The reagents were ground and mixed, and then, pre-synthesized La0.9Eu0.1VO4 vanadate nanoparticles were added to the blended mixture, and the mixed blend was ground again and placed in porcelain crucibles. Then, the obtained blend was melted in air with gradual heating to 400 °C for 2 h and for 4 h to 950 °C in an electric muffle furnace. The final blend was melted and then quickly quenched on a non-magnetic metal plate. The main difference of the Method II procedure compared to the previous one is that the crystalline nanoparticles were added to the blend, which is usually used for the glass synthesis.
- Method III uses a melt quenching procedure with a modification to the quenching part of the process. The blend for the glass synthesis was prepared as described above for Method II from the chemically pure reagents of boric acid H3BO3, lithium carbonate Li2CO3, and vanadium pentoxide V2O5. The melted blend was quickly quenched on the non-magnetic metal plate covered with a thick powder layer of vanadate nanoparticles. The quantity of the powder was calculated to achieve a 10% content of the crystalline component in the final samples. But considering that in this method, the entire amount of prepared powder was not incorporated in the obtained samples, we will not refer to the concentration for the Method III samples.
2.2. Experimental Methods
3. Characterization of the Samples
3.1. Method I Samples
3.2. Method II Samples
3.3. Method III Samples
4. Effects of the Synthesis Method on the Luminescence Properties
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gorni, G.; Velázquez, J.J.; Mosa, J.; Balda, R.; Fernández, J.; Durán, A.; Castro, Y. Transparent glass-ceramics produced by Sol-Gel: A suitable alternative for photonic materials. Materials 2018, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Sun, B.; Ji, Y.; Lu, X.; Tian, H.; Ren, J.; Guo, S.; Zhang, J.; Yang, J.; Meng, X.; et al. Photonic engineering of super broadband near-infrared emission in nanoglass composites containing hybrid metal and dielectric nanocrystals. Photonics Res. 2020, 8, 698–706. [Google Scholar] [CrossRef]
- Sakamoto, A.; Yamamoto, S. Glass–Ceramics: Engineering Principles and Applications. Int. J. Appl. Glass Sci. 2010, 1, 237–247. [Google Scholar] [CrossRef]
- Borrelli, N.F.; Mitchell, A.L.; Smith, C.M. Relationship between morphology and transparency in glass-ceramic materials. J. Opt. Soc. Am. B 2018, 35, 1725–1732. [Google Scholar] [CrossRef]
- Chen, D.; Xiang, W.; Liang, X.; Zhong, J.; Yu, H.; Ding, M.; Lu, H.; Ji, Z. Advances in transparent glass-ceramic phosphors for white light-emitting diodes-A review. J. Eur. Ceram. Soc. 2015, 35, 859–869. [Google Scholar] [CrossRef]
- Ren, J.; Lu, X.; Lin, C.; Jain, R.K. Luminescent ion-doped transparent glass ceramics for mid-infrared light sources. Opt. Express 2020, 28, 21522–21548. [Google Scholar] [CrossRef]
- Komatsu, T. Design and control of crystallization in oxide glasses. J. Non-Cryst. Solids 2015, 428, 156–175. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Zhou, S.; Yue, Y.; Qiu, J. Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 2018, 97, 38–96. [Google Scholar] [CrossRef]
- Wei, Y.; Heidepriem, H.E.; Zhao, J. Recent Advances in Hybrid Optical Materials: Integrating Nanoparticles within a Glass Matrix. Adv. Opt. Mater. 2019, 7, 1900702. [Google Scholar] [CrossRef]
- Gao, Z.; Guo, S.; Lu, X.; Orava, J.; Wagner, T.; Zheng, L.; Liu, Y.; Sun, S.; He, F.; Yang, P.; et al. Controlling Selective Doping and Energy Transfer between Transition Metal and Rare Earth Ions in Nanostructured Glassy Solids. Adv. Opt. Mater. 2018, 6, 1701407. [Google Scholar] [CrossRef]
- Souza, A.E.; Antonio, S.; Ribeiro, S.; Franco, D.F.; Galeani, G.; Cardinal, T.; Dussauze, M.; Nalin, M. Heavy metal oxide glass-ceramics containing luminescent gallium-garnets single crystals for photonic applications. J. Alloys Compd. 2021, 864, 158804. [Google Scholar] [CrossRef]
- Cui, S.; Chen, G. Enhance up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped Sr10(PO4)6O transparent glass-ceramics. J. Am. Ceram. Soc. 2020, 103, 6932–6940. [Google Scholar] [CrossRef]
- Swapna, K.; Mahamuda, S.; Rao, A.S.; Sasikala, T.; Packiyaraj, P.; Moorthy, L.R.; Prakash, G.V. Luminescence characterization of Eu3+doped zinc alumino bismuth borate glasses for visible red emission applications. J. Lumin. 2014, 156, 80–86. [Google Scholar] [CrossRef]
- Kozlovskiy, A.L.; Shlimas, D.I.; Zdorovets, M.V.; Elsts, E.; Konuhova, M.; Popov, A.I. Investigation of the Effect of PbO Doping on Telluride Glass Ceramics as a Potential Material for Gamma Radiation Shielding. Materials 2023, 16, 2366. [Google Scholar] [CrossRef]
- Tao, Y.; Wang, P.; Ting, W.; Zhao, M.; Chen, D. Effect of thermocompression on properties of transparent glass-ceramics containing quantum dots. APL Mater. 2023, 11, 091104. [Google Scholar] [CrossRef]
- Hu, T.; Xia, Z. Luminescent glass-ceramics and applications. In Advanced Ceramics for Energy Storage, Thermoelectrics and Photonics; Cao, P., Chen, Z., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2023; pp. 431–462. [Google Scholar]
- Chen, Q.; Wang, Y.; Wang, H. Synthesis and properties of nanocrystal BiPO4 in diamagnetic PbO-Bi2O3-B2O3 glass. J. Non-Cryst. Solids 2018, 481, 85–93. [Google Scholar] [CrossRef]
- Cruz, M.E.; Ngoc Lam Tran, T.; Chiasera, A. Novel Sol-Gel Route to Prepare Eu3+-Doped 80SiO2-20NaGdF4 Oxyfluoride Glass-Ceramic for Photonic Device Applications. Nanomaterials 2023, 13, 940. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Chen, Q. Synthesis, characterization of DMS Pb0.8Fe0.2I2 and influence study to EPR structure and properties of magneto-optical glass. J. Alloys Compd. 2021, 866, 158981. [Google Scholar] [CrossRef]
- Tulyaganov, D.U.; Ribeiro, M.J.; Labrincha, J.A. Development of glass-ceramics by sintering and crystallization of fine powders of calcium-magnesium-aluminosilicate glass. Ceramics International. 2002, 28, 515–520. [Google Scholar] [CrossRef]
- Chukova, O.; Nedilko, S.A.; Nedilko, S.G.; Voitenko, T.; Androulidaki, M.; Manousaki, A.; Papadopoulos, A.; Savva, K.; Stratakis, E. Pulsed laser deposition of the LaVO4:Eu, Ca nanoparticles on glass and silicon substrates. Appl. Nanosci. 2020, 10, 5053–5061. [Google Scholar] [CrossRef]
- Chukova, O.V.; Nedilko, S.A.; Nedilko, S.G.; Voitenko, T.A.; Androulidaki, M.; Manousaki, A.; Papadopoulos, A.; Savva, K.; Stratakis, E. Thin Films of La1−xSmxVO4:Ca Luminescent Vanadate Nanoparticles Deposited with Various Methods on Glass Substrates. Springer Proc. Phys. 2021, 263, 363–383. [Google Scholar]
- Siddika, A.; Hajimohammadi, A.; Sahajwalla, V. Powder sintering and gel casting methods in making glass foam using waste glass: A review on parameters, performance, and challenges. Ceram. Int. 2022, 48, 1494–1511. [Google Scholar] [CrossRef]
- Palilla, F.C.; Levine, A.K.; Rinkevics, M. Rare Earth Activated Phosphors Based on Yttrium Orthovanadate and Related Compounds. J. Electrochem. Soc. 1965, 112, 776–779. [Google Scholar] [CrossRef]
- Nedilko, S.G.; Chukova, O.; Hizhnyi, Y.; Nedilko, S.A.; Voitenko, T.; Billot, L.; Aigouy, L. Synthesis and utilization of LaVO4:Eu3+ nanoparticles as fluorescent near-field optical sensors. Phys. Status Solidi C 2015, 12, 282–286. [Google Scholar] [CrossRef]
- Runowski, M.; Zheng, T.; Woźny, P.; Du, P. NIR emission of lanthanides for ultrasensitive luminescence manometry—Er3+-activated optical sensor of high pressure. Dalton Trans. 2021, 50, 14864–14871. [Google Scholar] [CrossRef]
- Kumar, V.; Khan, A.F.; Chawla, S. Intense red-emitting multi-rare-earth doped nanoparticles of YVO4 for spectrum conversion towards improved energy harvesting by solar cells. J. Phys. D Appl. Phys. 2013, 46, 365101. [Google Scholar] [CrossRef]
- Chukova, O.V.; Nedilko, S.A.; Nedilko, S.G.; Slepets, A.A.; Voitenko, T.A. Synthesis and Investigation of La,Ca-Doped EuVO4 Nanoparticles with Enhanced Excitation by Near Violet Light. Phys. Status Solidi A 2018, 215, 1700894. [Google Scholar] [CrossRef]
- Datt, R.; Bishnoi, S.; Hughes, D.; Mahajan, P.; Singh, A.; Gupta, R.; Arya, S.; Gupta, V.; Tsoi, W.C. Downconversion Materials for Perovskite Solar Cells. Sol. RRL 2022, 6, 2200266. [Google Scholar] [CrossRef]
- Voitenko, T.; Nedilko, S.A.; Chukova, O.; Nedilko, S.G.; Androulidaki, M.; Manousaki, A.; Stratakis, E. Borate-Vanadate Glass-Ceramic Composites Doped with Crystalline Luminescent Oxide Nanoparticles. In Proceedings of the 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), Kyiv, Ukraine, 22–24 April 2020; pp. 168–172. [Google Scholar]
- Chukova, O.; Nedilko, S.G.; Voitenko, T.; Minikayev, R.; Paszkowicz, W.; Stasiv, V.; Zhydachevskyy, Y.; Suchocki, A. Luminescence mechanisms in the 2V2O5-xLi2O-(98 − x)B2O3 glass matrices developed for creation of glass–ceramic materials. J. Mater. Sci. Mater. Electron. 2023, 34, 651. [Google Scholar] [CrossRef]
- Chukova, O.; Nedilko, S.G.; Scherbatskyi, V. Development of Borate-Vanadate Glass Pure and Incorporated with La-Vanadate Nanoparticles. Acta Phys. Pol. A 2022, 141, 345–350. [Google Scholar] [CrossRef]
- Chukova, O.; Nedilko, S.A.; Nedilko, S.G.; Slepets, A.; Voitenko, T.; Androulidaki, M.; Papadopoulos, A.; Stratakis, E. Structure, morphology, and spectroscopy studies of La1−xRExVO4 Nanoparticles Synthesized by Various Methods. Springer Proc. Phys. 2019, 221, 211–241. [Google Scholar]
- Chukova, O.; Nedilko, S.A.; Nedilko, S.G.; Slepets, A.; Voitenko, T.; Papadopoulos, A.; Stratakis, E. Structure and spectroscopy characterization of La1−xSmxVO4 luminescent nanoparticles synthesized co-precipitation and sol-gel methods. Opt. Mater. 2019, 95, 109248. [Google Scholar] [CrossRef]
- Bandiello, E.; Errandonea, D.; Piccinelli, F.; Bettinelli, M.; Díaz-Anichtchenko, D.; Popescu, C. Characterization of flux-grown SmxNd1−xVO4 compounds and high-pressure behavior for x = 0.5. J. Phys. Chem. C 2019, 123, 30732–30745. [Google Scholar] [CrossRef]
- Zhang, T.; Liang, X.; Zhao, H.; Xiao, Y.; Yang, G.; Yu, H.; Feng, L.; Xu, M.; Yang, W. LaVO4: Eu3+ nano-islands onto silica for achieving fluorescence enhancement and their detection of Fe3+ ions and anti-counterfeiting applications. J. Colloid Interface Sci. 2023, 652, 952–962. [Google Scholar] [CrossRef]
- Eftimie, M.; Filip, A.V.; Danescu, C.B.; Nitescu, A.; Sava, B.A. Obtaining and conductive properties of a vanadate-borate-phosphate glass. Sci. Rep. 2023, 13, 16054. [Google Scholar] [CrossRef] [PubMed]
- Işsever, U.G.; Kilic, G.; Peker, M.; Ünaldi, T.; Aybek, A.Ş. Effect of low ratio V5+ doping on structural and optical properties of borotellurite semiconducting oxide glasses. J. Mater. Sci. Mater. Electron. 2019, 30, 15156–15167. [Google Scholar] [CrossRef]
- Kielty, M.W.; Dettmann, M.; Herrig, V.; Chapman, M.G.; Marchewka, M.R.; Trofimov, A.A.; Akgun, U.; Jacobsohn, L.G. Investigation of Ce3+ luminescence in borate-rich borosilicate glasses. J. Non-Cryst. Solids 2017, 471, 357–361. [Google Scholar] [CrossRef]
- Yadav, A.K.; Singh, P. A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 2015, 5, 67583–67609. [Google Scholar] [CrossRef]
- Attos, O.; Massot, M.; Balkanski, M.; Haro-Poniatowski, E.; Asomoza, M. Structure of borovandate glasses studied by Raman spectroscopy. J. Non-Cryst. Solids 1997, 210, 163–170. [Google Scholar] [CrossRef]
- Lewandowska, R.; Krasowski, K.; Bacewicz, R.; Garbarczyk, J.E. Studies of silver-vanadate superionic glasses using Raman spectroscopy. Solid State Ion. 1999, 119, 229–234. [Google Scholar] [CrossRef]
- Chukova, O.V.; Nedilko, S.G.; Slepets, A.A.; Nedilko, S.A.; Voitenko, T.A. Synthesis and Properties of the La1−x−yEuyCaxVO4 (0 ≤ x, y ≤ 0.2) Compounds. Nanoscale Res. Lett. 2017, 12, 340. [Google Scholar] [CrossRef] [PubMed]
- Parchura, A.K.; Ningthoujam, R.S. Behaviour of electric and magnetic dipole transitions of Eu3+, 5D0 → 7F0 and Eu–O charge transfer band in Li+ co-doped YPO4:Eu3+. RSC Adv. 2012, 2, 10859–10868. [Google Scholar] [CrossRef]
- Chukova, O.; Nedilko, S.A.; Nedilko, S.G.; Voitenko, T.; Slepets, A.; Androulidaki, M.; Papadopoulos, A.; Stratakis, E.; Paszkowicz, W. Strong Eu3+ luminescence in La1−x−yErx/2Eux/2CayVO4 nanocrystals: The result of co-doping optimization. J. Lumin. 2022, 242, 118587. [Google Scholar] [CrossRef]
- Shinde, K.N.; Singh, R.; Dhoble, S.J. Photoluminescence characteristics of the single-host white-light-emitting Sr3−3x/2(VO4)2:xEu (0 ≤ x ≤ 0.3) phosphors for LEDs. J. Lumin. 2014, 146, 91–96. [Google Scholar] [CrossRef]
- Smortsova, Y.; Chukova, O.; Pankratov, V.; Katayev, A.; Kotlov, A. Superlumi beamline at PETRA III storage ring of DESY. Radiat. Meas. 2024, in press. [Google Scholar]
- Majérus, O.; Trégouët, H.; Caurant, D.; Pytalev, D. Comparative study of the rare earth environment in rare earth metaborate glass (REB3O6, RE = La, Nd) and in sodium borate glasses. J. Non-Cryst. Solids 2015, 425, 91–102. [Google Scholar] [CrossRef]
- Nedilko, S.; Hizhnyi, Y.; Chukova, O.; Nagornyi, P.; Bojko, R.; Boyko, V. Luminescent monitoring of metal dititanium triphosphates as promising materials for radioactive waste confinement. J. Nucl. Mat. 2009, 385, 479–484. [Google Scholar] [CrossRef]
- Chukova, O.; Nedilko, S.G.; Nedilko, S.A.; Voitenko, T.; Gomenyuk, O.; Sheludko, V. Study of Temperature Behavior of Luminescence Emission of LaVO4 and La1−xEuxVO4 Powders. Solid State Phenom. 2015, 230, 153–159. [Google Scholar] [CrossRef]
- Adams, M.J.; Highfield, J.G.; Kirkbrigh, G.F. Determination of the Absolute Quantum Efficiency of Sodium Salicylate Using Photoacoustic Spectroscopy. Analyst 1981, 106, 850–854. [Google Scholar] [CrossRef]
- Huerta, E.F.; Padilla, I.; Martinez-Martinez, R.; Hernandez-Pozos, J.L.; Caldiño, U.; Falcony, C. Extended decay times for the photoluminescence of Eu3+ ions in aluminum oxide films through interaction with localized states. Opt. Mat. 2012, 34, 1137–1142. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukova, O.; Fesych, I.; Voitenko, T.; Baran, V.; Kotlov, A.; Conner, R.L.; Jacobsohn, L.G.; Manousaki, A.; Stratakis, E. The Effects of the Incorporation of Luminescent Vanadate Nanoparticles in Lithium Borate Glass Matrices by Various Methods. Solids 2024, 5, 485-498. https://doi.org/10.3390/solids5040032
Chukova O, Fesych I, Voitenko T, Baran V, Kotlov A, Conner RL, Jacobsohn LG, Manousaki A, Stratakis E. The Effects of the Incorporation of Luminescent Vanadate Nanoparticles in Lithium Borate Glass Matrices by Various Methods. Solids. 2024; 5(4):485-498. https://doi.org/10.3390/solids5040032
Chicago/Turabian StyleChukova, Oksana, Ihor Fesych, Tetiana Voitenko, Volodymyr Baran, Aleksei Kotlov, Robin L. Conner, Luiz G. Jacobsohn, Alexandra Manousaki, and Emmanuel Stratakis. 2024. "The Effects of the Incorporation of Luminescent Vanadate Nanoparticles in Lithium Borate Glass Matrices by Various Methods" Solids 5, no. 4: 485-498. https://doi.org/10.3390/solids5040032
APA StyleChukova, O., Fesych, I., Voitenko, T., Baran, V., Kotlov, A., Conner, R. L., Jacobsohn, L. G., Manousaki, A., & Stratakis, E. (2024). The Effects of the Incorporation of Luminescent Vanadate Nanoparticles in Lithium Borate Glass Matrices by Various Methods. Solids, 5(4), 485-498. https://doi.org/10.3390/solids5040032