The Ni3Al/Ni Interfacial Contribution to the Indentation Size Effect of Ni-Based Single-Crystal Superalloys
Abstract
:1. Introduction
2. Experiments
2.1. Materials, Specimen Preparation, and Structural Observation
2.2. Nanoindentation Tests
3. Numerical Models and Methodology
3.1. Molecular Dynamics Models
3.2. Potential Function and Methods
4. Results
4.1. Pop-In Events and Indentation Behaviors
4.2. Indentation Size Effect
4.3. Molecular Dynamics Simulations
5. Discussion
6. Conclusions
- (1)
- For indentation depths under 100 nm, hardness varies significantly with indentation sites. The closer the indentation site is to the Ni3Al/Ni interface, the lower the hardness observed, highlighting the influence of the Ni3Al/Ni interface on material hardness.
- (2)
- Molecular dynamic simulations show that the Ni3Al/Ni interfacial misfit dislocation networks can effectively absorb and hinder dislocations. The observed site-dependent hardness arises from a lower dislocation density at the center of the Ni3Al/Ni interface during indentation.
- (3)
- By incorporating the Ni3Al/Ni interfacial contribution, the indentation size effect is well-captured across indentation depths from 30 to 400 nm using a modified Nix–Gao model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nili, H.; Kalantar-Zadeh, K.; Bhaskaran, M.; Sriram, S. In situ nanoindentation: Probing nanoscale multifunctionality. Prog. Mater. Sci. 2012, 58, 1–29. [Google Scholar] [CrossRef]
- Shuang, F.; Wang, B.; Aifantis, K. Revealing multiple strengthening transitions in crystalline-amorphous nanolaminates through molecular dynamics. Mater. Today Commun. 2023, 35, 105675. [Google Scholar] [CrossRef]
- Shuang, F.; Dai, Z.H.; Aifantis, K.E. Strengthening in metal/graphene composites: Capturing the transition from interface to precipitate hardening. ACS Appl. Mater. Interfaces 2021, 12, 26610–26620. [Google Scholar] [CrossRef]
- Zhou, P.; Shuang, F.; Shi, R.-H. Distinct nucleation and propagation of prismatic dislocation loop arrays in Ni and medium-entropy CrCoNi alloy: Insights from molecular dynamics simulations. Mater. Today Commun. 2023, 36, 106791. [Google Scholar] [CrossRef]
- Milman, Y.V.; Golubenko, A.A.; Dub, S.N. Indentation size effect in nanohardness. Acta Mater. 2011, 59, 7480–7487. [Google Scholar] [CrossRef]
- Ma, X.; Higgins, W.; Liang, Z.; Zhao, D.; Pharr, G.M.; Xie, K.Y. Exploring the origins of the indentation size effect at submicron scales. Proc. Natl. Acad. Sci. USA 2021, 118, e2025657118. [Google Scholar] [CrossRef]
- Li, X.; Liang, J.; Shi, T.; Yang, D.; Chen, X.; Zhang, C.; Liu, Z.; Liu, D.; Zhang, Q. Tribological behaviors of vacuum hot-pressed ceramic composites with enhanced cyclic oxidation and corrosion resistance. Ceram. Int. 2020, 46, 12911–12920. [Google Scholar] [CrossRef]
- Li, X.; Shi, T.; Li, B.; Chen, X.; Zhang, C.; Guo, Z.; Zhang, Q. Subtractive manufacturing of stable hierarchical micro-nano structures on AA5052 sheet with enhanced water repellence and durable corrosion resistance. Mater. Des. 2019, 183, 108152. [Google Scholar] [CrossRef]
- Swadener, J.G.; George, E.P.; Pharr, G.M. The correlation of the indentation size efect measured with indenters of various shapes. J. Mech. Phys. Solids 2002, 50, 681–694. [Google Scholar] [CrossRef]
- Qu, S.; Huang, Y.; Pharr, G.; Hwang, K. The indentation size effect in the spherical indentation of iridium: A study via the conventional theory of mechanism-based strain gradient plasticity. Int. J. Plast. 2005, 22, 1265–1286. [Google Scholar] [CrossRef]
- Nix, W.D.; Gao, H. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 1998, 46, 411–425. [Google Scholar] [CrossRef]
- Elmustafa, A.A.; Stone, D.S. Nanoindentation and the indentation size efect: Kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 2003, 51, 357–381. [Google Scholar] [CrossRef]
- Shim, S.; Bei, H.; George, E.; Pharr, G. A different type of indentation size effect. Scr. Mater. 2008, 59, 1095–1098. [Google Scholar] [CrossRef]
- Sangwal, K. On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 2000, 63, 145–152. [Google Scholar] [CrossRef]
- Qu, S.; Huang, Y.; Nix, W.; Jiang, H.; Zhang, F.; Hwang, K. Indenter tip radius effect on the Nix–Gao relation in micro- and nanoindentation hardness experiments. J. Mater. Res. 2004, 19, 3423–3434. [Google Scholar] [CrossRef]
- Durst, K.; Backes, B.; Göken, M. Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 2005, 52, 1093–1097. [Google Scholar] [CrossRef]
- Feng, G.; Nix, W.D. Indentation size effect in MgO. Scr. Mater. 2004, 51, 599–603. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Fu, Q.; Wang, J.; Xiao, P.; Ke, F.J.; Lu, C.S. Hardening Ni3Al via complex stacking faults and twinning boundary. Comput. Mater. Sci. 2021, 188, 110201. [Google Scholar] [CrossRef]
- Dai, K.; Zhang, C.; Li, J. Shear banding suppression in Cu/TiZrNb nanolayered composites through dual crystalline/amorphous interfaces. Mater. Today Commun. 2024, 38, 108481. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, Q.; Wang, J.; Yang, R.; Xiao, P.; Ke, F.; Lu, C. Atomistic modeling for the extremely low and high temperature-dependent yield strength in a Ni-based single crystal superalloy. Mater. Today Commun. 2021, 27, 102451. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, Q.; Wang, J.; Yang, R.; Xiao, P.; Ke, F.; Lu, C. Interaction between the edge dislocation dipole pair and interfacial misfit dislocation network in Ni-based single crystal superalloys. Int. J. Solids Struct. 2021, 228, 111128. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, K.; Lu, W.; Chen, S.; Li, J. Remarkable strengthening of nanolayered metallic composites by nanoscale crystalline interfacial layers. Mater. Today Commun. 2024, 39, 108809. [Google Scholar] [CrossRef]
- Du, Y.; Hu, H.; Yuan, X.; Long, M.; Chen, D. Novel insights into interstitial atoms synergistically augmenting the mechanical characteristics of NiCo coating and interfacial strength with Cu substrate. J. Alloys Compd. 2024, 983, 173728. [Google Scholar] [CrossRef]
- Du, Y.; Chen, Y.; Yuan, X.; Liu, P.; Long, M.; Chen, D. Potential mechanisms of interstitial atomic enhancement and interface failure behavior in Ni3Co/Cu systems. Appl. Surf. Sci. 2023, 629, 157388. [Google Scholar] [CrossRef]
- Wan, K.; He, J.; Shi, X. Construction of High Accuracy Machine Learning Interatomic Potential for Surface/Interface of Nanomaterials—A Review. Adv. Mater. 2023, 36, e2305758. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, W.; Feng, Y.; Duan, G.; Wang, J.; Wang, J.; Yang, R.; Xiao, P.; Ke, F.; Lu, C. Dislocation reactions dominated pop-in events in nanoindentation of Ni-based single crystal superalloys. Mater. Charact. 2023, 200, 112883. [Google Scholar] [CrossRef]
- Han, Q.-N.; Rui, S.-S.; Qiu, W.; Su, Y.; Ma, X.; Su, Z.; Cui, H.; Shi, H. Effect of crystal orientation on the indentation behaviour of Ni-based single crystal superalloy. Mater. Sci. Eng. A 2020, 773, 138893. [Google Scholar] [CrossRef]
- Li, X.; Bhushan, B. A review of nanoindentation continuous stiffness measurement technique and its applications. Mater. Charact. 2002, 48, 11–36. [Google Scholar] [CrossRef]
- Voter, A.F.; Chen, S.P. Accurate Interatomic Potentials for Ni, Al and Ni3Al. MRS Proc. 1986, 82, 175. [Google Scholar] [CrossRef]
- Tian, S.G.; Zhou HHZhang, J.H.; Yang, H.C.; Xu, Y.B.; Hu, Z.Q. Formation and role of dislocation networks during high temperature creep of a single crystal nickelbase superalloy. Mater. Sci. Eng. A 2000, 279, 160–165. [Google Scholar]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1−19. [Google Scholar] [CrossRef]
- Mishin, Y. Atomistic modeling of the γ and γ’-phases of the Ni−Al system. Acta Mater. 2004, 52, 1451–1467. [Google Scholar] [CrossRef]
- Amodeo, J.; Begau, C.; Bitzek, E. Atomistic simulations of compression tests on Ni3Al nanocubes. Mater. Res. Lett. 2014, 2, 140–145. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, S.; Liu, S. Atomistic simulation on nanomechanical response of indented graphene/nickel system. Comput. Mater. Sci. 2017, 130, 16–20. [Google Scholar] [CrossRef]
- Peng, P.; Liao, G.; Shi, T.; Tang, Z.; Gao, Y. Molecular dynamic simulations of nanoindentation in aluminum thin film on silicon substrate. Appl. Surf. Sci. 2010, 256, 6284–6290. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Sato, Y.; Shinzato, S.; Ohmura, T.; Hatano, T.; Ogata, S. Unique universal scaling in nanoindentation pop-ins. Nat. Commun. 2020, 11, 4177. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Yaghoobi, M. Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation. Crystals 2017, 7, 321. [Google Scholar] [CrossRef]
Element | Ni | Co | W | Ta | Al | Cr | Mo | Re | Hf |
---|---|---|---|---|---|---|---|---|---|
wt.% | 61.4 | 9 | 8 | 7.5 | 5.7 | 4.3 | 2 | 2 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Zhang, X.; Yang, R.; Wang, J.; Lu, C. The Ni3Al/Ni Interfacial Contribution to the Indentation Size Effect of Ni-Based Single-Crystal Superalloys. Solids 2024, 5, 580-592. https://doi.org/10.3390/solids5040039
Zhang Z, Zhang X, Yang R, Wang J, Lu C. The Ni3Al/Ni Interfacial Contribution to the Indentation Size Effect of Ni-Based Single-Crystal Superalloys. Solids. 2024; 5(4):580-592. https://doi.org/10.3390/solids5040039
Chicago/Turabian StyleZhang, Zhiwei, Xingyi Zhang, Rong Yang, Jun Wang, and Chunsheng Lu. 2024. "The Ni3Al/Ni Interfacial Contribution to the Indentation Size Effect of Ni-Based Single-Crystal Superalloys" Solids 5, no. 4: 580-592. https://doi.org/10.3390/solids5040039
APA StyleZhang, Z., Zhang, X., Yang, R., Wang, J., & Lu, C. (2024). The Ni3Al/Ni Interfacial Contribution to the Indentation Size Effect of Ni-Based Single-Crystal Superalloys. Solids, 5(4), 580-592. https://doi.org/10.3390/solids5040039