Study of the Elemental Composition of Gadolinium–Aluminum Garnets—Obtaining Predictable Optical Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Optimization of Microwave Digestion Conditions
3.2. ICP-MS Determination of Elements
3.3. The Accuracy of the Obtained Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Inkrataite, G.; Keil, J.; Kizalaite, A.; Jüstel, T.; Skaudzius, R. Synthesis of praseodymium doped lutetium and gadolinium aluminum garnets modified by scandium and boron to improve luminescence properties. Ceram. Int. 2024, 50, 41879–41891. [Google Scholar] [CrossRef]
- Liu, G.; Wang, B.; Li, J.; Cao, B.; Lu, Y.; Liu, Z. Research progress of gadolinium-aluminum garnet based optical materials. Phys. B Condens. Matt. 2021, 603, 412775. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Gupta, I.; Dalal, A.; Kumar, V.; Singh, D. Preparation, structural and photometric properties of single-phased Gd3Al5O12:Tb3+ green-emitting phosphors for solid state lighting purpose. Mater. Sci. Eng. B. 2023, 288, 116189. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Gupta, I.; Hooda, A.; Kumar, V.; Singh, D. Reddish-orange color tunable Sm3+ activated Gd3Al5O2 phosphors: Crystallographic and photophysical investigation for lighting applications. J. Mol. Struct. 2023, 1271, 134074. [Google Scholar] [CrossRef]
- Deguchi, Y.; Ito, A. Luminescence and scintillation properties of Ce3+-doped Gd3Al5O12 thick-film phosphors epitaxially grown using chemical vapor deposition. Opt. Mater. 2024, 153, 115565. [Google Scholar] [CrossRef]
- Kumar, P.; Singh, S.; Gupta, I.; Nehra, K.; Kumar, V.; Singh, D. Structural and luminescent behaviour of Dy(III) activated Gd3Al5O12 nanophosphors for white-LEDs applications. Mater. Chem. Phys. 2023, 295, 127035. [Google Scholar] [CrossRef]
- Zaidi, L.; Boukerika, A.; Larbah, Y.; Benharrat, L.; Hammoum, K.; Selmi, N.; Guerbous, L. Phase stabilization and luminescence properties of Gd3Al5O12:Ce nanopowders prepared by Pechini method: Effect of pH and annealing temperature. Mater. Chem. Phys. 2022, 286, 126182. [Google Scholar] [CrossRef]
- Zazubovich, S.; Laguta, V.V.; Machek, P.; Kamada, K.; Yoshikawa, A.; Nikl, M. Effect of Li+ co-doping on the luminescence and defects creation processes in Gd3(Ga,Al)5O12:Ce scintillation crystals. J. Lumin. 2022, 242, 118548. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Sedov, V.S.; Martyanov, A.K.; Batygov, S.C.; Vakalov, D.S.; Boldyrev, K.N.; Tiazhelov, I.A.; Popovich, A.F.; Pasternak, D.G.; Bland, H.; et al. Cerium-doped gadolinium-scandium-aluminum garnet powders: Synthesis and use in X-ray luminescent diamond composites. Ceram. Intern. 2022, 48, 12962–12970. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Sedov, V.S.; Martyanov, A.K.; Batygov, S.C.; Vakalov, D.S.; Savin, S.S.; Tarala, V.A. X-ray luminescence of diamond composite films containing yttrium-aluminum garnet nanoparticles with varied composition of Sc–Ce doping. Ceram. Intern. 2021, 47, 13922–13926. [Google Scholar] [CrossRef]
- Devys, L.; Dantelle, G.; Laurita, G.; Homeyer, E.; Gautier-Luneau, I.; Dujardin, C.; Seshadri, R.; Gacoin, T. A strategy to increase phosphor brightness: Application with Ce3+-doped Gd3Sc2Al3O12. J. Lumin. 2017, 190, 62–68. [Google Scholar] [CrossRef]
- Karandashev, V.K.; Orlova, T.V.; Zybinsky, A.M.; Kordyukov, S.V.; Simakov, V.A.; Kolotov, V.P. Analysis of niobium-rare-earth ores by inductively coupled plasma mass spectrometry. J. Anal. Chem. 2018, 7, 364–373. [Google Scholar] [CrossRef]
- Salem, D.B.; Barrat, J.A. Determination of rare earth elements in gadolinium-based contrast agents by ICP-MS. Talanta 2021, 221, 121589. [Google Scholar] [CrossRef] [PubMed]
- Korotkova, N.A.; Baranovskaya, V.B.; Petrova, K.V. Microwave Digestion and ICP-MS Determination of Major and Trace Elements in Waste Sm-Co Magnets. Metals 2022, 12, 1308. [Google Scholar] [CrossRef]
- Alekseev, A.V.; Yakimovich, P.V. Analysis of praseodymium by ICP-MS. Proceed. VIAM 2022, 113, 116–124. Available online: https://cyberleninka.ru/article/n/analiz-prazeodima-metodom-isp-ms (accessed on 1 December 2024).
- Korotkova, N.A.; Petrova, K.V.; Baranovskaya, V.B. Analysis of cerium oxide by mass spectrometry and optical emission spectrometry with inductively coupled plasma. J. Anal. Chem. 2021, 76, 1384–1394. [Google Scholar] [CrossRef]
- Veiga, M.; Mattiazzi, P.; de Gois, J.S.; Nascimentod, P.C.; Borgese, D.L.G.; Bohrer, D. Presence of other rare earth metals in gadolinium-based contrast agents. Talanta 2020, 216, 120940. [Google Scholar] [CrossRef]
- Wilschefski, S.C.; Baxter, M.R. Inductively coupled plasma mass spectrometry: Introduction to analytical aspects. Clin. Biochem. Rev. 2019, 40, 115–133. [Google Scholar] [CrossRef]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10, 1286–1303. [Google Scholar] [CrossRef]
- Tanner, S.D.; Baranov, V.I.; Bandura, D.R. Reaction cells and collision cells for ICP-MS: A tutorial review. Spectrochim. Acta Part B 2002, 57, 1361–1452. [Google Scholar] [CrossRef]
- Xu, Y.; Li, M.; Wang, C. Impurities in large scale produced Nd-doped phosphate laser glasses. I. Cu ions. Opt. Mater. X 2019, 4, 100033. [Google Scholar] [CrossRef]
- Balaram, V. Strategies to overcome interferences in elemental and isotopic geochemical analysis by quadrupole inductively coupled plasma mass spectrometry: A critical evaluation of the recent developments. Rapid Commun. Mass Spectrom. 2021, 35, e9065. [Google Scholar] [CrossRef] [PubMed]
- Agatemor, C.; Beauchemin, D. Matrix effects in inductively coupled plasma mass spectrometry: A review. Anal. Chim. Acta 2011, 706, 66–83. [Google Scholar] [CrossRef] [PubMed]
- Makonnen, Y.; Beauchemin, D. Investigation of a measure of robustness in inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B 2015, 103–104, 57–62. [Google Scholar] [CrossRef]
- Leikin, A.Y.; Yakimovich, P.V. Spectral interference suppression systems in inductively coupled plasma mass spectrometry. J. Anal. Chem. 2012, 67, 752–762. [Google Scholar] [CrossRef]
Operating Conditions | Value |
---|---|
Forward power, W | 1300 |
Coolant gas flow, L∙min−1 | 15 |
Auxiliary gas flow, L∙min−1 | 1.2 |
Nebulizer gas flow, L∙min−1 | 0.90 |
Sample flow rate, rpm | 30 |
Sampling depth, relative units | 0 |
Helium flow rate, mL∙min−1 | 6.5 |
Level of oxide ions, % | <2 |
Level of doubly charged ions, % | <1.5 |
Measurement mode | Peak hopping |
Isotopes of elements to be determined, m/z | 24/25Mg, 29Si, 45Sc, 47Ti, 51V, 52/53Cr, 55Mn, 59Co, 58/60Ni, 63/65Cu, 89Y, 139La, 140Ce, 141Pr, 143/145Nd, 147/149Sm, 151Eu, 159Tb, 162/163Dy, 165Ho, 166/167Er, 169Tm, 171Yb, 175Lu |
Internal standard | 103Rh, 115In |
Element | Isotope | Polyatomic Ion | Apparent Concentration of the Element, μg/L |
---|---|---|---|
Ni | 61Ni | 45Sc16O+ | 108 |
62Ni | 45Sc16O1H+ | 7.80 | |
Eu | 153Eu | 136Ce16O1H+ | 0.95 |
Tb | 159Tb | 142Ce16O1H+, 158Gd1H+ | 0.45 |
Dy | 161Dy | 160Gd1H+ | 0.70 |
164Dy | 152Gd12C+ | 0.07 | |
Ho | 165Ho | 152Gd13C+ | 0.003 |
Er | 166Er | 152Gd14N+, 154Gd12C+ | 0.09 |
167Er | 152Gd15N+, 154Gd13C+ | 0.09 | |
168Er | 152Gd16O+ | 2.50 | |
Tm | 169Tm | 152Gd16O1H+ | 2.75 |
Yb | 171Yb | 154Gd16O1H+, 155Gd16O+ | 178 |
172Yb | 155Gd16O1H+, 156Gd16O+ | 174 | |
173Yb | 156Gd16O1H+, 157Gd16O+ | 183 | |
174Yb | 157Gd16O1H+, 158Gd16O+ | 169 | |
Lu | 175Lu | 158Gd16O1H+ | 15.1 |
Element | LOD, wt.% | Certified Value, wt.% | Content, wt.% |
---|---|---|---|
Mg | 2.0∙10−5 | (1.45 ± 0.05)·10−3 | (1.47 ± 0.06)·10−3 |
Sc | 1.0∙10−5 | 5.75 ± 0.85 | 5.58 ± 0.20 |
Si | 2.0·10−3 | (2.50 ± 0.15)·10−3 | (2.60 ± 0.15)·10−3 |
Ti | 1.0∙10−4 | <1.0∙10−4 | (4.08 ± 0.20)·10−5 |
V | 1.0∙10−4 | <1.0∙10−4 | <1.0∙10−4 |
Cr | 4.0∙10−6 | (2.30 ± 0.10)·10−4 | (2.15 ± 0.15)·10−4 |
Mn | 8.0∙10−6 | (6.80 ± 0.30)·10−4 | (6.74 ± 0.27)·10−4 |
Fe * | 7.5∙10−5 | (3.50 ± 0.20)·10−4 | (3.58 ± 0.26)·10−4 |
Co | 5.0∙10−6 | (1.65 ± 0.10)·10−4 | (1.62 ± 0.12)·10−4 |
Ni | 1.0∙10−5 | (2.80 ± 0.15)·10−4 | (2.76 ± 0.12)·10−4 |
Cu | 3.0∙10−6 | (1.40 ± 0.05)·10−4 | (1.37 ± 0.06)·10−4 |
Y | 2.0∙10−6 | (3.10 ± 0.10)·10−4 | (3.06 ± 0.08)·10−4 |
La | 3.0∙10−6 | <1.0∙10−4 | (1.02 ± 0.04)·10−5 |
Ce | 5.0∙10−6 | (3.60 ± 0.20)·10−1 | (3.50 ± 0.19)·10−1 |
Pr | 2.0∙10−6 | <3.0∙10−4 | (6.24 ± 0.16)·10−5 |
Nd | 4.0∙10−6 | <2.0∙10−4 | (2.17 ± 0.08)·10−5 |
Sm | 2.0∙10−6 | <1.0∙10−4 | (3.62 ± 0.09)·10−5 |
Eu | 2.0∙10−6 | (1.00 ± 0.04)·10−4 | (1.13 ± 0.03)·10−5 |
Tb | 1.5∙10−4 | (3.40 ± 0.20)·10−4 | (3.35 ± 0.16)·10−4 |
Dy | 1.0∙10−6 | <1.0∙10−4 | <1.0∙10−6 |
Ho | 1.0∙10−6 | <1.0∙10−4 | <1.0∙10−6 |
Er | 2.5∙10−5 | (4.70 ± 0.30)·10−4 | (4.65 ± 0.26)·10−4 |
Tm * | 7.5∙10−5 | <1.0∙10−4 | <7.5∙10−5 |
Yb * | 4.15∙10−3 | (8.00 ± 0.30)·10−3 | (8.12 ± 0.40)·10−3 |
Lu * | 3.6∙10−4 | (5.08 ± 0.10)·10−3 | (5.02 ± 0.12)·10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korotkova, N.A.; Petrova, K.V.; Baranovskaya, V.B.; Doronina, M.S.; Arkhipenko, A.A. Study of the Elemental Composition of Gadolinium–Aluminum Garnets—Obtaining Predictable Optical Properties. Solids 2024, 5, 617-625. https://doi.org/10.3390/solids5040041
Korotkova NA, Petrova KV, Baranovskaya VB, Doronina MS, Arkhipenko AA. Study of the Elemental Composition of Gadolinium–Aluminum Garnets—Obtaining Predictable Optical Properties. Solids. 2024; 5(4):617-625. https://doi.org/10.3390/solids5040041
Chicago/Turabian StyleKorotkova, Natalia A., Kseniya V. Petrova, Vasilisa B. Baranovskaya, Marina S. Doronina, and Alexandra A. Arkhipenko. 2024. "Study of the Elemental Composition of Gadolinium–Aluminum Garnets—Obtaining Predictable Optical Properties" Solids 5, no. 4: 617-625. https://doi.org/10.3390/solids5040041
APA StyleKorotkova, N. A., Petrova, K. V., Baranovskaya, V. B., Doronina, M. S., & Arkhipenko, A. A. (2024). Study of the Elemental Composition of Gadolinium–Aluminum Garnets—Obtaining Predictable Optical Properties. Solids, 5(4), 617-625. https://doi.org/10.3390/solids5040041