Can Taxonomists Think? Reversing the AI Equation
Abstract
:There is only one systematicsGoloboff, 2022
1. The Taxonomic Context
2. The Taxonomic Tools
2.1. Compiling and Organizing Information
2.2. The Overarching Umbrella: The Species Concept
2.3. Tools for the Analysis of Data
3. Some Taxonomic Caveats and Limitations
3.1. Taxa Abundance
3.2. Taxa Size
3.3. Taxa Accessibility
4. Taxonomy and Artificial Intelligence
4.1. On Artificial Intelligence
4.2. The Potential Effect of AI in Taxonomy
- (a)
- A large part of the academic literature related to taxonomy, for example, the bibliographic collection of the ZR, is not freely accessible. The Biodiversity Heritage Library (BHL) only has access to the literature up to 1922, and the loss of copyright is one year for every other that passes. Even today, much of what is published is only accessible by subscription. These represent significant handicaps for accessibility.
- (b)
- A more fundamental problem is that AI can work as an aggregator of information and structure it in its output, but lacks the capacity for specific analysis unless it is instructed on the type of analysis needed to answer certain types of questions with certain types of data. This is akin to asking AI to behave like users of programs who lack a deep understanding of the what and the how and who, as a result, limit themselves to following computer script examples as if they were the surefire way to obtain any type of answer on the assumption it will be a reasonable or correct one.
4.3. Drawing by Example
4.4. Morphometric Measurements
4.5. Cross-Vocabulary and the Production of Morphological and Anatomical Ontologies for Different Clades
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Lewontin, R.C. Four complications in understanding the evolutionary process. Santa Fe Inst. Bull. 2003, 18, 17–23. [Google Scholar]
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.; Worm, B. How many species are there on Earth and in the ocean? PLoS Biol. 2011, 9, e1001127. [Google Scholar] [CrossRef] [PubMed]
- Locey, K.J.; Lennon, J.T. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 2016, 113, 5970–5975. [Google Scholar] [CrossRef] [PubMed]
- Wiens, J.J. How many species are there on Earth? Progress and problems. PLoS Biol. 2023, 21, e3002388. [Google Scholar] [CrossRef]
- Jablonski, D. Extinction: Past and present. Nature 2004, 427, 589. [Google Scholar] [CrossRef]
- Raup, D.M. Extinction. Bad Genes or Bad Luck? W. W. Norton: New York, NY, USA, 1991; p. xvii + 210. [Google Scholar]
- Chapman, A.D. Numbers of Living Species in Australia and the World, 2nd ed.; Report for the Australian Biological Resources Study; Australian Government, Department of the Environment, Water, Heritage, and the Arts: Canberra, Australia, 2009.
- Fisher, R.A.; Corbet, A.S.; Williams, C.B. The relation between the number of species and the number of individuals in a random sample of an animal population. J. Anim. Ecol. 1943, 12, 42–58. [Google Scholar] [CrossRef]
- Preston, F.W. The commonness, and rarity, of species. Ecology 1948, 29, 254–283. [Google Scholar] [CrossRef]
- Williams, C.B. Patterns in the Balance of Nature and Related Problems in Quantitative Ecology; Academic Press: London, UK, 1964; p. 324. [Google Scholar]
- Van den Berg, R.; Vogel, M.; Josić, K.; Ma, W.J. Optimal inference of sameness. Proc. Natl. Acad. Sci. USA 2012, 109, 3178–3183. [Google Scholar] [CrossRef]
- Ma, W.J.; Kording, K.P.; Goldreich, D. Bayesian Models of Perception and Action: An Introduction; MIT Press: Cambridge, MA, USA, 2023; p. 408. [Google Scholar]
- Noonan, H.; Curtis, B. Identity. In The Stanford Encyclopedia of Philosophy, Fall 2022 ed.; Zalta, E.N., Nodelman, U., Eds.; Stanford University: Stanford, CA, USA, 2022; Available online: https://plato.stanford.edu/archives/fall2022/entries/identity/ (accessed on 22 September 2024).
- Sturtevant, A.H. The North American Species of Drosophila; Carnegie Institution of Washington: Washington, DC, USA, 1921; p. 150. [Google Scholar]
- Valdecasas, A.G.; Pelaez, M.L.; Wheeler, Q.D. What’s in a (biological) name? The wrath of Lord Rutherford. Cladistics 2014, 30, 215–223. [Google Scholar] [CrossRef]
- Darwin, C.R.; Wallace, A.R. On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. J. Proc. Linn. Soc. Lond. Zool. 1858, 3, 45–62. [Google Scholar] [CrossRef]
- Oppy, G.; Dowe, D. The Turing Test. In The Stanford Encyclopedia of Philosophy, Winter 2021 ed.; Zalta, E.N., Ed.; Stanford University: Stanford, CA, USA, 2021; Available online: https://plato.stanford.edu/archives/win2021/entries/turing-test/ (accessed on 22 September 2024).
- Valdecasas, A.G. Alternative to Turing’s test on AI. J. Brief Ideas 2023. [Google Scholar] [CrossRef]
- Wilson, E.O. The nature of the taxon cycle in the Melanesian ant fauna. Am. Nat. 1961, 95, 169–193. [Google Scholar] [CrossRef]
- Favret, C. The 5 ‘D’s of Taxonomy: A User’s Guide. Q. Rev. Biol. 2024, 99, 131–156. [Google Scholar] [CrossRef]
- Jennebborg, L.-H. Marine Benthic Algae. Code Cent; Swedish Museum of Natural History: Stockholm, Sweden, 1986; pp. P4 0-0–P4 7-2. [Google Scholar]
- Waldén, H.W. Landmollusker I Norden. Kodcentralen; Naturhistoriska Riksmuseet: Stockholm, Sweden, 1985; pp. LM 0-0–LM 6-1. [Google Scholar]
- NODCTC. Volume 2: Alphabetical (Scientific Name Order) Listing; U.S. Department of Commerce: Washington, DC, USA, 1984; p. 385.
- Catwalk Ceramics. Available online: https://www.catwalkceramics.co.uk/download/flyer-2019fritsch.pdf (accessed on 30 September 2024).
- Guiry, M.D.; Guiry, G.M.; Morrison, L.; Rindi, F.; Miranda, S.V.; Mathieson, A.C.; Parker, B.C.; Langen, A.; John, D.M.; Bárbara, I.; et al. AlgaeBase: An on-line resource for Algae. Cryptogam. Algol. 2014, 35, 105–115. [Google Scholar] [CrossRef]
- Gledhill, T.; Valdecasas, A.G.; Becerra, J.M. A template for the future: Digitizing and databasing a taxonomic illustration collection. Exp. Appl. Acarol. 2007, 41, 109–113. [Google Scholar] [CrossRef]
- Dallwitz, M.J. DELTA and Intkey. In Advances in Computer Methods for Systematic Biology: Artificial Intelligence, Databases, Computer Vision; The Johns Hopkins University Press: Baltimore, MD, USA, 1993; pp. 287–296. [Google Scholar]
- Peláez, M.L.; Horreo, J.L.; García-Jiménez, R.; Valdecasas, A.G. An evaluation of errors in the mitochondrial COI sequences of Hydrachnidia (Acari, Parasitengona) in public databases. Exp. Appl. Acarol. 2022, 86, 371–384. [Google Scholar] [CrossRef]
- Bello, E.; Becerra, J.M.; Valdecasas, A.G. Counting on taxonomy. Nature 1992, 357, 531. [Google Scholar] [CrossRef]
- Valdecasas, A.G.; Bello, E.; Becerra, J.M. DIRTAX. Directorio de taxónomos españoles. Graellsia Monogr. 1994, 1, 1–233. [Google Scholar]
- Wilkins, J.S. Defining Species: A Source Book from Antiquity to Today; Peter Lang: New York, NY, USA, 2009. [Google Scholar]
- Wilkins, J.S. Understanding Species; Cambridge University Press: Cambridge, UK, 2023; p. 160. [Google Scholar]
- Karbstein, K.; Kösters, L.; Hodač, L.; Hofmann, M.; Hörandl, E.; Tomasello, S.; Wagner, N.D.; Emerson, B.C.; Albach, D.C.; Scheu, S.; et al. Species delimitation 4.0: Integrative taxonomy meets artificial intelligence. Trends Ecol. Evol. 2024, 39, 771–784. [Google Scholar] [CrossRef]
- Sokal, R.R.; Sneath, P.H.A. Principles of Numerical Taxonomy; W. H. Freeman and Company: San Francisco, CA, USA, 1963; p. 359. [Google Scholar]
- Sneath, P.H.; Sokal, R.R. Numerical Taxonomy: The Principles and Practice of Numerical Classification; W. H. Freeman and Company: San Francisco, CA, USA, 1973; p. 573. [Google Scholar]
- Rohlf, F.J. NTSYS-pc: Microcomputer programs for numerical taxonomy and multivariate analysis. Am. Stat. 1987, 41, 330. [Google Scholar] [CrossRef]
- Cardini, A. A practical, step-by-step, guide to taxonomic comparisons using Procrustes geometric morphometrics and user-friendly software (part A): Introduction and preliminary analyses. Eur. J. Taxon. 2024, 934, 1–92. [Google Scholar] [CrossRef]
- Cardini, A. A practical, step-by-step, guide to taxonomic comparisons using Procrustes geometric morphometrics and user-friendly software (part B): Group comparisons. Eur. J. Taxon. 2024, 934, 93–186. [Google Scholar] [CrossRef]
- Hennig, W. Phylogenetic Systematics; University of Illinois Press: Urbana, IL, USA, 1966; p. 263. [Google Scholar]
- Farris, J. Hennig86; Program and documentation, distributed by the author, New York. 1988.
- Goloboff, P. Phylogenetic Analysis of Morphological Data, Vol. 1: From Specimens to Optimal Phylogenetic Trees; CRC Press: Boca Raton, FL, USA, 2022; p. 277. [Google Scholar]
- Goloboff, P. Phylogenetic Analysis of Morphological Data, Vol. 2: Refining Phylogenetic Analyses; CRC Press: Boca Raton, FL, USA, 2022; p. 291. [Google Scholar]
- MacLeod, N.; Benfield, M.; Culverhouse, P. Time to automate identification. Nature 2010, 467, 154–155. [Google Scholar] [CrossRef]
- Valdecasas, A.G.; Wheeler, Q. Taxonomy: Add a human touch too. Nature 2010, 467, 788. [Google Scholar] [CrossRef]
- Kubatko, L. The Multispecies Coalescent. In Handbook of Statistical Genomics; Balding, D., Moltke, I., Marioni, J., Eds.; Wiley: New York, NY, USA, 2019. [Google Scholar] [CrossRef]
- DeSalle, R.; Michael, T.; Jeffrey, R. Phylogenomics: A Primer; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Meier, R.; Hartop, E.; Pylatiuk, C.; Srivathsan, A. Towards holistic insect monitoring: Species discovery, description, identification and traits for all insects. Philos. Trans. R. Soc. B 2024, 379, 20230120. [Google Scholar] [CrossRef] [PubMed]
- Raphael, M.G.; Molina, N. (Eds.) Conservation of Rare or Little-Known Species: Biological, Social, and Economic Considerations; Island Press: Washington, DC, USA, 2013; p. 392. [Google Scholar]
- Karaman, S. Die Fauna der unterirdischen Gewässer Jugoslaviens. Int. Ver. Theor. Angew. Limnol. Verh. 1935, 7, 46–73. [Google Scholar] [CrossRef]
- Käser, D. A new habitat of subsurface waters: The hyporheic biotope (translation of Orghidan’s 1959 paper). Fundam. Appl. Limnol. 2010, 176, 291–302. [Google Scholar] [CrossRef]
- Hine, C. Systematics as Cyberscience: Computers, Change, and Continuity in Science; MIT Press: Cambridge, MA, USA, 2008; p. 307. [Google Scholar]
- Russel, S.; Norvig, P. Artificial Intelligence: A Modern Approach, 4th ed.; Pearson Education Limited: Harlow, UK, 2022; p. 1166. [Google Scholar]
- Maslej, N.; Fattorini, L.; Perrault, R.; Parli, V.; Reuel, A.; Brynjolfsson, E.; Etchemendy, J.; Ligett, K.; Lyons, T.; Manyika, J.; et al. The AI Index 2024 Annual Report; AI Index Steering Committee, Institute for Human-Centered AI, Stanford University: Stanford, CA, USA, 2024. [Google Scholar]
- Schulz, S.; Stenzhorn, H.; Boeker, M. The ontology of biological taxa. Bioinformatics 2008, 24, i313–i321. [Google Scholar] [CrossRef]
- Girón, J.C.; Tarasov, S.; González Montaña, L.A.; Matentzoglu, N.; Smith, A.D.; Koch, M.; Boudinot, B.E.; Bouchard, P.; Burks, R.; Vogt, L.; et al. Formalizing Invertebrate Morphological Data: A Descriptive Model for Cuticle-Based Skeletal-Muscular Systems, an Ontology for Insect Anatomy, and their Potential Applications in Biodiversity Research and Informatics. Syst. Biol. 2023, 72, 1084–1100. [Google Scholar] [CrossRef]
- González Montaña, L.A.; Rueda-Ramírez, D.; Serna Cardona, F.J.; Gaigl, A. An anatomical ontology for the Class Collembola (Arthropoda: Hexapoda). Braz. Arch. Biol. Technol. 2023, 66, e23220682. [Google Scholar] [CrossRef]
- Mayr, E. Two empires or three? Proc. Natl. Acad. Sci. USA 1998, 95, 9720–9723. [Google Scholar] [CrossRef]
- Woese, C.R. Default taxonomy: Ernst Mayr’s view of the microbial world. Proc. Natl. Acad. Sci. USA 1998, 95, 11043–11046. [Google Scholar] [CrossRef] [PubMed]
- Holman, E.W. Evolutionary and psychological effects in pre-evolutionary classifications. J. Classif. 1985, 2, 29–39. [Google Scholar] [CrossRef]
- Holman, E.W. A taxonomic difference between the Caminalcules and real organisms. Syst. Zool. 1986, 35, 259–261. [Google Scholar] [CrossRef]
- SOSA; Brandt, A.; Chen, C.; Engel, L.; Esquete, P.; Horton, T.; Jażdżewska, A.M.; Johannsen, N.; Kaiser, S.; Kihara, T.C.; et al. Ocean Species Discoveries 1–12—A primer for accelerating marine invertebrate taxonomy. Biodivers. Data J. 2024, 12, e128431. [Google Scholar] [CrossRef]
- Estabrook, G. Book Reviews. J. Classif. 1986, 3, 167–168. [Google Scholar] [CrossRef]
- Keller, E.F. A Feeling for the Organism: The Life and Work of Barbara McClintock; W. H. Freeman: New York, NY, USA, 1983. [Google Scholar]
- Comfort, N. The Tangled Field: Barbara McClintock’s Search for the Patterns of Genetic Control; Harvard University Press: Cambridge, MA, USA, 2001. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdecasas, A.G. Can Taxonomists Think? Reversing the AI Equation. Taxonomy 2024, 4, 713-722. https://doi.org/10.3390/taxonomy4040037
Valdecasas AG. Can Taxonomists Think? Reversing the AI Equation. Taxonomy. 2024; 4(4):713-722. https://doi.org/10.3390/taxonomy4040037
Chicago/Turabian StyleValdecasas, Antonio G. 2024. "Can Taxonomists Think? Reversing the AI Equation" Taxonomy 4, no. 4: 713-722. https://doi.org/10.3390/taxonomy4040037
APA StyleValdecasas, A. G. (2024). Can Taxonomists Think? Reversing the AI Equation. Taxonomy, 4(4), 713-722. https://doi.org/10.3390/taxonomy4040037