Comparison of Likelihood Ratios from Probabilistic Genotyping for Two-Person Mixtures across Different Assays and Instruments
Abstract
:1. Introduction
- Each laboratory should examine aliquots of a dilution series of the same mixture consisting of equal proportions of high abundance DNA from each contributor to the mixture.
- Each laboratory applies their own DNA profiling pipeline to each aliquot of the dilution series.
- Each laboratory uses their own continuous PG system to generate an LR for each aliquot of the dilution series according to the following:
- The LR should be calculated using:
- ○
- only those loci in common amongst the participating laboratories;
- ○
- the same population allele frequencies;
- ○
- the same population genetic model for calculating genotype frequencies from allele frequencies (e.g., Hardy–Weinberg proportions);
- ○
- the same population sub-structure correction (e.g., θ = 0).
2. Materials and Methods
- Contributors consisted of Sample IDs 44 and 45 in the ratio 1:1.
- The DNA was pristine or “untreated” (i.e., no DNase degradation, Fragmentase® degradation, UV damage, sonication or humic acid inhibition).
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gill, P.; Benschop, C.; Buckleton, J.; Bleka, Ø.; Taylor, D. A Review of Probabilistic Genotyping Systems: EuroForMix, DNAStatistX and STRmix™. Genes 2021, 12, 1559. [Google Scholar] [CrossRef] [PubMed]
- Buckleton, J.S.; Bright, J.-A.; Ciecko, A.; Kruijver, M.; Mallinder, B.; Magee, A.; Malsom, S.; Moretti, T.; Weitz, S.; Bille, T.; et al. Response to: Commentary on: Bright et al. (2018) Internal validation of STRmix™—A multi laboratory response to PCAST, Forensic Science International: Genetics, 34: 11–24. Forensic Sci. Int. Genet. 2020, 44, 102198. [Google Scholar] [CrossRef] [PubMed]
- Executive Office of the President President’s Council of Advisors on Science and Technology. Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods; President’s Council of Advisors on Science and Technology: Washington, DC, USA, 2016. [Google Scholar]
- Butler, J.M.; Iyer, H.; Press, R.; Taylor, M.K.; Vallone, P.M.; Willis, S. DNA Mixture Interpretation: A NIST Scientific Foundation Review; National Institute of Standards and Technology: Gaithersburg, ML, USA, 2021. [Google Scholar]
- Boodoosingh, S.; Kelly, H.; Curran, J.M.; Kalafut, T. An inter-laboratory comparison of probabilistic genotyping parameters and evaluation of performance on DNA mixtures from different laboratories. Forensic Sci. Int. Genet. 2024, 71, 103046. [Google Scholar] [CrossRef] [PubMed]
- Bright, J.-A.; Cheng, K.; Kerr, Z.; McGovern, C.; Kelly, H.; Moretti, T.R.; Smith, M.A.; Bieber, F.R.; Budowle, B.; Coble, M.D.; et al. STRmix™ collaborative exercise on DNA mixture interpretation. Forensic Sci. Int. Genet. 2019, 40, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Alfonse, L.E.; Garrett, A.D.; Lun, D.S.; Duffy, K.R.; Grgicak, C.M. A large-scale dataset of single and mixed-source short tandem repeat profiles to inform human identification strategies: PROVEDIt. Forensic Sci. Int. Genet. 2018, 32, 62–70. [Google Scholar] [CrossRef] [PubMed]
- McNevin, D.; Wright, K.; Barash, M.; Gomes, S.; Jamieson, A.; Chaseling, J. Proposed Framework for Comparison of Continuous Probabilistic Genotyping Systems amongst Different Laboratories. Forensic Sci. 2021, 1, 33–45. [Google Scholar] [CrossRef]
- McNevin, D.; Wright, K.; Chaseling, J.; Barash, M. Commentary on: Bright et al. (2018) Internal validation of STRmix™—A multi laboratory response to PCAST, Forensic Science International: Genetics, 34: 11–24. Forensic Sci. Int. Genet. 2019, 41, e14–e17. [Google Scholar] [CrossRef] [PubMed]
- Riman, S.; Iyer, H.; Vallone, P.M. Exploring DNA interpretation software using the PROVEDIt dataset. Forensic Sci. Int. Genet. Suppl. Ser. 2019, 7, 724–726. [Google Scholar] [CrossRef]
- Riman, S.; Iyer, H.; Vallone, P.M. Examining performance and likelihood ratios for two likelihood ratio systems using the PROVEDIt dataset. PLoS ONE 2021, 16, e0256714. [Google Scholar] [CrossRef] [PubMed]
- Applied Biosystems™. AmpFLSTR™ Identifiler™ Plus PCR Amplification Kit. Available online: https://www.thermofisher.com/order/catalog/product/4427368 (accessed on 26 March 2024).
- Applied Biosystems™. GlobalFiler™ PCR Amplification Kit. Available online: https://www.thermofisher.com/order/catalog/product/4476135 (accessed on 26 March 2024).
- Promega Corporation. PowerPlex® Fusion 6C System. Available online: https://www.promega.com.au/products/forensic-dna-analysis-ce/str-amplification/powerplex-fusion-6c-system/?catNum=DC2705 (accessed on 26 March 2024).
- Goor, R.M.; Forman Neall, L.; Hoffman, D.; Sherry, S.T. A Mathematical Approach to the Analysis of Multiplex DNA Profiles. Bull. Math. Biol. 2011, 73, 1909–1931. [Google Scholar] [CrossRef] [PubMed]
- Bleka, Ø.; Storvik, G.; Gill, P. EuroForMix: An open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci. Int. Genet. 2016, 21, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Bright, J.-A.; McGovern, C.; Neville, S.; Grover, D. Allele frequency database for GlobalFiler™ STR loci in Australian and New Zealand populations. Forensic Sci. Int. Genet. 2017, 28, e38–e40. [Google Scholar] [CrossRef] [PubMed]
- Bleka, Ø.; Gill, P. Manual for EuroForMix V3.0; EuroForMix: Oslo, Norway, 2020. [Google Scholar]
- Taylor, D. Using continuous DNA interpretation methods to revisit likelihood ratio behaviour. Forensic Sci. Int. Genet. 2014, 11, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Buckleton, J.; Susik, M.; Curran, J.M.; Cheng, K.; Taylor, D.; Bright, J.-A.; Kelly, H.; Wivell, R. A diagnosis of the primary difference between EuroForMix and STRmix™. J. Forensic Sci. 2024, 69, 40–51. [Google Scholar] [CrossRef] [PubMed]
- van Oorschot, R.A.H.; Ballantyne, K.N.; Mitchell, R.J. Forensic trace DNA: A review. Investig. Genet. 2010, 1, 14. [Google Scholar] [CrossRef] [PubMed]
STR Profiling Assays | DNA Amounts (ng) | Genetic Analyzers | CE Injection Times (s) | CE Size Standards |
---|---|---|---|---|
Identifiler™ Plus (12) | 0.03125 (9) | 3130 (12) | 5 (12) | GeneScan™ 600 LIZ™ (24) |
GlobalFiler™ (12) | 0.0625 (9) | 3500 (24) | 10 (4) | WEN ILS 500 (12) |
Fusion 6C (12) | 0.125 (9) | 15 (8) | ||
0.25 (9) | 20 (4) | |||
25 (8) |
Proposition Pairs | Contributors under H1 | Contributors under H2 |
---|---|---|
1 (false) | Sample ID 1 + 1 unknown | 2 unknowns unrelated to Sample ID 1 |
2 (true) | Sample ID 44 + 1 unknown | 2 unknowns unrelated to Sample ID 44 |
3 (true) | Sample ID 45 + 1 unknown | 2 unknowns unrelated to Sample ID 45 |
Locus | CE Injection Time | References | |||
---|---|---|---|---|---|
5 | 15 | 25 | Sample ID 44 | Sample ID 45 | |
Amelogenin | X, Y | X, Y | X, Y | X, Y | X, Y |
CSF1PO | 11, 12 | 11, 12 | 11, 12 | 11, 12 | 11, 12 |
FGA | 20, 21, 23, 24, 25 | 21, 23, 24 | 21, 23, 24 | 23, 24 | 21, 25 |
TH01 | 5.2, 6.3, 9, 9.3 | 3, 4, 5, 6, 6.3, 7, 9, 9.3, 10 | 6, 7, 9, 9.3 | 6, 9.3 | 7, 9 |
TPOX | 8, 11 | 8, 11 | 8, 11 | 11, 11 | 8, 11 |
vWA | 13, 20 | 13, 20 | 13, 20 | 20, 20 | 13, 16 |
D2S1338 | 16, 19, 25 | 19, 25 | 19 | 16, 19 | 19, 25 |
D3S1358 | 14, 15, 16, 17 | 15, 16, 17 | 15, 16, 17 | 15, 16 | 15, 17 |
D5S818 | 11, 12 | 11, 12 | 11, 12 | 11, 12 | 11, 11 |
D7S820 | 8, 9, 10 | 8, 9, 10 | 8, 9, 10 | 8, 10 | 9, 10 |
D8S1179 | 6, 6.2, 6.3, 7, 7.1, 7.2, 7.3, 8, 8.2, 8.3, 9.1, 9.3, 10, 10.1, 10.3, 11.1, 11.2, 12, 12.2, 13, 13.2, 14, 15 | 6.1, 6.3, 7.3, 8.3, 9, 10, 11.3, 12.2, 13, 14, 15 | 10, 14, 15 | 14, 15 | 10, 14 |
D13S317 | 8, 13 | 8, 12, 13 | 8, 12 | 8, 8 | 12, 13 |
D16S539 | 4.1, 9, 10, 11 | 4.1, 10, 11 | 10, 11 | 10, 11 | 10, 11 |
D18S51 | 12, 14, 15, 16 | 12, 14, 16 | 12, 14, 16 | 12, 14 | 16, 17 |
D19S433 | 11, 13, 14, 14.1, 14.2, 15 | 11, 13, 14, 15 | 11, 13, 14, 15 | 13, 15 | 11, 14 |
D21S11 | 28, 31, 32 | 28, 31, 32 | 28, 31, 32 | 28, 32 | 28, 31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McNevin, D.; Barash, M. Comparison of Likelihood Ratios from Probabilistic Genotyping for Two-Person Mixtures across Different Assays and Instruments. Forensic Sci. 2024, 4, 441-452. https://doi.org/10.3390/forensicsci4030028
McNevin D, Barash M. Comparison of Likelihood Ratios from Probabilistic Genotyping for Two-Person Mixtures across Different Assays and Instruments. Forensic Sciences. 2024; 4(3):441-452. https://doi.org/10.3390/forensicsci4030028
Chicago/Turabian StyleMcNevin, Dennis, and Mark Barash. 2024. "Comparison of Likelihood Ratios from Probabilistic Genotyping for Two-Person Mixtures across Different Assays and Instruments" Forensic Sciences 4, no. 3: 441-452. https://doi.org/10.3390/forensicsci4030028
APA StyleMcNevin, D., & Barash, M. (2024). Comparison of Likelihood Ratios from Probabilistic Genotyping for Two-Person Mixtures across Different Assays and Instruments. Forensic Sciences, 4(3), 441-452. https://doi.org/10.3390/forensicsci4030028