Developments in Mask-Free Singularly Addressable Nano-LED Lithography
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amano, H.; Akasaki, I.; Hiramatsu, K.; Koide, N.; Sawaki, N. Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate. Thin Solid Films 1988, 163, 415–420. [Google Scholar] [CrossRef]
- Amano, H.; Kitoh, M.; Hiramatsu, K.; Akasaki, I. Growth and Luminescence Properties of Mg-Doped GaN Prepared by MOVPE. J. Electrochem. Soc. 1990, 137, 1639–1641. [Google Scholar] [CrossRef]
- Nakamura, S.; Mukai, T.M.T.; Senoh, M.S.M. High-Power GaN P-N Junction Blue-Light-Emitting Diodes. Jpn. J. Appl. Phys. 1991, 30, L1998–L2001. [Google Scholar] [CrossRef]
- Akasaki, I.A.I.; Amano, H.A.H. Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters. Jpn. J. Appl. Phys. 1997, 36, 5393–5408. [Google Scholar] [CrossRef]
- Kukushkin, S.A.; Osipov, A.V.; Zhukov, S.G.; Zavarin, E.E.; Lundin, W.V.; Sinitsyn, M.A.; Rozhavskaya, M.M.; Tsatsulnikov, A.F.; Troshkov, S.I.; Feoktistov, N.A. Group-III-nitride-based light-emitting diode on silicon substrate with epitaxial nanolayer of silicon carbide. Tech. Phys. Lett. 2012, 38, 297–299. [Google Scholar] [CrossRef]
- Wang, Q.; Yuan, G.-D.; Liu, W.-Q.; Zhao, S.; Zhang, L.; Liu, Z.-Q.; Wang, J.-X.; Li, J.-M. Monolithic semi-polar (1101) InGaN/GaN near white light-emitting diodes on micro-striped Si (100) substrate. Chin. Phys. B 2019, 28, 087802. [Google Scholar] [CrossRef]
- Hu, N.; Dinh, D.V.; Pristovsek, M.; Honda, Y.; Amano, H. How to obtain metal-polar untwinned high-quality (10 −13) GaN on m-plane sapphire. J. Cryst. Growth 2019, 507, 205–208. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, G.; Cai, W.; Gao, X.; Yang, Y.; Yuan, J.; Shi, Z.; Zhu, H. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides. Appl. Phys. Lett. 2016, 108, 162102. [Google Scholar] [CrossRef]
- Olivier, F.; Tirano, S.; Dupré, L.; Aventurier, B.; Largeron, C.; Templier, F. Influence of size-reduction on the performances of GaN-based micro-LEDs for display application. J. Lumin. 2017, 191, 112–116. [Google Scholar] [CrossRef]
- Lei, P.-H.; Yang, C.-D.; Huang, P.-C.; Yeh, S.-J. Enhancement of Light Extraction Efficiency for InGaN/GaN Light-Emitting Diodes Using Silver Nanoparticle Embedded ZnO Thin Films. Micromachines 2019, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Wierer, J.J.; Tansu, N. III-Nitride Micro-LEDs for Efficient Emissive Displays. Laser Photonics Rev. 2019, 13, 1900141. [Google Scholar] [CrossRef]
- Zhou, G.; Lin, R.; Qian, Z.; Zhou, X.; Shan, X.; Cui, X.; Tian, P. GaN-based micro-LEDs and detectors defined by current spreading layer: Size-dependent characteristics and their multifunctional applications. J. Phys. D Appl. Phys. 2021, 54, 335104. [Google Scholar] [CrossRef]
- Kishino, K.; Kikuchi, A.; Sekiguchi, H.; Ishizawa, S. InGaN/GaN nanocolumn LEDs emitting from blue to red. In Gallium Nitride Materials and Devices II; Morkoc, H., Litton, C.W., Eds.; SPIE: San Jose, CA, USA, 2007; p. 64730T. [Google Scholar] [CrossRef]
- Sekiguchi, H.; Kishino, K.; Kikuchi, A. Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate. Appl. Phys. Lett. 2010, 96, 231104. [Google Scholar] [CrossRef]
- Lin, Y.; Chang, S.; Su, Y.; Tsai, T.; Chang, C.; Shei, S.; Kuo, C.; Chen, S. InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts. Solid-State Electron. 2003, 47, 849–853. [Google Scholar] [CrossRef]
- Waag, A.; Wang, X.; Fündling, S.; Ledig, J.; Erenburg, M.; Neumann, R.; Al Suleiman, M.; Merzsch, S.; Wei, J.; Li, S.; et al. The nanorod approach: GaN NanoLEDs for solid state lighting. Phys. Status Solidi 2011, 8, 2296–2301. [Google Scholar] [CrossRef]
- Ra, Y.-H.; Wang, R.; Woo, S.Y.-M.; Djavid, M.; Sadaf, S.M.; Lee, J.; Botton, G.A.; Mi, Z. Full-Color Single Nanowire Pixels for Projection Displays. Nano Lett. 2016, 16, 4608–4615. [Google Scholar] [CrossRef] [PubMed]
- Moers, J.; Mikulics, M.; Marso, M.; Trellenkamp, S.; Sofer, Z.; Grutzmacher, D.; Hardtdegen, H. Fabrication of UV sources for novel lithographical techniques: Development of nano-LED etching procedures. In Proceedings of the 11th International Conference on Advanced Semiconductor Devices & Microsystems (ASDAM), Smolenice, Slovakia, 13–16 November 2016; pp. 81–84. [Google Scholar] [CrossRef]
- Krause, T.; Hanke, M.; Nicolai, L.; Cheng, Z.; Niehle, M.; Trampert, A.; Kahnt, M.; Falkenberg, G.; Schroer, C.G.; Hartmann, J.; et al. Structure and Composition of Isolated Core-Shell(In,Ga)N/GaNRods Based on Nanofocus X-ray Diffraction and Scanning Transmission Electron Microscopy. Phys. Rev. Appl. 2017, 7, 024033. [Google Scholar] [CrossRef]
- Kour, R.; Arya, S.; Verma, S.; Singh, A.; Mahajan, P.; Khosla, A. Review—Recent Advances and Challenges in Indium Gallium Nitride (InxGa1−xN) Materials for Solid State Lighting. ECS J. Solid State Sci. Technol. 2019, 9, 015011. [Google Scholar] [CrossRef]
- Orenstein, M.; von Lehmen, A.; Chang-Hasnain, C.; Stoffel, N.; Harbison, J.; Florez, L. Matrix addressable vertical cavity surface emitting laser array. Electron. Lett. 1991, 27, 437–438. [Google Scholar] [CrossRef]
- Kapon, E.; Orenstein, M. Large Two-Dimensional Arrays of Phase-Locked Vertical Cavity Surface Emitting Diode Lasers. Opt. Photonics News 1991, 2, 8. [Google Scholar] [CrossRef]
- Orenstein, M.; Kapon, E.; Harbison, J.P.; Florez, L.T.; Stoffel, N.G. Large two-dimensional arrays of phase-locked vertical cavity surface emitting lasers. Appl. Phys. Lett. 1992, 60, 1535–1537. [Google Scholar] [CrossRef]
- Orenstein, M. Semiconductor plasmonic devices for interconnects. In Proceedings of the 2014 Conference on Lasers and Electro-Optics (CLEO)—Laser Science to Photonic Applications, San Jose, CA, USA, 8–13 June 2014. [Google Scholar] [CrossRef]
- Sun, Y.; Cho, Y.-H.; Kim, H.-M.; Kang, T.W. High efficiency and brightness of blue light emission from dislocation-free InGaN/GaN quantum well nanorod arrays. Appl. Phys. Lett. 2005, 87, 093115. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Lin, J.Y.; Jiang, H.X. III-nitride micro-emitter arrays: Development and applications. J. Phys. D Appl. Phys. 2008, 41, 094001. [Google Scholar] [CrossRef]
- Li, Q.; Westlake, K.R.; Crawford, M.H.; Lee, S.R.; Koleske, D.D.; Figiel, J.J.; Cross, K.C.; Fathololoumi, S.; Mi, Z.; Wang, G.T. Optical performance of top-down fabricated InGaN/GaN nanorod light emitting diode arrays. Opt. Express 2011, 19, 25528–25534. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.J.; Chong, W.C.; Wong, K.M.; Keung, C.W.; Lau, K.M. Investigation of Forward Voltage Uniformity in Monolithic Light-Emitting Diode Arrays. IEEE Photonics Technol. Lett. 2013, 25, 1290–1293. [Google Scholar] [CrossRef]
- Templier, F. GaN-based emissive microdisplays: A very promising technology for compact, ultra-high brightness display systems. J. Soc. Inf. Disp. 2016, 24, 669–675. [Google Scholar] [CrossRef]
- Franch, N.; Canals, J.; Moro, V.; Alonso, O.; Moreno, S.; Vilà, A.; Prades, J.D.; Gülink, J.; Wasisto, H.S.; Waag, A.; et al. Towards a super-resolution structured illumination microscope based on an array of nanoLEDs. In Proceedings of the Novel Optical Systems, Methods, and Applications XXII, San Diego, CA, USA, 13–14 August 2019; p. 23. [Google Scholar] [CrossRef]
- Shi, Y.; Taniguchi, T.; Byun, K.-N.; Kurimoto, D.; Yamamoto, E.; Kobayashi, M.; Tsukagoshi, K.; Osada, M. Damage-free LED lithography for atomically thin 2D material devices. Sci. Rep. 2023, 13, 2583. [Google Scholar] [CrossRef]
- Chung, K.; Sui, J.; Demory, B.; Teng, C.-H.; Ku, P.-C. Monolithic integration of individually addressable light-emitting diode color pixels. Appl. Phys. Lett. 2017, 110, 111103. [Google Scholar] [CrossRef]
- Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a Manufacturability Perspective. Appl. Sci. 2019, 9, 1206. [Google Scholar] [CrossRef]
- Kishino, K.; Sakakibara, N.; Narita, K.; Oto, T. Two-dimensional multicolor (RGBY) integrated nanocolumn micro-LEDs as a fundamental technology of micro-LED display. Appl. Phys. Express 2020, 13, 014003. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Takeshita, T.; Qu, Y.; Imabayashi, H.; Okamoto, S.; Utsumi, H.; Kanehiro, M.; Angioni, E.; Boardman, E.A.; Hamilton, I.; et al. Active matrix QD-LED with top emission structure by UV lithography for RGB patterning. J. Soc. Inf. Disp. 2020, 28, 499–508. [Google Scholar] [CrossRef]
- Pasayat, S.S.; Gupta, C.; Wong, M.S.; Ley, R.; Gordon, M.J.; DenBaars, S.P.; Nakamura, S.; Keller, S.; Mishra, U.K. Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays. Appl. Phys. Express 2021, 14, 011004. [Google Scholar] [CrossRef]
- Kluczyk-Korch, K.; Palazzo, D.; Waag, A.; Dieguez, A.; Prades, J.D.; Di Carlo, A.; der Maur, M.A. Optical design of InGaN/GaN nanoLED arrays on a chip: Toward: Highly resolved illumination. Nanotechnology 2021, 32, 105203. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, K.; Zhang, Y.; Zhou, X.; Guo, T. Emerging Nanopixel Light-Emitting Displays: Significance, Challenges, and Prospects. J. Phys. Chem. Lett. 2021, 12, 3522–3527. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhang, X.; Chong, W.C.; Li, P.; Lau, K.M. 848 ppi high-brightness active-matrix micro-LED micro-display using GaN-on-Si epi-wafers towards mass production. Opt. Express 2021, 29, 10580–10591. [Google Scholar] [CrossRef]
- Wu, M.-C.; Chung, M.-C.; Wu, C.-Y. 3200 ppi Matrix-Addressable Blue MicroLED Display. Micromachines 2022, 13, 1350. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Zhang, X.; Chong, W.C.; Lau, K.M. Monolithically integrated high-resolution full-color GaN-on-Si micro-LED microdisplay. Photonics Res. 2023, 11, 109–120. [Google Scholar] [CrossRef]
- Gong, Y.; Gong, Z. Laser-Based Micro/Nano-Processing Techniques for Microscale LEDs and Full-Color Displays. Adv. Mater. Technol. 2022, 8, 2200949. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Y.-C.; Zeng, G.; Zhang, D.W.; Lu, H.-L. Integration Technology of Micro-LED for Next-Generation Display. Research 2023, 6, 0047. [Google Scholar] [CrossRef]
- Kurtin, J. Near-Field Photo-Lithography Using Nano Light Emitting Diodes. U.S. Patent US7274998B2, 25 September 2007. [Google Scholar]
- Guilhabert, B.; Massoubre, D.; Richardson, E.; McKendry, J.J.D.; Valentine, G.; Henderson, R.K.; Watson, I.M.; Gu, E.; Dawson, M.D. Sub-Micron Lithography Using InGaN Micro-LEDs: Mask-Free Fabrication of LED Arrays. IEEE Photonics Technol. Lett. 2012, 24, 2221–2224. [Google Scholar] [CrossRef]
- Wang, G.G.; Gao, Y.Q.; Xiao, M.C. Ultraviolet LED Light Source System for Lithography. Appl. Mech. Mater. 2014, 667, 405–408. [Google Scholar] [CrossRef]
- Yapici, M.K.; Farhat, I. UV LED lithography with digitally tunable exposure dose. J. Micro/Nanolithogr. MEMS MOEMS 2014, 13, 043004. [Google Scholar] [CrossRef]
- Kim, J.; Paik, S.; Allen, M.; Herrault, F. UV-LED lithography for 3-D high aspect ratio microstructure patterning. In Proceedings of the 14th Solid State Sensors, Actuators, Microsystems Workshop, Hilton Head Island, SC, USA, 3–7 June 2012; pp. 481–484. [Google Scholar]
- Bezshlyakh, D.D.; Spende, H.; Weimann, T.; Hinze, P.; Bornemann, S.; Gülink, J.; Canals, J.; Prades, J.D.; Dieguez, A.; Waag, A. Directly addressable GaN-based nano-LED arrays: Fabrication and electro-optical characterization. Microsyst. Nanoeng. 2020, 6, 88. [Google Scholar] [CrossRef]
- Shiba, S.F.; Tan, J.Y.; Kim, J. Multidirectional UV-LED lithography using an array of high-intensity UV-LEDs and tilt-rotational sample holder for 3-D microfabrication. Micro Nano Syst. Lett. 2020, 8, 5. [Google Scholar] [CrossRef]
- Wu, M.-C.; Chen, I.-T. High-Resolution 960 × 540 and 1920 × 1080 UV Micro Light-Emitting Diode Displays with the Application of Maskless Photolithography. Adv. Photonics Res. 2021, 2, 2100064. [Google Scholar] [CrossRef]
- Zheng, L.; Zywietz, U.; Birr, T.; Duderstadt, M.; Overmeyer, L.; Roth, B.; Reinhardt, C. UV-LED projection photolithography for high-resolution functional photonic components. Microsyst. Nanoeng. 2021, 7, 64. [Google Scholar] [CrossRef]
- Xie, Z.; Yu, W.; Wang, T.; Zhang, H.; Fu, Y.; Liu, H.; Li, F.; Lu, Z.; Sun, Q. Plasmonic Nanolithography: A Review. Plasmonics 2011, 6, 565–580. [Google Scholar] [CrossRef]
- Mikulics, M.; Hardtdegen, H. Method for Optical Transmission of a Structure into a Recording Medium. U.S. Patent US9798237B2, 24 October 2017. [Google Scholar]
- Mikulics, M.; Hardtdegen, H. Nano-LED array fabrication suitable for future single photon lithography. Nanotechnology 2015, 26, 185302. [Google Scholar] [CrossRef]
- Mikulics, M.; Sofer, Z.; Winden, A.; Trellenkamp, S.; Förster, B.; Mayer, J.; Hardtdegen, H.H. Nano-LED induced chemical reactions for structuring processes. Nanoscale Adv. 2020, 2, 5421–5427. [Google Scholar] [CrossRef] [PubMed]
- Mikulics, M.; Arango, Y.C.; Winden, A.; Adam, R.; Hardtdegen, A.; Grützmacher, D.; Plinski, E.; Gregušová, D.; Novák, J.; Kordoš, P.; et al. Direct electro-optical pumping for hybrid CdSe nanocrystal/III-nitride based nano-light-emitting diodes. Appl. Phys. Lett. 2016, 108, 061107. [Google Scholar] [CrossRef]
- Du, Z.; Feng, H.; Liu, Y.; Tang, P.; Qian, F.; Sun, J.; Guo, W.; Song, J.; Chen, E.; Guo, T.; et al. Localized Surface Plasmon Coupling Nanorods With Graphene as a Transparent Conductive Electrode for Micro Light-Emitting Diodes. IEEE Electron Device Lett. 2022, 43, 2133–2136. [Google Scholar] [CrossRef]
- Chen, E.; Zhao, M.; Chen, K.; Jin, H.; Chen, X.; Sun, J.; Yan, Q.; Guo, T. Metamaterials for light extraction and shaping of micro-scale light-emitting diodes: From the perspective of one-dimensional and two-dimensional photonic crystals. Opt. Express 2023, 31, 18210–18226. [Google Scholar] [CrossRef]
- Mikulics, M.; Kordoš, P.; Gregušová, D.; Sofer, Z.; Winden, A.; Trellenkamp, S.; Moers, J.; Mayer, J.; Hardtdegen, H. Conditioning nano-LEDs in arrays by laser-micro-annealing: The key to their performance improvement. Appl. Phys. Lett. 2021, 118, 043101. [Google Scholar] [CrossRef]
- Mikulics, M.; Hardtdegen, H. Single Photon Source and Its Fabrication Process Suitable for Mass Production. U.S. Patent US10074771B2, 11 September 2018. [Google Scholar]
- Mikulics, M.; Adam, R.; Sobolewski, R.; Heidtfeld, S.; Cao, D.; Bürgler, D.E.; Schneider, C.M.; Mayer, J.; Hardtdegen, H.H. Nano-LED driven phase change evolution of layered chalcogenides for Raman spectroscopy investigations. FlatChem 2022, 36, 100447. [Google Scholar] [CrossRef]
- Mikulics, M.; Hardtdegen, H.H. Fully photon operated transmistor/all-optical switch based on a layered Ge1Sb2Te4 phase change medium. FlatChem 2020, 23, 100186. [Google Scholar] [CrossRef]
- Mikulics, M.; Mayer, J.; Hardtdegen, H.H. Cutting-edge nano-LED technology. J. Appl. Phys. 2022, 131, 110903. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikulics, M.; Winden, A.; Mayer, J.; Hardtdegen, H.H. Developments in Mask-Free Singularly Addressable Nano-LED Lithography. Nanomanufacturing 2024, 4, 99-110. https://doi.org/10.3390/nanomanufacturing4020007
Mikulics M, Winden A, Mayer J, Hardtdegen HH. Developments in Mask-Free Singularly Addressable Nano-LED Lithography. Nanomanufacturing. 2024; 4(2):99-110. https://doi.org/10.3390/nanomanufacturing4020007
Chicago/Turabian StyleMikulics, Martin, Andreas Winden, Joachim Mayer, and Hilde Helen Hardtdegen. 2024. "Developments in Mask-Free Singularly Addressable Nano-LED Lithography" Nanomanufacturing 4, no. 2: 99-110. https://doi.org/10.3390/nanomanufacturing4020007
APA StyleMikulics, M., Winden, A., Mayer, J., & Hardtdegen, H. H. (2024). Developments in Mask-Free Singularly Addressable Nano-LED Lithography. Nanomanufacturing, 4(2), 99-110. https://doi.org/10.3390/nanomanufacturing4020007