Effect of KCl Addition on First Hydrogenation Kinetics of TiFe
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization
3.2. Activation Kinetics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dantzer, P. Properties of Intermetallic Compounds Suitable for Hydrogen Storage Applications. Mater. Sci. Eng. A 2002, 329–331, 313–320. [Google Scholar] [CrossRef]
- Suda, T.; Ohkawa, M.; Sawada, S.; Watanabe, S.; Ohnuki, S.; Nagata, S. Effect of Surface Modification by Ion Implantation on Hydrogenation Property of TiFe Alloy. Mater. Trans. 2002, 43, 2703–2705. [Google Scholar] [CrossRef] [Green Version]
- Saita, I.; Sato, M.; Uesugi, H.; Akiyama, T. Hydriding Combustion Synthesis of TiFe. J. Alloys Compd. 2007, 446–447, 195–199. [Google Scholar] [CrossRef]
- Lv, P.; Huot, J. Hydrogen Storage Properties of Ti0.95FeZr0.05, TiFe0.95Zr0.05 and TiFeZr0.05 Alloys. Int. J. Hydrogen Energy 2016, 41, 22128–22133. [Google Scholar] [CrossRef]
- Sandrock, G. A Panoramic Overview of Hydrogen Storage Alloys from a Gas Reaction Point of View. J. Alloys Compd. 1999, 293, 877–888. [Google Scholar] [CrossRef]
- Sujan, G.K.; Pan, Z.; Li, H.; Liang, D.; Alam, N. An Overview on TiFe Intermetallic for Solid-State Hydrogen Storage: Microstructure, Hydrogenation and Fabrication Processes. Crit. Rev. Solid State Mater. Sci. 2020, 45, 410–427. [Google Scholar] [CrossRef]
- Edalati, K.; Matsuda, J.; Iwaoka, H.; Toh, S.; Akiba, E.; Horita, Z. High-Pressure Torsion of TiFe Intermetallics for Activation of Hydrogen Storage at Room Temperature with Heterogeneous Nanostructure. Int. J. Hydrogen Energy 2013, 38, 4622–4627. [Google Scholar] [CrossRef]
- Reilly, J.J.; Wiswall, R.H. Formation and Properties of Iron Titanium Hydride. Inorg. Chem. 1974, 13, 218–222. [Google Scholar] [CrossRef]
- Manna, J.; Tougas, B.; Huot, J. Mechanical Activation of Air Exposed TiFe + 4 wt% Zr Alloy for Hydrogenation by Cold Rolling and Ball Milling. Int. J. Hydrogen Energy 2018, 43, 20795–20800. [Google Scholar] [CrossRef]
- Kuziora, P.; Kunce, I.; McCain, S.; Adkins, N.J.E.; Polanski, M. The Influence of Refractory Metals on the Hydrogen Storage Characteristics of FeTi-Based Alloys Prepared by Suspended Droplet Alloying. Int. J. Hydrogen Energy 2020, 45, 21635–21645. [Google Scholar] [CrossRef]
- Berdonosova, E.A.; Zadorozhnyy, V.Y.; Zadorozhnyy, M.Y.; Geodakian, K.V.; Zheleznyi, M.V.; Tsarkov, A.A.; Kaloshkin, S.D.; Klyamkin, S.N. Hydrogen Storage Properties of TiFe-Based Ternary Mechanical Alloys with Cobalt and Niobium. A Thermochemical Approach. Int. J. Hydrogen Energy 2019, 44, 29159–29165. [Google Scholar] [CrossRef]
- Manna, J.; Tougas, B.; Huot, J. First Hydrogenation Kinetics of Zr and Mn Doped TiFe Alloy after Air Exposure and Reactivation by Mechanical Treatment. Int. J. Hydrogen Energy 2020, 45, 11625–11631. [Google Scholar] [CrossRef]
- Huot, J.; Ravnsbæk, D.B.; Zhang, J.; Cuevas, F.; Latroche, M.; Jensen, T.R. Mechanochemical Synthesis of Hydrogen Storage Materials. Prog. Mater. Sci. 2013, 58, 30–75. [Google Scholar] [CrossRef]
- Huot, J.; Tousignant, M. Effect of Cold Rolling on Metal Hydrides. Mater. Trans. 2019, 60, 1571–1576. [Google Scholar] [CrossRef] [Green Version]
- Lang, J.; Huot, J. A New Approach to the Processing of Metal Hydrides. J. Alloys Compd. 2011, 509, L18–L22. [Google Scholar] [CrossRef]
- Huot, J. Nanocrystalline Metal Hydrides Obtained by Severe Plastic Deformations. Metals 2012, 2, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Ulate-Kolitsky, E.; Tougas, B.; Neumann, B.; Schade, C.; Huot, J. First Hydrogenation of Mechanically Processed TiFe-Based Alloy Synthesized by Gas Atomization. Int. J. Hydrogen Energy 2021, 46, 7381–7389. [Google Scholar] [CrossRef]
- Skripnyuk, V.M.; Rabkin, E.; Estrin, Y.; Lapovok, R. Improving Hydrogen Storage Properties of Magnesium Based Alloys by Equal Channel Angular Pressing. Int. J. Hydrogen Energy 2009, 34, 6320–6324. [Google Scholar] [CrossRef]
- Leiva, D.R.; Jorge, A.M.; Ishikawa, T.T.; Huot, J.; Fruchart, D.; Miraglia, S.; Kiminami, C.S.; Botta, W.J. Nanoscale Grain Refinement and H-Sorption Properties of MgH2 Processed by High-Pressure Torsion and Other Mechanical Routes. Adv. Eng. Mater. 2010, 12, 786–792. [Google Scholar] [CrossRef]
- Sakintuna, B.; Lamaridarkrim, F.; Hirscher, M. Metal Hydride Materials for Solid Hydrogen Storage: A Review. Int. J. Hydrogen Energy 2007, 32, 1121–1140. [Google Scholar] [CrossRef]
- Lototskyy, M.V.; Tolj, I.; Pickering, L.; Sita, C.; Barbir, F. The Use of Metal Hydrides in Fuel Cell Applications. Prog. Nat. Sci. Mater. Int. 2017, 27, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.K.; Sharma, P.; Huot, J. Effect of Annealing on Microstructure and Hydrogenation Properties of TiFe + X wt% Zr (X = 4, 8). Int. J. Hydrogen Energy 2018, 43, 6238–6243. [Google Scholar] [CrossRef]
- Ali, W.; Hao, Z.; Li, Z.; Chen, G.; Wu, Z.; Lu, X.; Li, C. Effects of Cu and Y Substitution on Hydrogen Storage Performance of TiFe0.86Mn0.1Y0.1−xCux. Int. J. Hydrogen Energy 2017, 42, 16620–16631. [Google Scholar] [CrossRef]
- Ali, W.; Li, M.; Gao, P.; Wu, C.; Li, Q.; Lu, X.; Li, C. Hydrogenation Properties of Ti-Fe-Mn Alloy with Cu and Y as Additives. Int. J. Hydrogen Energy 2017, 42, 2229–2238. [Google Scholar] [CrossRef]
- Nishimiya, N.; Wada, T.; Matsumoto, A.; Tsutsumi, K. Hydriding Characteristics of Zirconium-Substituted FeTi. J. Alloys Compd. 2000, 313, 53–58. [Google Scholar] [CrossRef]
- Miyamura, H.; Sakai, T.; Kuriyama, N.; Tanaka, H.; Uehara, I.; Ishikawa, H. Hydrogenation and Phase Structure of Ti-Fe-V Alloys. J. Alloys Compd. 1997, 253, 232–234. [Google Scholar] [CrossRef]
- Leng, H.; Yu, Z.; Yin, J.; Li, Q.; Wu, Z.; Chou, K.C. Effects of Ce on the Hydrogen Storage Properties of TiFe0.9Mn0.1 alloy. Int. J. Hydrogen Energy 2017, 42, 23731–23736. [Google Scholar] [CrossRef]
- Patel, A.K.; Duguay, A.; Tougas, B.; Neumann, B.; Schade, C.; Sharma, P.; Huot, J. Study of the Microstructural and First Hydrogenation Properties of Tife Alloy with Zr, Mn and V as Additives. Processes 2021, 9, 1217. [Google Scholar] [CrossRef]
- Jain, P.; Gosselin, C.; Huot, J. Effect of Zr, Ni and Zr7Ni10 Alloy on Hydrogen Storage Characteristics of TiFe Alloy. Int. J. Hydrogen Energy 2015, 40, 16921–16927. [Google Scholar] [CrossRef]
- Jain, P.; Gosselin, C.; Skryabina, N.; Fruchart, D.; Huot, J. Hydrogenation Properties of TiFe with Zr7Ni10 Alloy as Additive. J. Alloys Compd. 2015, 636, 375–380. [Google Scholar] [CrossRef]
- Shwartz, A.; Shamir, N.; Froumin, N.; Zalkind, S.; Edry, I.; Haim, A.; Mintz, M.H. Initial Oxidation of TiFe1−xMnx (x = 0–0.3) by Low Dose Exposures to H2O and O2. J. Alloys Compd. 2014, 610, 6–10. [Google Scholar] [CrossRef]
- Sandrock, G.D.; Goodell, P.D. Surface Poisoning of LaNi5, FeTi and (Fe,Mn)Ti by O2, CO. J. Less-Common Met. 1980, 73, 161–168. [Google Scholar] [CrossRef]
- Lv, P.; Guzik, M.N.; Sartori, S.; Huot, J. Effect of Ball Milling and Cryomilling on the Microstructure and First Hydrogenation Propertiesof TiFe + 4 wt% Zr Alloy. J. Mater. Res. Technol. 2019, 8, 1828–1834. [Google Scholar] [CrossRef]
- Modi, P.; Aguey-Zinsou, K.F. Titanium-Iron-Manganese (TiFe0.85Mn0.15)Alloy for Hydrogen Storage: Reactivation upon Oxidation. Int. J. Hydrogen Energy 2019, 44, 16757–16764. [Google Scholar] [CrossRef]
- Qu, H.; Du, J.; Pu, C.; Niu, Y.; Huang, T.; Li, Z.; Lou, Y.; Wu, Z. Effects of Co Introduction on Hydrogen Storage Properties of Ti-Fe-Mn Alloys. Int. J. Hydrogen Energy 2015, 40, 2729–2735. [Google Scholar] [CrossRef]
- Gosselin, C.; Huot, J. First Hydrogenation Enhancement in TiFe Alloys for Hydrogen Storage Doped with Yttrium. Metals 2019, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Dematteis, E.M.; Berti, N.; Cuevas, F.; Latroche, M.; Baricco, M. Substitutional Effects in TiFe for Hydrogen Storage: A Comprehensive Review. Mater. Adv. 2021, 2, 2524–2560. [Google Scholar] [CrossRef]
- Falcão, R.B.; Dammann, E.D.C.C.; Rocha, C.J.; Durazzo, M.; Ichikawa, R.U.; Martinez, L.G.; Botta, W.J.; Leal Neto, R.M. An Alternative Route to Produce Easily Activated Nanocrystalline TiFe Powder. Int. J. Hydrogen Energy 2018, 43, 16107–16116. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.Y.; Milovzorov, G.S.; Klyamkin, S.N.; Zadorozhnyy, M.Y.; Strugova, D.V.; Gorshenkov, M.V.; Kaloshkin, S.D. Preparation and Hydrogen Storage Properties of Nanocrystalline TiFe Synthesized by Mechanical Alloying. Prog. Nat. Sci. Mater. Int. 2017, 27, 149–155. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.Y.; Klyamkin, S.N.; Zadorozhnyy, M.Y.; Bermesheva, O.V.; Kaloshkin, S.D. Mechanical Alloying of Nanocrystalline Intermetallic Compound TiFe Doped by Aluminum and Chromium. J. Alloys Compd. 2014, 586, S56–S60. [Google Scholar] [CrossRef]
- Zadorozhnyy, V.; Klyamkin, S.; Zadorozhnyy, M.; Bermesheva, O.; Kaloshkin, S. Hydrogen Storage Nanocrystalline TiFe Intermetallic Compound: Synthesis by Mechanical Alloying and Compacting. Int. J. Hydrogen Energy 2012, 37, 17131–17136. [Google Scholar] [CrossRef]
- Yamashita, I.; Tanaka, H.; Takeshita, H.; Kuriyama, N.; Sakai, T.; Uehara, I. Hydrogenation Characteristics of TiFe1−xPdx (0.05 < x < 0.30) Alloys. J. Alloys Compd. 1997, 254, 238–240. [Google Scholar]
- Bououdina, M.; Fruchart, D.; Jacquet, S.; Pontonnier, L.; Soubeyroux, J.L. Effect of Nickel Alloying by Using Ball Milling on the Hydrogen Absorption Properties of TiFe. Int. J. Hydrogen Energy 1999, 24, 885–890. [Google Scholar] [CrossRef]
- Zaluski, L.; Zaluska, A.; Tessier, P.; Strom-Olsen, J.O.; Schulz, R. Effects of Relaxation on Hydrogen Absorption in FeTi Produced by Ball-Milling. J. Alloys Compd. 1995, 227, 53–57. [Google Scholar] [CrossRef]
- Zaluski, L.; Zaluska, A.; Tessier, P.; Strom-Olsen, J.O.; Schulz, R. Hydrogen Absorption by Nanocrystalline and Amorphous Fe-Ti with Palladium Catalyst, Produced by Ball Milling. J. Mater. Sci. 1996, 31, 695–698. [Google Scholar] [CrossRef]
- Davids, M.W.; Lototskyy, M.; Nechaev, A.; Naidoo, Q.; Williams, M.; Klochko, Y. Surface Modification of TiFe Hydrogen Storage Alloy by Metal-Organic Chemical Vapour Deposition of Palladium. Int. J. Hydrogen Energy 2011, 36, 9743–9750. [Google Scholar] [CrossRef]
- Williams, M.; Lototsky, M.V.; Davids, M.W.; Linkov, V.; Yartys, V.A.; Solberg, J.K. Chemical Surface Modification for the Improvement of the Hydrogenation Kinetics and Poisoning Resistance of TiFe. J. Alloys Compd. 2011, 509, S770–S774. [Google Scholar] [CrossRef]
- Heller, E.M.B.; Vredenberg, A.M.; Boerma, D.O. H Uptake Kinetics of FeTi Films Coated with Ni. Appl. Surf. Sci. 2006, 253, 1150–1153. [Google Scholar] [CrossRef]
- Heller, E.M.B.; Vredenberg, A.M.; Boerma, D.O. Hydrogen Uptake Kinetics of Pd Coated FeTi Films. Appl. Surf. Sci. 2006, 253, 771–777. [Google Scholar] [CrossRef]
- BRUKER AXS, TOPAS V4; General Profile and Structure Analysis Software for Powder Diffraction Data; Bruker AXS GmbH: Karlsruhe, Germany, 2008.
- Toma, O.; Dzevenko, M.; Oliynyk, A.; Lomnytska, Y.F. The Ti-Fe-P System: Phase Equilibria and Crystal Structure of Phases. Cent. Eur. J. Chem. 2013, 11, 1518–1526. [Google Scholar] [CrossRef] [Green Version]
- Romaka, L.; Romaka, V.V.; Stadnyk, Y.; Melnychenko, N. On the Formation of Ternary Phases in the Ti–Fe–Sn Ternary System at 773 K. Chem. Met. Alloy. 2013, 6, 12–19. [Google Scholar] [CrossRef]
- Lv, P.; Liu, Z. Effect of High Zirconium Content on Hydrogenation Properties and Anti-Poisoning Ability of Air-Exposed TiFe Alloy. J. Mater. Res. Technol. 2019, 8, 5972–5983. [Google Scholar] [CrossRef]
- Lv, P.; Huot, J. Hydrogenation Improvement of TiFe by Adding ZrMn2. Energy 2017, 138, 375–382. [Google Scholar] [CrossRef]
- Lv, P.; Liu, Z.; Dixit, V. Improved Hydrogen Storage Properties of TiFe Alloy by Doping (Zr + 2V) Additive and Using Mechanical Deformation. Int. J. Hydrogen Energy 2019, 44, 27843–27852. [Google Scholar] [CrossRef]
- Romero, G.; Lv, P.; Huot, J. Effect of Ball Milling on the First Hydrogenation of TiFe Alloy Doped with 4 wt% (Zr + 2Mn) Additive. J. Mater. Sci. 2018, 53, 13751–13757. [Google Scholar] [CrossRef]
- Patel, A.K.; Duguay, A.; Tougas, B.; Schade, C.; Sharma, P.; Huot, J. Microstructure and First Hydrogenation Properties of TiFe Alloy with Zr and Mn as Additives. Int. J. Hydrogen Energy 2020, 45, 787–797. [Google Scholar] [CrossRef]
- Emami, H.; Edalati, K.; Matsuda, J.; Akiba, E.; Horita, Z. Hydrogen Storage Performance of TiFe after Processing by Ball Milling. Acta Mater. 2015, 88, 190–195. [Google Scholar] [CrossRef]
- Chiang, C.H.; Chin, Z.H.; Perng, T.P. Hydrogenation of TiFe by High-Energy Ball Milling. J. Alloys Compd. 2000, 307, 259–265. [Google Scholar] [CrossRef]
- Aoyagi, H.; Aoki, K.; Masumoto, T. Effect of Ball Milling on Hydrogen Absorption Properties of FeTi, Mg2Ni and LaNi5. J. Alloys Compd. 1995, 231, 804–809. [Google Scholar] [CrossRef]
- Gubicza, J. Relationship between Microstructure and Hydrogen Storage Properties of Nanomaterials. In Defect Structure in Nanomaterials; Woodhead Publishing: Cambridge, MA, USA, 2012; pp. 301–332. [Google Scholar]
- Vega, L.E.R.; Leiva, D.R.; Leal Neto, R.M.; Silva, W.B.; Silva, R.A.; Ishikawa, T.T.; Kiminami, C.S.; Botta, W.J. Mechanical Activation of TiFe for Hydrogen Storage by Cold Rolling under Inert Atmosphere. Int. J. Hydrogen Energy 2018, 43, 2913–2918. [Google Scholar] [CrossRef]
- Haraki, T.; Oishi, K.; Uchida, H.; Miyamoto, Y.; Abe, M.; Kokaji, T.; Uchida, S. Properties of Hydrogen Absorption by Nano-Structured FeTi Alloys. Int. J. Mater. Res. 2008, 99, 507–512. [Google Scholar] [CrossRef]
- Zaluski, L.; Zaluska, A.; Strom-Olsen, J.O. Nanocrystalline metal hydrides. J. Alloys Compd. 1997, 253, 70–79. [Google Scholar] [CrossRef]
- Hotta, H.; Abe, M.; Kuji, T.; Uchida, H. Synthesis of Ti-Fe Alloys by Mechanical Alloying. J. Alloys Compd. 2007, 439, 221–226. [Google Scholar] [CrossRef]
- Abe, M.; Kuji, T. Hydrogen Absorption of TiFe Alloy Synthesized by Ball Milling and Post-Annealing. J. Alloys Compd. 2007, 446–447, 200–203. [Google Scholar] [CrossRef]
- Inui, H.; Yamamoto, T.; Hirota, M.; Yamaguchi, M. Lattice Defects Introduced during Hydrogen Absorption-Desorption Cycles and Their Effects on P-C Characteristics in Some Intermetallic Compounds. J. Alloys Compd. 2002, 330, 117–124. [Google Scholar] [CrossRef]
- Guo, F.; Namba, K.; Miyaoka, H.; Jain, A.; Ichikawa, T. Hydrogen Storage Behavior of TiFe Alloy Activated by Different Methods. Mater. Lett. X 2021, 9, 100061. [Google Scholar] [CrossRef]
Sample | Phase | Composition (wt.%) | Lattice Parameter (Å) | Crystallite Size (nm) | Microstrain (%) |
---|---|---|---|---|---|
As-cast TiFe | TiFe | 95(1) | 2.9808(3) | 23.8(7) | 0.092(4) |
Fe2Ti | 5(1) | a = 4.840(4), c = 8.11(1) | 32(12) | -- | |
TiFe + 1 wt.% KCl | TiFe | 98.6(3) | 2.9815(6) | 8.5(2) | 0.269(7) |
KCl | 1.4(3) | 6.2849 | 50(20) | -- | |
TiFe + 5 wt.% KCl | TiFe | 95.4(3) | 2.9806(2) | 9.1(2) | 0.264(7) |
KCl | 4.6(3) | 6.2849 | 89(13) | -- |
Sample | Synthesis Process | Air Exposure | Treatment | H2 Adsorbed | Ref | |
---|---|---|---|---|---|---|
Mechanical | Thermal | |||||
TiFe | Induction melting | As-cast | Ball milling | No | 1.1 wt.% (20 bars, 20 °C) | [12] |
TiFe | Mechanical alloying | - | - | 5 cycles of vacuum and 150 bar H2 pressure at 300 °C | 1.3 wt.% | [65] |
TiFe | Purchased | - | Ball milling | Annealing (1000 °C) | 1.3–1.5 wt.% (100 bar, 30 °C) | [58] |
TiFe | Purchased | Ball milled with ethanol | - | 1.2 wt.% (RT) | [68] | |
TiFe | Arc melting | Ball milling with 1% KCl | - | 1.5 wt.% (RT, 20 bars) | This study | |
TiFe0.85Mn0.15 | Arc-melting | 2 h | Ball milling | 300 °C under 3 MPa H2 pressure, 3 times | <1 wt.% (30 bars, 30 °C) | [34] |
TiFe + 2 wt.% Mn + 4 wt.% Zr | Gas atomization | 60 days | Cold rolling | No | 2.1 wt.% (20 bars, RT) | [17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manna, J.; Huot, J. Effect of KCl Addition on First Hydrogenation Kinetics of TiFe. Compounds 2022, 2, 240-251. https://doi.org/10.3390/compounds2040020
Manna J, Huot J. Effect of KCl Addition on First Hydrogenation Kinetics of TiFe. Compounds. 2022; 2(4):240-251. https://doi.org/10.3390/compounds2040020
Chicago/Turabian StyleManna, Joydev, and Jacques Huot. 2022. "Effect of KCl Addition on First Hydrogenation Kinetics of TiFe" Compounds 2, no. 4: 240-251. https://doi.org/10.3390/compounds2040020
APA StyleManna, J., & Huot, J. (2022). Effect of KCl Addition on First Hydrogenation Kinetics of TiFe. Compounds, 2(4), 240-251. https://doi.org/10.3390/compounds2040020