The Solution Combustion Synthesis of ZnO Nanoparticles Using Allium schoenoprasum (Chives) as a Green Fuel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Extract
2.3. ZnO NPs Synthesis
2.4. Characterization of ZnO
3. Results
3.1. XRD
3.2. FTIR
3.3. FESEM
- The heat of the combustion reaction;
- The amount of gas released during the reaction;
- The type and number of functional groups in the fuel.
3.4. Zeta-Potential
3.5. TG-DTA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed Riyas, Z.; Gayathri, R.; Prabhu, M.R.; Velsankar, K.; Sudhahar, S. Green synthesis and biomedical behavior of Mg-doped ZnO nanoparticle using leaf extract of Ficus religiosa. Ceram. Int. 2022, 48, 24619–24628. [Google Scholar] [CrossRef]
- MalligArjuna Rao, S.; Kotteeswaran, S.; Visagamani, A.M. Green synthesis of zinc oxide nanoparticles from camellia sinensis: Organic dye degradation and antibacterial activity. Inorg. Chem. Commun. 2021, 134, 108956. [Google Scholar] [CrossRef]
- Nadaroglu, H.; Güngör, A.A.; Selvi, İ. Synthesis of nanoparticles by green synthesis method. Int. J. Innov. Res. Rev. 2017, 1, 6–9. [Google Scholar]
- Barzinjy, A.A.; Azeez, H.H. Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2020, 2, 991. [Google Scholar] [CrossRef]
- Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011, 13, 2638–2650. [Google Scholar] [CrossRef]
- Suresh, D.; Nethravathi, P.C.; Kumar, M.P.; Naika, H.R.; Nagabhushana, H.; Sharma, S.C. Chironji mediated facile green synthesis of ZnO nanoparticles and their photoluminescence, photodegradative, antimicrobial and antioxidant activities. Mater. Sci. Semicond. Process. 2015, 40, 759–765. [Google Scholar] [CrossRef]
- Umar, A.; Sabrina, V.; Yulizar, Y. Synthesis of ZnO nanoparticles using Sapindus rarak DC fruit pericarp extract for rhodamine B photodegradation. Inorg. Chem. Commun. 2022, 141, 109593. [Google Scholar] [CrossRef]
- Varma, A.; Mukasyan, A.S.; Rogachev, A.S.; Manukyan, K.V. Solution Combustion Synthesis of Nanoscale Materials. Chem. Rev. 2016, 116, 14493–14586. [Google Scholar] [CrossRef]
- Deganello, F.; Tyagi, A.K. Solution combustion synthesis, energy and environment: Best parameters for better materials. Prog. Cryst. Growth Charact. Mater. 2018, 64, 23–61. [Google Scholar] [CrossRef]
- Puttaraju, T.D.; Manjunatha, M.; Maruti, G.; Srinivasan, V.; Haseen Buvabi, S.; Bharathi, T.R. Anthelmintic and antibacterial studies of zinc oxide NPs: Synthesized using dragon fruit juice as novel fuel. Mater. Today Proc. 2021, 47, 4652–4656. [Google Scholar] [CrossRef]
- Faisal, S.; Jan, H.; Shah, S.A.; Shah, S.; Khan, A.; Akbar, M.T.; Rizwan, M.; Jan, F.; Wajidullah; Akhtar, N.; et al. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega 2021, 6, 9709–9722. [Google Scholar] [CrossRef] [PubMed]
- Azizi, S.; Mohamad, R.; Mahdavi Shahri, M. Green Microwave-Assisted Combustion Synthesis of Zinc Oxide Nanoparticles with Citrullus colocynthis (L.) Schrad: Characterization and Biomedical Applications. Molecules 2017, 22, 301. [Google Scholar] [CrossRef]
- Naiel, B.; Fawzy, M.; Halmy, M.W.A.; Mahmoud, A.E.D. Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: Characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Sci. Rep. 2022, 12, 20370. [Google Scholar] [CrossRef]
- Hameed, H.; Waheed, A.; Sharif, M.S.; Saleem, M.; Afreen, A.; Tariq, M.; Kamal, A.; Al-onazi, W.A.; Al Farraj, D.A.; Ahmad, S.; et al. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles from Green Algae and Their Assessment in Various Biological Applications. Micromachines 2023, 14, 928. [Google Scholar] [CrossRef]
- Iosin, A.; Raba, D.N.; Moldovan, C.; Popa, V.M.; Dumbrava, D.G. The influence of freezing on the content of Vitamin C, chlorophylls and carotenoids in chives (Allium schoenoprasum L.). Sci. Tech. Bull. 2017, 14, 49–52. [Google Scholar]
- Singh, V.; Chauhan, G.; Krishan, P.; Shri, R. Allium schoenoprasum L.: A review of phytochemistry, pharmacology and future directions. Nat. Prod. Res. 2018, 32, 2202–2216. [Google Scholar] [CrossRef]
- Zuhrotun, A.; Oktaviani, D.J.; Hasanah, A.N. Biosynthesis of Gold and Silver Nanoparticles Using Phytochemical Compounds. Molecules 2023, 28, 3240. [Google Scholar] [CrossRef] [PubMed]
- Ashour, M.; Mansour, A.T.; Abdelwahab, A.M.; Alprol, A.E. Metal oxide nanoparticles’ green synthesis by plants: Prospects in phyto-and bioremediation and photocatalytic degradation of organic pollutants. Processes 2023, 11, 3356. [Google Scholar] [CrossRef]
- Mohamad, N.A.N.; Arham, N.A.; Jai, J.; Hadi, A. Plant Extract as Reducing Agent in Synthesis of Metallic Nanoparticles: A Review. Adv. Mater. Res. 2014, 832, 350–355. [Google Scholar] [CrossRef]
- Peralta-Videa, J.R.; Huang, Y.; Parsons, J.G.; Zhao, L.; Lopez-Moreno, L.; Hernandez-Viezcas, J.A.; Gardea-Torresdey, J.L. Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol. Environ. Eng. 2016, 1, 4. [Google Scholar] [CrossRef]
- Goodarzi, V.; Zamani, H.; Bajuli, L.; Moradshahi, A. Evaluation of antioxidant potential and reduction capacity of some plant extracts in silver nanoparticles’ synthesis. Mol. Biol. Res. Commun. 2014, 3, 165–174. [Google Scholar]
- Yilmaz, C.; Gökmen, V. Chlorophyll. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 37–41. [Google Scholar]
- Qiu, N.W.; Jiang, D.C.; Wang, X.S.; Wang, B.S.; Zhou, F. Advances in the members and biosynthesis of chlorophyll family. Photosynthetica 2019, 57, 974–984. [Google Scholar] [CrossRef]
- Paulus, D.; Barbieri, L.; Febraio, A.M.d.O.; Becker, D. Growth and quality of chives in hydroponic system with concentrations of magnesium sulfate. Hortic. Bras. 2022, 40, 311–320. [Google Scholar] [CrossRef]
- Novitskaya, E.; Kelly, J.P.; Bhaduri, S.; Graeve, O.A. A review of solution combustion synthesis: An analysis of parameters controlling powder characteristics. Int. Mater. Rev. 2021, 66, 188–214. [Google Scholar] [CrossRef]
- Rani, S.; Bansal, K.; Rani, N.; Ilyas, M.T.; Singh, G.; Singh, S. Facile solution combustion based synthesis of V2O5 nanocrystals and size-strain study by XRD analysis. AIP Conf. Proc. 2021, 2352, 040024. [Google Scholar]
- Islam, M.R.; Obaid, J.E.; Saiduzzaman, M.; Nishat, S.S.; Debnath, T.; Kabir, A. Effect of Al doping on the structural and optical properties of CuO nanoparticles prepared by solution combustion method: Experiment and DFT investigation. J. Phys. Chem. Solids 2020, 147, 109646. [Google Scholar] [CrossRef]
- Vahdat Vasei, H.; Masoudpanah, S.M.; Habibollahzadeh, M. Different morphologies of ZnO via solution combustion synthesis: The role of fuel. Mater. Res. Bull. 2020, 125, 110784. [Google Scholar] [CrossRef]
- Srinatha, N.; Dinesh Kumar, V.; Nair, K.G.M.; Angadi, B. The effect of fuel and fuel-oxidizer combinations on ZnO nanoparticles synthesized by solution combustion technique. Adv. Powder Technol. 2015, 26, 1355–1363. [Google Scholar] [CrossRef]
- Lutukurthi, D.N.V.V.K.; Dutta, S.; Behara, D.K. Effect of ignition temperature and fuel amount on photocatalytic activity of solution combustion synthesized ZnO. Ceram. Int. 2020, 46, 22419–22428. [Google Scholar] [CrossRef]
- Rasouli, S.; Moeen, S.J. Combustion synthesis of Co-doped zinc oxide nanoparticles using mixture of citric acid–glycine fuels. J. Alloys Compd. 2011, 509, 1915–1919. [Google Scholar] [CrossRef]
- Mustapha, S.; Ndamitso, M.M.; Abdulkareem, A.S.; Tijani, J.O.; Shuaib, D.T.; Mohammed, A.K.; Sumaila, A. Comparative study of crystallite size using Williamson-Hall and Debye-Scherrer plots for ZnO nanoparticles. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045013. [Google Scholar] [CrossRef]
- Uvarov, V.; Popov, I. Metrological characterization of X-ray diffraction methods at different acquisition geometries for determination of crystallite size in nano-scale materials. Mater. Charact. 2013, 85, 111–123. [Google Scholar] [CrossRef]
- Rahman, M. Allicin and Other Functional Active Components in Garlic: Health Benefits and Bioavailability. Int. J. Food Prop. 2007, 10, 245–268. [Google Scholar] [CrossRef]
- Tepe, B.; Sökmen, M.; Akpulat, H.A.; Sokmen, A. In vitro antioxidant activities of the methanol extracts of five Allium species from Turkey. Food Chem. 2005, 92, 89–92. [Google Scholar] [CrossRef]
- Baghalian, K.; Ziai, S.; Naghavi, M.R.; Naghdi Badi, H.; Khalighi, A. Evaluation of allicin content and botanical traits in Iranian garlic (Allium satimm L.) ecotypes. Sci. Hortic. 2005, 103, 155–166. [Google Scholar] [CrossRef]
- Dhivya, A.; Yadav, R. An Eco-approach synthesis of undoped and Mn doped ZnO nano-photocatalyst for prompt decoloration of methylene blue dye. Mater. Today Proc. 2022, 48, 494–501. [Google Scholar] [CrossRef]
- Nga, N.K.; Thuy Chau, N.T.; Viet, P.H. Preparation and characterization of a chitosan/MgO composite for the effective removal of reactive blue 19 dye from aqueous solution. J. Sci. Adv. Mater. Devices 2020, 5, 65–72. [Google Scholar] [CrossRef]
- Stajner, D.; Canadanović-Brunet, J.; Pavlović, A. Allium schoenoprasum L., as a natural antioxidant. Phytother. Res. 2004, 18, 522–524. [Google Scholar] [CrossRef]
- Nga, N.K.; Chinh, H.D.; Hong, P.T.T.; Huy, T.Q. Facile Preparation of Chitosan Films for High Performance Removal of Reactive Blue 19 Dye from Aqueous Solution. J. Polym. Environ. 2017, 25, 146–155. [Google Scholar] [CrossRef]
- Khadiran, N.F.; Hussein, M.Z.; Ahmad, R.; Khadiran, T.; Zainal, Z.; Kadir, W.R.W.A.; Hashim, S.S. Preparation and properties of zinc layered hydroxide with nitrate and phosphate as the counter anion, a novel control release fertilizer formulation. J. Porous Mater. 2021, 28, 1797–1811. [Google Scholar] [CrossRef]
- Wypych, F.; Guadalupe Carbajal Arízaga, G.; Ferreira da Costa Gardolinski, J.E. Intercalation and functionalization of zinc hydroxide nitrate with mono- and dicarboxylic acids. J. Colloid Interface Sci. 2005, 283, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Chuo, S.C.; Nasir, H.M.; Mohd-Setapar, S.H.; Mohamed, S.F.; Ahmad, A.; Wani, W.A.; Muddassir, M.; Alarifi, A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 2022, 52, 667–696. [Google Scholar] [CrossRef] [PubMed]
- Idham, Z.; Nasir, H.; Yunus, M.; Lee, N.; Wong, L.; Hassan, H.; Setapar, S. Optimisation of supercritical CO2 extraction of red colour from roselle (Hibiscus sabdariffa Linn.) calyces. Chem. Eng. Trans. 2017, 56, 871–876. [Google Scholar]
- Vasei, H.V.; Masoudpanah, S.M.; Adeli, M.; Aboutalebi, M.R. Facile synthesis of ZnO nanosheets as ultraviolet photocatalyst. J. Sol-Gel Sci. Technol. 2019, 89, 594–601. [Google Scholar] [CrossRef]
- Liao, Y.; Jiang, D.; Feng, T.; Shi, J. Fabrication, structural, and spectroscopic investigation of Tb-doped Lu3Al5O12 phosphor. J. Mater. Res. 2005, 20, 2934–2939. [Google Scholar] [CrossRef]
- Leonardi, S.G. Two-Dimensional Zinc Oxide Nanostructures for Gas Sensor Applications. Chemosensors 2017, 5, 17. [Google Scholar] [CrossRef]
- Kumar, R.; Al-Dossary, O.; Kumar, G.; Umar, A. Zinc Oxide Nanostructures for NO2 Gas–Sensor Applications: A Review. Nano-Micro Lett. 2015, 7, 97–120. [Google Scholar] [CrossRef]
- Tabrizi Hafez Moghaddas, S.M.; Elahi, B.; Darroudi, M.; Javanbakht, V. Green synthesis of hexagonal-shaped zinc oxide nanosheets using mucilage from flaxseed for removal of methylene blue from aqueous solution. J. Mol. Liq. 2019, 296, 111834. [Google Scholar] [CrossRef]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanoparticle Res. 2023, 25, 43. [Google Scholar] [CrossRef]
- Raşa, M.; Philipse, A.P. Evidence for a macroscopic electric field in the sedimentation profiles of charged colloids. Nature 2004, 429, 857–860. [Google Scholar] [CrossRef]
- Assad, N.; Abbas, A.; ur Rehman, M.F.; Naeem-ul-Hassan, M. Photo-catalytic and biological applications of phyto-functionalized zinc oxide nanoparticles synthesized using a polar extract of Equisetum diffusum D. RSC Adv. 2024, 14, 22344–22358. [Google Scholar] [CrossRef]
- Abdullah, J.A.A.; Guerrero, A.; Romero, A. Efficient and Sustainable Synthesis of Zinc Salt-Dependent Polycrystal Zinc Oxide Nanoparticles: Comprehensive Assessment of Physicochemical and Functional Properties. Appl. Sci. 2024, 14, 1815. [Google Scholar] [CrossRef]
- Abebe, B.; Tsegaye, D.; Sori, C.; Ravikumar, C.R.; Murthy, H.C.A. Synthesis of optically enriched cobalt-doped zinc oxide nanocomposites: Reduction of methylene blue dye. Opt. Mater. 2023, 142, 114072. [Google Scholar] [CrossRef]
- Vahdat Vasei, H.; Masoudpanah, S.M.; Sarmadi, A.; Komeili Birjandi, B. Effect of sulfate group-containing fuels on the morphology of ZnO powders prepared by solution combustion synthesis. J. Mater. Res. Technol. 2020, 9, 11876–11883. [Google Scholar] [CrossRef]
- Vasei, H.V.; Masoudpanah, S.M.; Adeli, M.; Aboutalebi, M.R. Solution combustion synthesis of ZnO powders using CTAB as fuel. Ceram. Int. 2018, 44, 7741–7745. [Google Scholar] [CrossRef]
Amino Acids | Value per gram |
Tryptophan | 0.037 g |
Threonine | 0.128 g |
Isoleucine | 0.139 g |
Leucine | 0.195 g |
Lysine | 0.163 g |
Methionine | 0.036 g |
Phenylalanine | 0.105 g |
Tyrosine | 0.095 g |
Valine | 0.145 g |
Arginine | 0.237 g |
Histidine | 0.057 g |
Aspartic acid | 0.303 g |
Glutamic acid | 0.677 g |
Glycine | 0.162 g |
Proline | 0.216 g |
Serine | 0.148 g |
Minerals | Value per gram |
Ca (Calcium) | 92 mg |
Fe (Iron) | 1.6 mg |
Mg (Magnesium) | 42 mg |
P (Phosphorus) | 58 mg |
K (Potassium) | 296 mg |
Na (Sodium) | 3 mg |
Zn (Zinc) | 0.56 mg |
Cu (Copper) | 1.157 mg |
Mn (Manganese) | 0.373 mg |
Se (Selenium) | 0.9 μg |
Lipids | Value per gram |
Total saturated fatty acids | 0.146 g |
Total monounsaturated fatty acids | 0.095 g |
Total polyunsaturated fatty acids | 0.267 g |
Phytosterols | 9 mg |
Sample Code | 3X | 5X | 8X | 9X | 10X |
---|---|---|---|---|---|
Zinc nitrate (g) | 2.835 | 4.72 | 7.56 | 8.50 | 9.45 |
Chives extract (g) | 1 | 1 | 1 | 1 | 1 |
Fuel Type | F/O Ratio | Crystallite Size (nm) | Calculation Method | Particle Morphology | Particle Size (nm) | References | |
---|---|---|---|---|---|---|---|
PVP (C6H9NO)n | 0.5 | 36 | Rietveld refinement | Pyramid shape | >1000 | [28] | |
0.75 | 22 | Pyramid + Cubic | 353 | ||||
1 | 19 | Pyramid + Cubic | 353 | ||||
1.5 | 18 | Hexagonal | 114 | ||||
L-Valine (C5H11NO2) | 0.7 | 31.7 | Williamson–Hall | - | - | [29] | |
1 | 29.5 | Spherical shape | 15–50 | ||||
2 | 16.2 | - | - | ||||
Glutamine (C5H10N2O3) | 0.7 | 23.8 | Williamson–Hall | - | - | [29] | |
1 | 21.2 | Spherical shape + Nano plate | 14–26 | ||||
2 | 19.4 | - | - | ||||
Mixture of Citric acid(C6H8O7) + glycine(C2H5NO2) | F/O = 1 | C75G25 * | 37 | Scherer | Semi-spherical | - | [31] |
C50G50 | 40 | Semi-spherical | - | ||||
C25G75 | 43 | Platelet | - | ||||
C0G100 | 63 | Platelet | - | ||||
Urea (CH4N2O) | 0.6 | 75 | Scherer | Pyramid shape (aggregated in flower-like structure) | - | [30] | |
1 | 55 | - | |||||
1.8 | 48 | - | |||||
5.4 | amorphous | Spongy sheet-like | - | ||||
C. colocynthis extract | Fruit portion ** | 85 | Scherer | Nanoflakes (aggregated in flower-like structure) | 85–100 | [12] | |
Seed portion | 27 | Hexagonal | 20–35 | ||||
Pulp portion | 64 | Block-shaped (irregular polygons) | 30–80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheibani, E.; Soltani Alasvand, S.; Sami, N.; Vahdati Khaki, J.; Mollazadeh Beidokhti, S. The Solution Combustion Synthesis of ZnO Nanoparticles Using Allium schoenoprasum (Chives) as a Green Fuel. Compounds 2024, 4, 503-520. https://doi.org/10.3390/compounds4030030
Sheibani E, Soltani Alasvand S, Sami N, Vahdati Khaki J, Mollazadeh Beidokhti S. The Solution Combustion Synthesis of ZnO Nanoparticles Using Allium schoenoprasum (Chives) as a Green Fuel. Compounds. 2024; 4(3):503-520. https://doi.org/10.3390/compounds4030030
Chicago/Turabian StyleSheibani, Elyas, Saman Soltani Alasvand, Neda Sami, Jalil Vahdati Khaki, and Sahar Mollazadeh Beidokhti. 2024. "The Solution Combustion Synthesis of ZnO Nanoparticles Using Allium schoenoprasum (Chives) as a Green Fuel" Compounds 4, no. 3: 503-520. https://doi.org/10.3390/compounds4030030
APA StyleSheibani, E., Soltani Alasvand, S., Sami, N., Vahdati Khaki, J., & Mollazadeh Beidokhti, S. (2024). The Solution Combustion Synthesis of ZnO Nanoparticles Using Allium schoenoprasum (Chives) as a Green Fuel. Compounds, 4(3), 503-520. https://doi.org/10.3390/compounds4030030