Impact of Hydrodynamic Cavitation Pretreatment on Sodium Oleate Adsorption onto Diaspore and Kaolinite Surfaces
Abstract
:1. Introduction
2. Experimental
2.1. Mineral Samples and Reagents
2.2. HC-Flotation System
2.3. Property Characterization of NaOl Solutions
2.4. Contact Angle Measurements
2.5. Zeta Potential Measurements
2.6. Sorption Experiments
2.7. Flotation Tests
3. Results and Discussion
3.1. The Effect of HC Pretreatment on the Properties of NaOl Solutions
3.2. The Effect of HC Pretreatment on the Interaction between NaOl and Mineral Particles
3.2.1. Effect of Cavitation Treatment of NaOl Solution on Surface Wettability of Diaspore and Kaolinite
3.2.2. Effect of Cavitation Treatment of NaOl Solution on Zeta Potentials of Diaspore and Kaolinite
3.2.3. Effect of Cavitation Pretreatment on Adsorption Capacity of NaOl on Diaspore and Kaolinite
3.3. The Effect of HC Pretreatment on the Flotation Separation of Fine Diaspore and Kaolinite
4. Conclusions
- Short-term (3 min) HC treatment does not noticeably change the chemical properties of NaOl but promotes the formation of MNBs in liquids, which therefore causes certain reductions in surface tension and viscosity of NaOl solutions.
- At low NaOl concentrations, the presence of MNBs generated during HC processing hinders the adsorption of NaOl on mineral surfaces, resulting in a decrease in the zeta potential of mineral particles. However, the macroscopic contact angle of solids can still be enlarged slightly, probably due to the geometric heterogeneity of anchored MNBs on mineral surfaces.
- At relatively high NaOl concentrations, the introduction of MNBs promotes the adsorption of NaOl on mineral–MNB aggregates, leading to a significant increase in the macroscopic contact angles of solids. But it still causes a reduction in the measured zeta potential of solids, probably due to the “steric hindrance” effect, EDL overlapping, and ion shielding induced by anchored MNBs on mineral surfaces.
- The pretreatment of NaOl solution with HC can enhance the flotation enrichment of both fine diaspore and kaolinite across the experimental NaOl concentration range, while the separation of these minerals can only be improved at relatively low NaOl concentrations. The newly generating and surface anchoring of MNBs benefit the mineral particle aggregation and bubble mineralization, all of which lead to the increased flotation enrichment of the minerals. Nonetheless, it appears that MNB-enhanced bubble mineralization may play a more important role in facilitating the flotation separation of diaspore and kaolinite under the current system.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crawford, R.; Ralston, J. The influence of particle size and contact angle in mineral flotation. Int. J. Miner. Process. 1988, 23, 1–24. [Google Scholar] [CrossRef]
- Zhou, Z.A.; Xu, Z.; Finch, J.A.; Masliyah, J.H.; Chow, R.S. On the role of cavitation in particle collection in flotation—A critical review. II. Miner. Eng. 2009, 22, 419–433. [Google Scholar] [CrossRef]
- Li, C.; Xu, M.; Xing, Y.; Zhang, H.; Peuker, U.A. Efficient separation of fine coal assisted by surface nanobubbles. Sep. Purif. Technol. 2020, 249, 117163. [Google Scholar] [CrossRef]
- Fan, M.; Tao, D.; Honaker, R.; Luo, Z. Nanobubble generation and its applications in froth flotation (part III): Specially designed laboratory scale column flotation of phosphate. Min. Sci. Technol. 2010, 20, 317–338. [Google Scholar] [CrossRef]
- Fan, M.; Tao, D.; Honaker, R.; Luo, Z. Nanobubble generation and its applications in froth flotation (part IV): Mechanical cells and specially designed column flotation of coal. Min. Sci. Technol. 2010, 20, 641–671. [Google Scholar] [CrossRef]
- Fan, M.; Tao, D.; Honaker, R.; Luo, Z. Nanobubble generation and its application in froth flotation (part I): Nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions. Min. Sci. Technol. 2010, 20, 1–19. [Google Scholar] [CrossRef]
- Calgaroto, S.; Wilberg, K.Q.; Rubio, J. On the nanobubbles interfacial properties and future applications in flotation. Miner. Eng. 2014, 60, 33–40. [Google Scholar] [CrossRef]
- Oliveira, H.; Azevedo, A.; Rubio, J. Nanobubbles generation in a high-rate hydrodynamic cavitation tube. Miner. Eng. 2018, 116, 32–34. [Google Scholar] [CrossRef]
- Tan, B.H.; An, H.; Ohl, C.D. Stability of surface and bulk nanobubbles. Curr. Opin. Colloid In. 2021, 53, 101428. [Google Scholar] [CrossRef]
- Sun, Y.; Xie, G.; Peng, Y.; Xia, W.; Sha, J. Stability theories of nanobubbles at solid–liquid interface: A review. Colloid Surface A 2016, 495, 176–186. [Google Scholar] [CrossRef]
- German, S.R.; Wu, X.; An, H.; Craig, V.S.J.; Mega, T.L.; Zhang, X. Interfacial nanobubbles are leaky: Permeability of the gas/water interface. ACS Nano 2014, 8, 6193–6201. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, A.; Oliveira, H.; Rubio, J. Bulk nanobubbles in the mineral and environmental areas: Updating research and applications. Adv. Colloid Interface 2019, 271, 101992. [Google Scholar] [CrossRef] [PubMed]
- Alheshibri, M.; Qian, J.; Jehannin, M.; Craig, V.S.J. A history of nanobubbles. Langmuir 2016, 32, 11086–11100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Sun, L.; Yang, H.; Gui, X.; Schönherr, H.; Kappl, M.; Cao, Y.; Xing, Y. Recent advances for understanding the role of nanobubbles in particles flotation. Adv. Colloid Interface 2021, 291, 102403. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Gui, X.; Cao, Y.; Wang, D.; Zhang, H. Clean low-rank-coal purification technique combining cyclonic-static microbubble flotation column with collector emulsification. J. Clean. Prod. 2017, 153, 657–672. [Google Scholar] [CrossRef]
- Tang, C.; Wu, T.; Zhang, D.; Wang, Y.; Zhao, T.; Fan, Z.; Liu, X. Study on surface physical and chemical mechanism of nanobubble enhanced flotation of fine graphite. J. Ind. Eng. Chem. 2023, 122, 389–396. [Google Scholar]
- Calgaroto, S.; Azevedo, A.; Rubio, J. Flotation of quartz particles assisted by nanobubbles. Int. J. Miner. Process. 2015, 137, 64–70. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, H.; Ou, L.; Shi, Q. Aggregation of ultra-fine scheelite particles induced by hydrodynamic cavitation. Int. J. Miner. Process. 2016, 157, 236–240. [Google Scholar] [CrossRef]
- Chen, G.; Ren, L.; Zhang, Y.; Bao, S. Improvement of fine muscovite flotation through nanobubble pretreatment and its mechanism. Miner. Eng. 2022, 189, 107868. [Google Scholar] [CrossRef]
- Zhou, W.; Niu, J.; Xiao, W.; Ou, L. Adsorption of bulk nanobubbles on the chemically surface-modified muscovite minerals. Ultrason. Sonochem. 2019, 51, 31–39. [Google Scholar] [CrossRef]
- Tao, D.; Wu, Z.; Sobhy, A. Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms. Powder. Technol. 2021, 379, 12–25. [Google Scholar] [CrossRef]
- Ahmadi, R.; Khodadadi, D.A.; Abdollahy, M.; Fan, M. Nano-microbubble flotation of fine and ultrafine chalcopyrite particles. Int. J. Min. Sci. Technol 2014, 24, 559–566. [Google Scholar] [CrossRef]
- Zhang, Z.; Ren, L.; Zhang, Y. Role of nanobubbles in the flotation of fine rutile particles. Miner. Eng. 2021, 172, 107140. [Google Scholar] [CrossRef]
- Wang, X.; Yuan, S.; Liu, J.; Zhu, Y.; Han, Y. Nanobubble-enhanced flotation of ultrafine molybdenite and the associated mechanism. J. Mol. Liq. 2022, 346, 118312. [Google Scholar] [CrossRef]
- Hampton, M.A.; Nguyen, A.V. Nanobubbles and the nanobubble bridging capillary force. Adv. Colloid Interface 2010, 154, 30–55. [Google Scholar] [CrossRef]
- Zhang, F.; Xing, Y.; Chang, G.; Yang, Z.; Cao, Y.; Gui, X. Enhanced lignite flotation using interfacial nanobubbles based on temperature difference method. Fuel 2021, 293, 120313. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Zhang, Q.; Lu, D.; Hu, Y. Flotation separation of diaspore from aluminosilicates using commercial oleic acids of different iodine values. Int. J. Miner. Process. 2017, 168, 95–101. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, X.; Xu, Z. Role of crystal structure in flotation separation of diaspore from kaolinite, pyrophyllite and illite. Miner. Eng. 2003, 16, 219–227. [Google Scholar] [CrossRef]
- Xu, L.; Hu, Y.; Dong, F.; Gao, Z.; Wu, H.; Wang, Z. Anisotropic adsorption of oleate on diaspore and kaolinite crystals: Implications for their flotation separation. Appl. Surf. Sci. 2014, 321, 331–338. [Google Scholar] [CrossRef]
- Yin, W.; Wang, J. Effects of particle size and particle interactions on scheelite flotation. Trans. Nonferrous Met. Soc. 2014, 24, 3682–3687. [Google Scholar] [CrossRef]
- Gibson, B.; Wonyen, D.G.; Chelgani, S.C. A review of pretreatment of diasporic bauxite ores by flotation separation. Miner. Eng. 2017, 114, 64–73. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, K.; Wang, L.; Zhou, B.; Niu, J.; Ou, L. The role of bulk micro-nanobubbles in reagent desorption and potential implication in flotation separation of highly hydrophobized minerals. Ultrason. Sonochem. 2020, 64, 104996. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pan, Z.; Jiao, F.; Qin, W. Understanding bubble growth process under decompression and its effects on the flotation phenomena. Miner. Eng. 2020, 145, 106066. [Google Scholar] [CrossRef]
- Owens, C.L.; Schach, E.; Rudolph, M.; Nash, G.R. Surface nanobubbles on the carbonate mineral dolomite. Rsc. Adv. 2018, 8, 35448–35452. [Google Scholar] [CrossRef]
- Li, H.; Afacan, A.; Liu, Q.; Xu, Z. Study interactions between fine particles and micron size bubbles generated by hydrodynamic cavitation. Miner. Eng. 2015, 84, 106–115. [Google Scholar] [CrossRef]
- Etchepare, R.; Oliveira, H.; Nicknig, M.; Azevedo, A.; Rubio, J. Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Miner. Eng. 2017, 112, 19–26. [Google Scholar] [CrossRef]
- Couto, H.J.B.; Nunes, D.G.; Neumann, R.; França, S.C.A. Micro-bubble size distribution measurements by laser diffraction technique. Miner. Eng. 2009, 22, 330–335. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, Z.; Luo, X.; Qin, W.; Jiao, F. Effect of nanobubbles on adsorption of sodium oleate on calcite surface. Miner. Eng. 2019, 133, 127–137. [Google Scholar] [CrossRef]
- Minamoto, C.; Fujiwara, N.; Shigekawa, Y.; Tada, K.; Yano, J.; Yokoyama, T.; Minamoto, Y.; Nakayama, S. Effect of acidic conditions on decomposition of methylene blue in aqueous solution by air microbubbles. Chemosphere 2021, 263, 128141. [Google Scholar] [CrossRef]
- Takahashi, M.; Chiba, K.; Li, P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J. Phys. Chem. B 2007, 111, 1343–1347. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Li, W.; Yan, X.; Zhang, H. Intensification of interfacial adsorption of dodecylamine onto quartz by ultrasonic method. Sep. Purif. Technol. 2019, 227, 115701. [Google Scholar] [CrossRef]
- Yasui, K.; Tuziuti, T.; Izu, N.; Kanematsu, W. Is surface tension reduced by nanobubbles (ultrafine bubbles) generated by cavitation? Ultrason. Sonochem. 2019, 52, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Bu, X.; Zhou, S.; Tian, X.; Ni, C.; Nazari, S.; Alheshibri, M. Effect of aging time, airflow rate, and nonionic surfactants on the surface tension of bulk nanobubbles water. J. Mol. Liq. 2022, 359, 119274. [Google Scholar] [CrossRef]
- Zhou, S.; Nazari, S.; Hassanzadeh, A.; Bu, X.; Ni, C.; Peng, Y.; Xie, G.; He, Y. The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation. Ultrason. Sonochem. 2022, 84, 105965. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Guo, X.F.; Zhang, M.; Zhang, H.W.; Wang, Y.W.; Chao, S.L.; Ren, H.T.; Wu, S.H.; Jia, S.Y.; Liu, Y.; et al. Enhanced permeate flux by air micro-nano bubbles via reducing apparent viscosity during ultrafiltration process. Chemosphere 2022, 302, 134782. [Google Scholar] [CrossRef]
- Kang, W.Z.; Xun, H.X.; Kong, X.H.; Li, M.M. Effects from changes in pulp nature after ultrasonic conditioning on high-sulfur coal flotation. Min. Sci. Technol. 2009, 19, 498–507. [Google Scholar] [CrossRef]
- Lu, L.A.C.; Klitzing, R.V. Scanning of silicon wafers in contact with aqueous CTAB solutions below the CMC. Langmuir 2012, 28, 3360–3368. [Google Scholar]
- Xing, Y.; Zhang, Y.; Liu, M.; Xu, M.; Guo, F.; Han, H.; Gao, Z.; Cao, Y.; Gui, X. Improving the floatability of coal with varying surface roughness through hypobaric treatment. Powder Technol. 2019, 345, 643–648. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, C.; Lv, H.; Zhao, B.; Liu, K.; Ou, L. Nanobubbles heterogeneous nucleation induced by temperature rise and its influence on minerals flotation. Appl. Surf. Sci. 2020, 508, 145282. [Google Scholar] [CrossRef]
- Zhang, G.; Feng, Q.; Lu, Y.; Ou, L. Mechanism on diaspore and kaolinite collected by sodium oleate. Chin. J. Nonferrous. Met. 2001, 11, 4. (In Chinese) [Google Scholar]
- Churaev, N.V.; Ralston, J.; Sergeeva, I.P.; Sobolev, V.D. Electrokinetic properties of methylated quartz capillaries. Adv. Colloid Interface 2002, 96, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Snoswell, D.R.E.; Duan, J.; Fornasiero, D.; Ralston, J. Colloid stability and the influence of dissolved gas. J. Phys. Chem. B 2003, 107, 2986–2994. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, L.; Zhou, B.; Weng, L.; Li, J.; Liu, C.; Yang, S.; Wu, C.; Liu, K. Electrokinetic potential reduction of fine particles induced by gas nucleation. Ultrason. Sonochem. 2020, 67, 105167. [Google Scholar] [CrossRef] [PubMed]
- Pourkarimi, Z.; Rezai, B.; Noaparast, M.; Nguyen, A.V.; Chelgani, S.C. Proving the existence of nanobubbles produced by hydrodynamic cavitation and their significant effects in powder flotation. Adv. Powder. Technol. 2021, 32, 1810–1818. [Google Scholar] [CrossRef]
- Seo, H.; Ko, W.; Jeon, S. Influence of dissolved air on the adsorption properties and stability of vesicles on various surfaces. Appl. Phys. Lett. 2012, 101, 1016. [Google Scholar] [CrossRef]
- Meng, P.; Deng, S.; Lu, X.; Du, Z.; Wang, B.; Huang, J.; Wang, Y.; Gang, Y.; Xing, B. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents. Environ. Sci. Technol. 2014, 48, 13785–13792. [Google Scholar] [CrossRef]
- Meng, P.; Deng, S.; Wang, B.; Huang, J.; Wang, Y.; Yu, G. Superhigh adsorption of perfluorooctane sulfonate on aminated polyacrylonitrile fibers with the assistance of air bubbles. Chem. Eng. J. 2017, 315, 108–114. [Google Scholar] [CrossRef]
- Gungoren, C.; Ozdemir, O.; Wang, X.; Ozkan, S.G.; Miller, J.D. Effect of ultrasound on bubble-particle interaction in quartz-amine flotation system. Ultrason. Sonochem. 2019, 52, 446–454. [Google Scholar] [CrossRef]
- Liu, W.; Pawlik, M.; Holuszko, M. The role of colloidal precipitates in the interfacial behavior of alkyl amines at gas-liquid and gas-liquid-solid interfaces. Miner. Eng. 2015, 72, 47–56. [Google Scholar] [CrossRef]
- Zhou, S.; Zhou, W.; Dong, L.; Peng, Y.; Xie, G. Micellization transformations of sodium oleate induced by gas nucleation. Langmuir 2021, 37, 9701–9710. [Google Scholar] [CrossRef]
- Yasui, K.; Tuziuti, T.; Kanematsu, W. Interaction of bulk nanobubbles (ultrafine bubbles) with a solid surface. Langmuir 2021, 37, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liu, X.; Long, Y.; Xie, G.; Chen, Y. Monitoring effects of hydrodynamic cavitation pretreatment of sodium oleate on the aggregation of fine diaspore particles through small-angle laser scattering. Ultrason. Sonochem. 2023, 100, 106574. [Google Scholar] [CrossRef] [PubMed]
Composition | Al2O3 | SiO2 | Fe2O3 | TiO2 | CaO | MgO | K2O | Na2O | Others |
---|---|---|---|---|---|---|---|---|---|
Diaspore | 70.4 | 1.21 | 0.84 | 8.71 | 0.02 | 0.07 | 0.05 | 0.04 | 18.66 |
Kaolinite | 39.61 | 43.55 | 0.34 | 1.86 | 0.02 | 0.07 | 0.01 | 0.03 | 14.51 |
Diaspore | Kaolinite | |
---|---|---|
SSA (m2/g) | 7.14 ± 0.08 | 7.76 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Wei, H.; Zhu, Y.; Long, Y.; Chen, Y.; Gao, Y. Impact of Hydrodynamic Cavitation Pretreatment on Sodium Oleate Adsorption onto Diaspore and Kaolinite Surfaces. Compounds 2024, 4, 571-586. https://doi.org/10.3390/compounds4030035
Zhou W, Wei H, Zhu Y, Long Y, Chen Y, Gao Y. Impact of Hydrodynamic Cavitation Pretreatment on Sodium Oleate Adsorption onto Diaspore and Kaolinite Surfaces. Compounds. 2024; 4(3):571-586. https://doi.org/10.3390/compounds4030035
Chicago/Turabian StyleZhou, Weiguang, Haobin Wei, Yangge Zhu, Yufeng Long, Yanfei Chen, and Yuesheng Gao. 2024. "Impact of Hydrodynamic Cavitation Pretreatment on Sodium Oleate Adsorption onto Diaspore and Kaolinite Surfaces" Compounds 4, no. 3: 571-586. https://doi.org/10.3390/compounds4030035
APA StyleZhou, W., Wei, H., Zhu, Y., Long, Y., Chen, Y., & Gao, Y. (2024). Impact of Hydrodynamic Cavitation Pretreatment on Sodium Oleate Adsorption onto Diaspore and Kaolinite Surfaces. Compounds, 4(3), 571-586. https://doi.org/10.3390/compounds4030035