Preparation and Characterization of Amide-Containing Polyimide Films with Enhanced Tribopositivity for Triboelectric Nanogenerators to Harvest Energy at Elevated Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.3. Preparation of PI Films
2.4. Fabrication of TENG Devices
3. Results
3.1. Structural Characterization
3.2. Thermal Properties
3.3. Optical Properties
3.4. Triboelectric Properties
3.5. The Mechanism of Performance Enhancement
3.6. Application Exploration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Ren, Z.; Wu, L.; Pang, Y.; Zhang, W.; Yang, R. Strategies for effectively harvesting wind energy based on triboelectric nanogenerators. Nano Energy 2022, 100, 107522. [Google Scholar] [CrossRef]
- Cheng, T.; Shao, J.; Wang, Z.L. Triboelectric nanogenerators. Nat. Rev. Methods Primers 2023, 3, 39. [Google Scholar] [CrossRef]
- Yu, Y.; Gao, Q.; Zhang, X.; Zhao, D.; Xia, X.; Wang, J.; Wang, Z.L.; Cheng, T. Contact-sliding-separation mode triboelectric nanogenerator. Energy Environ. Sci. 2023, 16, 3932–3941. [Google Scholar] [CrossRef]
- Jiang, D.; Lian, M.; Xu, M.; Sun, Q.; Xu, B.B.; Thabet, H.K.; El, S.M.; Ibrahim, M.M.; Huang, M.; Guo, Z. Advances in triboelectric nanogenerator technology-applications in self-powered sensors, internet of things, biomedicine, and blue energy. Adv. Compos. Hybrid Mater. 2023, 6, 57. [Google Scholar] [CrossRef]
- Lu, P.; Guo, X.; Liao, X.; Liu, Y.; Cai, C.; Meng, X.; Wei, Z.; Du, L.; Shao, Y.; Nie, S.; et al. Advanced application of triboelectric nanogenerators in gas sensing. Nano Energy 2024, 126, 109672. [Google Scholar] [CrossRef]
- Kumar, K.U.; Hajra, S.; Mohana, R.G.; Panda, S.; Umapathi, R.; Venkateswarlu, S.; Kim, H.J.; Mishra, Y.K.; Kumar, R.R. Revolutionizing waste-to-energy: Harnessing the power of triboelectric nanogenerators. Adv. Compos. Hybrid Mater. 2024, 7, 1–42. [Google Scholar] [CrossRef]
- Wen, J.; Chen, B.; Tang, W.; Jiang, T.; Zhu, L.; Xu, L.; Chen, J.; Shao, J.; Han, K.; Ma, W.; et al. Harsh-environmental-resistant triboelectric nanogenerator and its applications in autodrive safety warning. Adv. Energy Mater. 2018, 8, 1801898. [Google Scholar] [CrossRef]
- Cao, R.; Xia, Y.; Wang, J.; Jia, X.; Jia, C.; Zhu, S.; Zhang, W.; Gao, X.; Zhang, X. Suppressing thermal negative effect and maintaining high-temperature steady electrical performance of triboelectric nanogenerators by employing phase change material. ACS Appl. Mater. Interfaces 2021, 13, 41657–41668. [Google Scholar] [CrossRef]
- Lai, J.; Ke, Y.; Cao, Z.; Xu, W.; Pan, J.; Dong, Y.; Zhou, Q.; Meng, G.; Pan, C.; Xia, F. Bimetallic strip based triboelectric nanogenerator for self-powered high temperature alarm system. Nano Today 2022, 43, 101437. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, C.; Xia, W.; Yin, X.; Wang, Z.; Fu, X.; Liu, D.; Lv, J.; Liu, R.; Peng, Z.; et al. Strong, flexible and robust aramid nanofibers-based textile-triboelectric nanogenerators for high temperature escape monitoring and multifunctional applications. Nano Energy 2024, 123, 109359. [Google Scholar] [CrossRef]
- Hu, J.; Qian, Y.; Wei, F.; Dai, J.; Li, D.; Zhang, G.; Wang, H.; Zhang, W. High powered output flexible aerogel triboelectric nanogenerator under ultrahigh temperature condition. Nano Energy 2024, 121, 109229. [Google Scholar] [CrossRef]
- Kim, K.N.; Chun, J.; Kim, J.W.; Lee, K.Y.; Park, J.U.; Kim, S.W.; Wang, Z.L.; Baik, J.M. Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 2015, 9, 6394–6400. [Google Scholar] [CrossRef]
- Shaukat, R.A.; Saqib, Q.M.; Kim, J.; Song, H.; Khan, M.U.; Chougale, M.Y.; Bae, J.; Choi, M.J. Ultra-robust tribo-and piezo-electric nanogenerator based on metal organic frameworks (MOF-5) with high environmental stability. Nano Energy 2022, 96, 107128. [Google Scholar] [CrossRef]
- Han, G.H.; Lee, S.H.; Gao, J.; Shin, H.S.; Lee, J.W.; Choi, K.J.; Yang, Y.; Song, H.; Kim, Y.; Baik, J.M. Sustainable charged composites with amphiphobic surfaces for harsh environment–tolerant non-contact mode triboelectric nanogenerators. Nano Energy 2023, 112, 108428. [Google Scholar] [CrossRef]
- Wang, F.; Wang, S.; Liu, Y.; Ouyang, S.; Sun, D.; Yang, X.; Li, J.; Wu, Z.; Qian, J.; Zhao, Z.; et al. Cellulose Nanofiber-Based Triboelectric Nanogenerators for Efficient Air Filtration in Harsh Environments. Nano Lett. 2024, 13, 4083. [Google Scholar] [CrossRef]
- Qian, Z.; Li, R.; Guo, J.; Wang, Z.; Li, X.; Li, C.; Zhao, N.; Xu, J. Triboelectric nanogenerators made of polybenzazole aerogels as fire-resistant negative tribo-materials. Nano Energy 2019, 64, 103900. [Google Scholar] [CrossRef]
- Lee, J.W.; Jung, S.; Jo, J.; Han, G.H.; Lee, D.M.; Oh, J.; Hwang, H.J.; Choi, D.; Kim, S.; Lee, J.H.; et al. Sustainable highly charged C60-functionalized polyimide in a non-contact mode triboelectric nanogenerator. Energy Environ. Sci. 2021, 14, 1004–1015. [Google Scholar] [CrossRef]
- Wu, J.; Wang, X.; He, J.; Li, Z.; Li, L. Synthesis of fluorinated polyimide towards a transparent triboelectric nanogenerator applied on screen surface. J. Mater. Chem. A 2021, 9, 6583–6590. [Google Scholar] [CrossRef]
- Tang, N.; Zheng, Y.; Yuan, M.; Jin, K.; Haick, H. High-performance polyimide-based water-solid triboelectric nanogenerator for hydropower harvesting. ACS Appl. Mater. Interfaces 2021, 13, 32106–32114. [Google Scholar] [CrossRef]
- Li, C.; Wang, P.; Zhang, D. Self-healable, stretchable triboelectric nanogenerators based on flexible polyimide for energy harvesting and self-powered sensors. Nano Energy 2023, 109, 108285. [Google Scholar] [CrossRef]
- Ma, P.; Dai, C.; Wang, H.; Li, Z.; Liu, H.; Li, W.; Yang, C. A review on high temperature resistant polyimide films: Heterocyclic structures and nanocomposites. Compos. Commun. 2019, 16, 84–93. [Google Scholar] [CrossRef]
- Liu, X.J.; Zheng, M.S.; Chen, G.; Dang, Z.M.; Zha, J.W. High-temperature polyimide dielectric materials for energy storage: Theory, design, preparation and properties. Energy Environ. Sci. 2022, 15, 56–81. [Google Scholar] [CrossRef]
- Wan, B.; Zheng, M.S.; Yang, X.; Dong, X.; Li, Y.; Mai, Y.U.; Chen, G.; Zha, J.W. Recyclability and Self-Healing of Dynamic Cross-Linked Polyimide with Mechanical/Electrical Damage. Energy Environ Mater 2023, 6, e12427. [Google Scholar] [CrossRef]
- Jia, T.; Fan, Z.; Zheng, S.; Zhou, H.; Chen, H.; Ma, N.; Liu, C. MWCNTs/polyimide multilayered aerogel-based paper enabling high-temperature-resistant and flexible sensor. Chem. Eng. J. 2024, 492, 152230. [Google Scholar] [CrossRef]
- Yang, W.; Han, M.; Liu, F.; Wang, D.; Gao, Y.; Wang, G.; Xi, D.; Luo, S. Structure-foldable and performance-tailorable pi paper-based triboelectric nanogenerators processed and controlled by laser-induced graphene. Adv. Sci. 2024, 11, 2310017. [Google Scholar] [CrossRef]
- Tao, X.; Li, S.; Shi, Y.; Wang, X.; Tian, J.; Liu, Z.; Yang, P.; Chen, X.; Wang, Z.L. Triboelectric polymer with high thermal charge stability for harvesting energy from 200 °C flowing air. Adv. Funct. Mater. 2021, 31, 2106082. [Google Scholar] [CrossRef]
- Xing, F.; Ou, Z.; Gao, X.; Chen, B.; Wang, Z.L. Harvesting electrical energy from high temperature environment by aerogel nano-covered triboelectric yarns. Adv. Funct. Mater. 2022, 32, 2205275. [Google Scholar] [CrossRef]
- Li, S.; Fan, Y.; Chen, H.; Nie, J.; Liang, Y.; Tao, X.; Zhang, J.; Chen, X.; Fu, E.; Wang, Z.L. Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation. Energy Environ. Sci. 2020, 13, 896–907. [Google Scholar] [CrossRef]
- Pan, Z.; Yuan, S.; Ren, X.; He, Z.; Wang, Z.; Han, S.; Qi, Y.; Yu, H.; Liu, J. Preparation and characterization of fluorine-containing polyimide films with enhanced output performance for potential applications as negative friction layers for triboelectric nanogenerators. Technologies 2023, 11, 136. [Google Scholar] [CrossRef]
- Ding, P.; Chen, J.; Farooq, U.; Zhao, P.; Soin, N.; Yu, L.; Jin, H.; Wang, X.; Dong, S.; Luo, J. Realizing the potential of polyethylene oxide as new positive tribo-material: Over 40 W/m2 high power flat surface triboelectric nanogenerators. Nano Energy 2018, 46, 63–72. [Google Scholar] [CrossRef]
- Lee, J.W.; Jung, S.; Lee, T.W.; Jo, J.; Chae, H.Y.; Choi, K.; Baik, J.M. High-output triboelectric nanogenerator based on dual inductive and resonance effects-controlled highly transparent polyimide for self-powered sensor network systems. Adv. Energy Mater. 2019, 9, 1901987. [Google Scholar] [CrossRef]
PI | BPADA (g, mol) | DABA (g, mol) | MeDABA (g, mol) | ClDABA (g, mol) | MMDABA (g, mol) | DMAC (g) |
---|---|---|---|---|---|---|
PI-a | 26.0243, 0.05 | 11.3631, 0.05 | NA a | NA a | NA a | 149.6 |
PI-b | 26.0243, 0.05 | NA a | 12.0631, 0.05 | NA a | NA a | 152.3 |
PI-c | 26.0243, 0.05 | NA a | NA a | 14.8130, 0.05 | NA a | 163.4 |
PI-d | 26.0243, 0.05 | NA a | NA a | NA a | 12.7630, 0.05 | 154.8 |
Samples | T5% a (°C) | Tmax a (°C) | Rw750 a (%) | Tg, DSC a (°C) | Tg, TMA a (°C) | CTE a (×10−6/K) |
---|---|---|---|---|---|---|
PI-a | 508 | 538 | 54.5 | 267 | 298 | 57.3 |
PI-b | 491 | 526 | 50.1 | 272 | 280 | 63.7 |
PI-c | 490 | 545 | 50.3 | 237 | 232 | 65.6 |
PI-d | 485 | 513 | 54.1 | 257 | 249 | 61.2 |
Samples | λcut a (nm) | T400 b (%) | T450 b (%) | L* c | a* c | b* c | Haze (%) |
---|---|---|---|---|---|---|---|
PI-a | 366 | 15.7 | 64.1 | 92.25 | −2.37 | 12.83 | 1.00 |
PI-b | 371 | 5.5 | 60.9 | 93.19 | −4.25 | 16.90 | 0.52 |
PI-c | 371 | 11.1 | 58.5 | 92.33 | −1.54 | 12.85 | 0.68 |
PI-d | 369 | 22.2 | 76.9 | 93.67 | −2.52 | 8.63 | 1.16 |
Samples | VOC (V) a | ISC (μA) b | QSC (nc) c |
---|---|---|---|
PA6 | 147 | 3.14 | 46 |
PI-a | 169 | 7.37 | 77 |
PI-b | 181 | 5.62 | 80 |
PI-c | 179 | 6.13 | 88 |
PI-d | 242 | 8.13 | 117 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Z.; Yuan, S.; Zhang, Y.; Ren, X.; He, Z.; Wang, Z.; Han, S.; Qi, Y.; Yu, H.; Liu, J. Preparation and Characterization of Amide-Containing Polyimide Films with Enhanced Tribopositivity for Triboelectric Nanogenerators to Harvest Energy at Elevated Temperatures. Nanoenergy Adv. 2024, 4, 284-299. https://doi.org/10.3390/nanoenergyadv4030017
Pan Z, Yuan S, Zhang Y, Ren X, He Z, Wang Z, Han S, Qi Y, Yu H, Liu J. Preparation and Characterization of Amide-Containing Polyimide Films with Enhanced Tribopositivity for Triboelectric Nanogenerators to Harvest Energy at Elevated Temperatures. Nanoenergy Advances. 2024; 4(3):284-299. https://doi.org/10.3390/nanoenergyadv4030017
Chicago/Turabian StylePan, Zhen, Shunqi Yuan, Yan Zhang, Xi Ren, Zhibin He, Zhenzhong Wang, Shujun Han, Yuexin Qi, Haifeng Yu, and Jingang Liu. 2024. "Preparation and Characterization of Amide-Containing Polyimide Films with Enhanced Tribopositivity for Triboelectric Nanogenerators to Harvest Energy at Elevated Temperatures" Nanoenergy Advances 4, no. 3: 284-299. https://doi.org/10.3390/nanoenergyadv4030017
APA StylePan, Z., Yuan, S., Zhang, Y., Ren, X., He, Z., Wang, Z., Han, S., Qi, Y., Yu, H., & Liu, J. (2024). Preparation and Characterization of Amide-Containing Polyimide Films with Enhanced Tribopositivity for Triboelectric Nanogenerators to Harvest Energy at Elevated Temperatures. Nanoenergy Advances, 4(3), 284-299. https://doi.org/10.3390/nanoenergyadv4030017