Next Issue
Volume 4, December
Previous Issue
Volume 4, June
 
 

Nanoenergy Adv., Volume 4, Issue 3 (September 2024) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
16 pages, 5021 KiB  
Article
Preparation and Characterization of Amide-Containing Polyimide Films with Enhanced Tribopositivity for Triboelectric Nanogenerators to Harvest Energy at Elevated Temperatures
by Zhen Pan, Shunqi Yuan, Yan Zhang, Xi Ren, Zhibin He, Zhenzhong Wang, Shujun Han, Yuexin Qi, Haifeng Yu and Jingang Liu
Nanoenergy Adv. 2024, 4(3), 284-299; https://doi.org/10.3390/nanoenergyadv4030017 - 12 Sep 2024
Viewed by 611
Abstract
As triboelectric nanogenerator (TENG) technology continue to evolve, its application in harsh environments has increasingly captivated the interest of researchers. However, the current research on heat-resistant triboelectric materials remains predominantly focused on the development of tribo-negative materials, with scant attention given to their [...] Read more.
As triboelectric nanogenerator (TENG) technology continue to evolve, its application in harsh environments has increasingly captivated the interest of researchers. However, the current research on heat-resistant triboelectric materials remains predominantly focused on the development of tribo-negative materials, with scant attention given to their equally crucial tribo-positive counterparts. In this study, the tribo-positive polyimide (PI) material with enhanced tribo-positivity is developed by integrating amide groups with electron-donating effects into the molecular chain. Furthermore, the TENG devices based on this series of tribo-positive PI materials have demonstrated an open-circuit voltage (VOC) of 242 V, a short-circuit current (ISC) of 8.13 μA, and a transferred charge (QSC) of 117 nC. Notably, these devices also demonstrate the capability to efficiently generate electricity even under elevated temperature conditions. This work not only proposes a potential molecular design strategy for developing high-performance tribo-positive PI materials applicable in TENGs, but also markedly propels the advancement of robust energy-harvesting devices engineered for operation at elevated temperatures. Full article
Show Figures

Figure 1

26 pages, 8410 KiB  
Review
Advances in Intelligent Sports Based on Triboelectric Nanogenerators
by Zhengbing Ding, Xing Wang, Chenyao Huang, Kyungwho Choi and Dukhyun Choi
Nanoenergy Adv. 2024, 4(3), 258-283; https://doi.org/10.3390/nanoenergyadv4030016 - 28 Aug 2024
Viewed by 1055
Abstract
In the realm of intelligent sports, the integration of triboelectric nanogenerators (TENGs) marks a transformative approach toward energy sustainability and more advanced athletic monitoring. By leveraging the principle of triboelectricity, TENGs ingeniously convert mechanical energy from athletes’ movements into electrical energy, which offers [...] Read more.
In the realm of intelligent sports, the integration of triboelectric nanogenerators (TENGs) marks a transformative approach toward energy sustainability and more advanced athletic monitoring. By leveraging the principle of triboelectricity, TENGs ingeniously convert mechanical energy from athletes’ movements into electrical energy, which offers a green and efficient power solution for wearable technology. This paper presents an innovative study on the application of TENG technology in sports science, with the results illustrating the potential utility of TENGs in revolutionizing the way we monitor, analyze, and enhance athletic performance. Through the development of self-powered wearables and equipment, TENGs facilitate real-time data collection on physiological and biomechanical parameters, ultimately enabling personalized training adjustments and injury prevention strategies. Our findings underscore the dual benefit of TENGs in promoting environmental sustainability by reducing the overall reliance on traditional energy sources and growing the capabilities of intelligent sports systems. This research contributes to the burgeoning field of nano-energy sports applications while setting the stage for future explorations into the optimization of TENG integration in athletic performance enhancement. Finally, the paper concludes by discussing remaining challenges in this area and opportunities for further research. Full article
Show Figures

Figure 1

23 pages, 11083 KiB  
Review
Recent Advances in Flexible Self-Powered Sensors in Piezoelectric, Triboelectric, and Pyroelectric Fields
by Yukai Zhou, Jia-Han Zhang, Feiyu Wang, Jiangbo Hua, Wen Cheng, Yi Shi and Lijia Pan
Nanoenergy Adv. 2024, 4(3), 235-257; https://doi.org/10.3390/nanoenergyadv4030015 - 26 Aug 2024
Cited by 1 | Viewed by 1837
Abstract
The rise of the Internet of things has catalyzed extensive research in the realm of flexible wearable sensors. In comparison with conventional sensor power supply methods that are reliant on external sources, self-powered sensors offer notable advantages in wearable comfort, device structure, and [...] Read more.
The rise of the Internet of things has catalyzed extensive research in the realm of flexible wearable sensors. In comparison with conventional sensor power supply methods that are reliant on external sources, self-powered sensors offer notable advantages in wearable comfort, device structure, and functional expansion. The energy-harvesting modes dominated by piezoelectric nanogenerators (PENGs), triboelectric nanogenerators (TENGs), and pyroelectric nanogenerators (PyENGs) create more possibilities for flexible self-powered sensors. This paper meticulously examines the progress in flexible self-powered devices harnessing TENG, PENG, and PyENG technologies and highlights the evolution of these sensors concerning the material selection, pioneering manufacturing techniques, and device architecture. It also focuses on the research progress of sensors with composite power generation modes. By amalgamating pivotal discoveries and emerging trends, this review not only furnishes a comprehensive portrayal of the present landscape but also accentuates avenues for future research and the application of flexible self-powered sensor technology. Full article
Show Figures

Figure 1

14 pages, 4399 KiB  
Article
Spray-Coated Transition Metal Dichalcogenides as Hole Transport Layers in Inverted NFA-Based Organic Photovoltaics with Enhanced Stability under Solar and Artificial Light
by Marinos Tountas, Katerina Anagnostou, Evangelos Sotiropoulos, Christos Polyzoidis and Emmanuel Kymakis
Nanoenergy Adv. 2024, 4(3), 221-234; https://doi.org/10.3390/nanoenergyadv4030014 - 10 Jul 2024
Viewed by 1268
Abstract
In this study, we explored the potential of exfoliated transition metal dichalcogenides (TMDs) as innovative spray-coated hole transport layers (HTLs) in organic photovoltaics (OPVs), addressing the need for efficient and stable materials in solar cell technology. This research was motivated by the need [...] Read more.
In this study, we explored the potential of exfoliated transition metal dichalcogenides (TMDs) as innovative spray-coated hole transport layers (HTLs) in organic photovoltaics (OPVs), addressing the need for efficient and stable materials in solar cell technology. This research was motivated by the need for alternative HTLs that can offer enhanced performance under varying lighting conditions, particularly in indoor environments. Employing UV-visible absorption and Raman spectroscopy, we characterized the optical properties of MoS2, MoSe2, WS2, and WSe2, confirming their distinct excitonic transitions and direct bandgap features. The nanocrystalline nature of these TMDs, revealed through XRD patterns and crystallite size estimation using the Scherrer method, significantly contributes to their enhanced physical properties and operational efficiency as HTLs in OPVs. These TMDs were then integrated into OPV devices and evaluated under standard solar and indoor lighting conditions, to assess their effectiveness as HTLs. The results demonstrated that MoS2, in particular, displayed remarkable performance, rivalling traditional HTL materials like MoO3. It maintained high power conversion efficiency across a spectrum of light intensities, illustrating its versatility for both outdoor and indoor applications. Additionally, MoS2 showed superior stability over extended periods, suggesting its potential for long-term usage in OPVs. This study contributes significantly to the field of photovoltaic materials, presenting TMDs, especially MoS2, as promising candidates for efficient and stable OPVs in diverse lighting conditions, thereby broadening the scope of solar cell applications. Full article
(This article belongs to the Topic Nanomaterials for Energy and Environmental Applications)
Show Figures

Figure 1

12 pages, 3356 KiB  
Review
The Opportunities of Cellulose for Triboelectric Nanogenerators: A Critical Review
by Renyun Zhang
Nanoenergy Adv. 2024, 4(3), 209-220; https://doi.org/10.3390/nanoenergyadv4030013 - 4 Jul 2024
Viewed by 3644
Abstract
Engineering polymers stand out as the predominant dielectric materials in triboelectric nanogenerators (TENGs), primarily owing to their robust triboelectric effect and widespread availability. However, growing environmental concerns surrounding these polymers have prompted a notable shift towards exploring alternative eco-friendly materials, with cellulose materials [...] Read more.
Engineering polymers stand out as the predominant dielectric materials in triboelectric nanogenerators (TENGs), primarily owing to their robust triboelectric effect and widespread availability. However, growing environmental concerns surrounding these polymers have prompted a notable shift towards exploring alternative eco-friendly materials, with cellulose materials emerging as compelling contenders over the past few years. Cellulose, derived from various sources and presented in diverse forms and structures, has found utility as triboelectric materials. In contrast to many engineering polymers known for their chemical stability, cellulose materials exhibit heightened chemical activities. This characteristic provides a unique opportunity to delve into fundamental questions in TENGs by manipulating the physical and chemical properties of cellulose materials. This concise critical review aims to thoroughly examine the applications of cellulose materials while shedding light on the opportunities presented by these versatile materials. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop