Influence of Compliance and Aging of Artificial Turf Surfaces on Lower Extremity Joint Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Movements
2.3. Artificial Turf Installation
2.4. Artificial Turf Simulated Wear
2.5. Biomechanical Data Collection
2.6. Statistics
3. Results
3.1. V-Cut
3.2. Circle Run
3.3. Jog-Sprint Transition
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adkinson, J.W.; Requa, R.K.; Garrick, J.G. Injury rates in high school football. Clin. Orthop. Relat. R 1974, 99, 131–136. [Google Scholar] [CrossRef]
- Bowers, K.D.; Martin, R.B. Turf-toe: A shoe-surface related football injury. Med. Sci. Sports 1976, 8, 81–83. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Bates, B.T.; Osternig, L.R. Injuries to runners. Am. J. Sport Med. 1978, 6, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, P.R.; Lafortune, M.A. Ground reaction forces in distance running. J. Biomech. 1980, 13, 397–406. [Google Scholar] [CrossRef]
- Frederick, E.C.; Clarke, T.E.; Hamill, C. The effect of running shoe design on shock attenuation. In Sports Shoes and Playing Surfaces; Frederick, E.C., Ed.; Human Kinetics: Champaign, IL, USA, 1984; pp. 190–198. [Google Scholar]
- Nigg, B.M.; Frederick, E.C.; Hawes, M.R.; Luethi, S.M. Factors Influencing Short-Term Pain and Injuries in Tennis. Int. J. Sport Biomech. 1986, 2, 156–165. [Google Scholar] [CrossRef]
- Hamill, J.; Bates, B.; Holt, K. Timing of lower extremity joint actions during treadmill running. Med. Sci. Sport Exer. 1992, 24, 807–813. [Google Scholar] [CrossRef]
- Dixon, S.J.; Collop, A.C.; Batt, M.E. Surface effects on ground reaction forces and lower extremity kinematics in running. Med. Sci. Sport Exer. 2000, 32, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- Stergiou, N.; Bates, B.T. The relationship between subtalar and knee joint functions as a possible mechanism for running injuries. Gait Posture 1987, 6, 177–185. [Google Scholar] [CrossRef]
- Stucke, H.; Baudzus, W.; Baumann, W. On friction characteristics of playing surfaces. In Sport Shoes and Playing Surfaces; Human Kinetics: Champaign, IL, USA, 1984; pp. 87–97. [Google Scholar]
- Meyers, M.C. Incidence, Causes, and Severity of High School Football Injuries on FieldTurf versus Natural Grass: A 5-Year Prospective Study. Am. J. Sport Med. 2004, 32, 1626–1638. [Google Scholar] [CrossRef]
- Ekstrand, J.; Timpka, T.; Hägglund, M. Risk of injury in elite football played on artificial turf versus natural grass: A prospective two-cohort study. Brit. J. Sport Med. 2006, 40, 975–980. [Google Scholar] [CrossRef] [Green Version]
- Fuller, C.W.; Dick, R.W.; Corlette, J.; Schmalz, R. Comparison of the incidence, nature and cause of injuries sustained on grass and new generation artificial turf by male and female football players. Part 1: Match injuries. Br. J. Sport Med. 2007, 41, i27–i32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steffen, K.; Andersen, T.E.; Bahr, R. Risk of injury on artificial turf and natural grass in young female football players. Br. J. Sport Med. 2007, 41, i33–i37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, H.; Kohno, T.; Fujiya, H.; Kato, H.; Yatabe, K.; Morikawa, T.; Seki, J. Incidence of injury among adolescent soccer players: A comparative study of artificial and natural grass turfs. Clin. J. Sport Med. 2010, 20, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bjørneboe, J.; Bahr, R.; Andersen, T.E. Risk of injury on third-generation artificial turf in Norwegian professional football. Br. J. Sport Med. 2010, 44, 794–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekstrand, J.; Hägglund, M.; Fuller, C.W. Comparison of injuries sustained on artificial turf and grass by male and female elite football players. Scand. J. Med. Sci. Sport 2011, 21, 824–832. [Google Scholar] [CrossRef] [Green Version]
- Wannop, J.W.; Luo, G.; Stefanyshyn, D.J. Footwear traction and lower extremity noncontact injury. Med. Sci. Sport Exer. 2013, 45, 2137–2143. [Google Scholar] [CrossRef] [Green Version]
- Mack, C.D.; Kent, R.W.; Coughlin, M.J.; Shiue, K.Y.; Weiss, L.J.; Jastifer, J.R.; Wojtys, E.M.; Anderson, R.B. Incidence of lower extremity injury in the National Football League: 2015 to 2018. Am. J. Sport Med. 2020, 48, 2287–2294. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, J.; Felipe, J.L.; Burillo, P.; del Corral, J.; Gallardo, L. Effect of the structural components of support on the loss of mechanical properties of football fields of artificial turf. PI Mech. Eng. PJ Sport 2014, 228, 155–164. [Google Scholar] [CrossRef]
- Wannop, J.W.; Luo, G.; Stefanyshyn, D.J. Footwear traction at different areas on artificial turf and natural grass surfaces. Sports Eng. 2012, 15, 111–116. [Google Scholar] [CrossRef]
- Luo, G.; Stefanyshyn, D. Identification of critical traction values for maximum athletic performance. Footwear Sci. 2011, 3, 127–138. [Google Scholar] [CrossRef]
- Schrier, N.M.; Wannop, J.W.; Lewinson, R.T.; Worobets, J.T.; Stefanyshyn, D. Shoe traction and surface compliance affect performance of soccer-related movements. Footwear Sci. 2014, 6, 69–80. [Google Scholar] [CrossRef]
- Worobets, J.; Wannop, J.W. Influence of basketball shoe mass, outsole traction, and forefoot bending stiffness on three athletic movements. Sport Biomech. 2015, 14, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Lambson, R.B.; Barnhill, B.S.; Higgins, R.W. Football cleat design and its effect on anterior cruciate ligament injuries: A three-year prospective study. Am. J. Sport Med. 1996, 24, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Torg, J.S.; Quedenfeld, T.C.; Landau, S. The shoe-surface interface and its relationship to football knee injuries. J. Sports Med. 1974, 2, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Wannop, J.W.; Worobets, J.T.; Stefanyshyn, D.J. Footwear traction and lower extremity joint loading. Am. J. Sport Med. 2010, 38, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- McMahon, T.; Greene, P. The influence of track compliance on running. J. Biomech. 1979, 12, 893–904. [Google Scholar] [CrossRef]
- Nigg, B.M.; Anton, M. Energy aspects for elastic and viscous shoe soles and playing surfaces. Med. Sci. Sport Exer. 1995, 27, 92–97. [Google Scholar] [CrossRef]
- Wannop, J.W.; Kowalchuk, S.; Esposito, M.; Stefanyshyn, D. Influence of Artificial Turf Surface Stiffness on Athlete Performance. Life 2020, 10, 340. [Google Scholar] [CrossRef] [PubMed]
- Sharma, L.; Hurwitz, D.E.; Thonar, E.A.; Sum, J.A.; Lenz, M.E.; Dunlop, D.D.; Schnitzer, T.J.; Kirwan-Mellis, G.; Andriacchi, T.P. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheumatol. 1998, 41, 1233–1240. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; Succop, P. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am. J. Sport Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Stefanyshyn, D.J.; Stergiou, P.; Lun, V.M.Y.; Meeuwisse, W.H.; Worobets, J.T. Knee angular impulse as a predictor of patellofemoral pain in runners. Am. J. Sport Med. 2006, 34, 1844–1851. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.S.; Chaudhari, A.M.; Andriacchi, T.P. The effect of isolated valgus moments on ACL strain during single-leg landing: A simulation study. J. Biomech. 2008, 42, 280–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurwitz, D.E.; Sumner, D.R.; Andriacchi, T.P.; Sugar, D.A. Dynamic knee loads during gait predict proximal tibial bone distribution. J. Biomech. 1998, 31, 423–430. [Google Scholar] [CrossRef]
- Thorp, L.E.; Sumner, D.R.; Block, J.A.; Moisio, K.C.; Shott, S.; Wimmer, M.A. Knee joint loading differs in individuals with mild compared with moderate medial knee osteoartritis. Arthritis Rheumatol. 2006, 54, 3842–3849. [Google Scholar] [CrossRef] [PubMed]
- American Society for Testing and Materials [ASTM]. ASTM F355 Standard Test Method for Impact Attenuation of Playing Surface Systems and Materials 2010; ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar] [CrossRef]
- Rodeo, S.A.; O’Brien, S.; Warren, R.F.; Barnes, R.; Wickiewicz, T.L.; Dillingham, M.F. Turf-toe: An analysis of metatarsophalangeal joint sprains in professional football players. Am. J. Sport Med. 1990, 18, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Dunlap, W.P.; Crtina, J.M.; Vaslow, J.B.; Burke, M.J. Meta-analysis of experiments with matched groups or repeated measures designs. Psychol. Methods 1996, 1, 170–177. [Google Scholar] [CrossRef]
V-Cut | New | Aged | p-Value |
---|---|---|---|
Medial Ground Reaction Force [N] | 1159 ± 332 | 1233 ± 410 | 0.32 |
Posterior Ground Reaction Force [N] | 267 ± 52 | 246 ± 87 | 0.28 |
Anterior Ground Reaction Force [N] | 485 ± 189 | 502 ± 181 | 0.66 |
Vertical Ground Reaction Force [N] | 1824 ± 413 | 1888 ± 360 | 0.49 |
MTP Extension Angle [deg] | 23 ± 10 | 25 ± 6 | 0.30 |
MTP Extension Moment [Nm] | 183 ± 68 | 194 ± 66 | 0.32 |
Ankle External Rotation Moment [Nm] | 90 ± 30 | 87 ± 25 | 0.50 |
Ankle Eversion Moment [Nm] | 116 ± 42 | 115 ± 42 | 0.89 |
Knee External Rotation Moment [Nm] | 55 ± 20 | 55 ± 15 | 0.99 |
Knee Adduction Moment [Nm] | 119 ± 68 | 164 ± 69 | 0.02 *, ES = 0.95 |
Utilised Translational Traction | 1.29 ± 0.44 | 0.95 ± 0.12 | 0.02 *, ES = 0.88 |
Utilised Rotational Traction [Nm] | 14.32 ± 1.58 | 14.84 ± 1.72 | 0.72 |
Circle Run | New | Aged | p Value |
---|---|---|---|
Lateral Ground Reaction Force [N] | 963 ± 303 | 1000 ± 268 | 0.34 |
Posterior Ground Reaction Force [N] | 336 ± 96 | 307 ± 94 | 0.15 |
Anterior Ground Reaction Force [N] | 119 ± 62 | 125 ± 47 | 0.59 |
Vertical Ground Reaction Force [N] | 1353 ± 245 | 1308 ± 195 | 0.13 |
MTP Extension Angle [deg] | 27 ± 7 | 25 ± 7 | 0.13 |
MTP Extension Moment [Nm] | 85 ± 54 | 92 ± 67 | 0.74 |
Ankle Internal Rotation Moment [Nm] | 79 ± 22 | 81 ± 18 | 0.60 |
Ankle Inversion Moment [Nm] | 124 ± 44 | 136 ± 40 | 0.18 |
Knee Internal Rotation Moment [Nm] | 23 ± 14 | 28 ± 13 | 0.04 *, ES = 0.71 |
Knee Adduction Moment [Nm] | 114 ± 28 | 113 ± 35 | 0.85 |
Utilized Translational Traction | 0.95 ± 0.17 | 0.99 ± 0.18 | 0.23 |
Utilized Rotational Traction [Nm] | 17.00 ± 3.06 | 16.47 ± 3.42 | 0.43 |
Jog-Sprint Transition | New | Aged | p Value |
---|---|---|---|
Posterior Ground Reaction Force [N] | 207 ± 143 | 224 ± 143 | 0.69 |
Anterior Ground Reaction Force [N] | 503 ± 61 | 523 ± 74 | 0.09 |
Vertical Ground Reaction Force [N] | 1611 ± 185 | 1613 ± 218 | 0.97 |
MTP Extension Angle [deg] | 31 ± 4 | 32 ± 4 | 0.55 |
MTP Flexion Moment [Nm] | 78 ± 12 | 78 ± 14 | 0.50 |
Ankle External Rotation Moment [Nm] | 37 ± 12 | 39 ± 16 | 0.82 |
Ankle Inversion Moment [Nm] | 13 ± 13 | 15 ± 12 | 0.76 |
Knee External Rotation Moment [Nm] | 59 ± 10 | 55 ± 16 | 0.45 |
Knee Abduction Moment [Nm] | 127 ± 38 | 108 ± 31 | 0.14 |
Utilized Translational Traction | 1.16 ± 0.17 | 1.13 ± 0.24 | 0.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schrier, N.; Wannop, J.W.; Worobets, J.T.; Stefanyshyn, D.J. Influence of Compliance and Aging of Artificial Turf Surfaces on Lower Extremity Joint Loading. Biomechanics 2022, 2, 66-75. https://doi.org/10.3390/biomechanics2010007
Schrier N, Wannop JW, Worobets JT, Stefanyshyn DJ. Influence of Compliance and Aging of Artificial Turf Surfaces on Lower Extremity Joint Loading. Biomechanics. 2022; 2(1):66-75. https://doi.org/10.3390/biomechanics2010007
Chicago/Turabian StyleSchrier, Nicole, John William Wannop, Jay T. Worobets, and Darren J. Stefanyshyn. 2022. "Influence of Compliance and Aging of Artificial Turf Surfaces on Lower Extremity Joint Loading" Biomechanics 2, no. 1: 66-75. https://doi.org/10.3390/biomechanics2010007
APA StyleSchrier, N., Wannop, J. W., Worobets, J. T., & Stefanyshyn, D. J. (2022). Influence of Compliance and Aging of Artificial Turf Surfaces on Lower Extremity Joint Loading. Biomechanics, 2(1), 66-75. https://doi.org/10.3390/biomechanics2010007