Enhancing the Engineering Properties of Subgrade Materials Using Processed Waste: A Review
Abstract
:1. Introduction
2. Scope of the Study
3. Characteristics and Minerals Structure of Clay Soil
4. Characteristics and Manufacturing Process of Some Industrial Waste
5. Production of Processed Waste and Their Utilisation in Road Subgrade
6. Sustainability of Using Processed Waste in Subgrade Stabilisation
7. Effect of Process Waste on the Engineering Properties of Road Subgrade
8. Enhancement Mechanisms of Waste, Cement and Lime in Subgrade Stabilisation
8.1. Lime
8.2. Cement
8.3. Waste Materials
9. Limitations in the Use of Waste Compared to Cement and Lime in Subgrade Stabilisation
10. Summary of Findings and Future Focus
11. Conclusion and Recommendations
- Research should be conducted to investigate new/novel and more sustainable waste materials that can be used in road subgrade stabilisation.
- Companies and firms should encourage contractors by giving them some incentives for using sustainable waste materials in road construction. This will help achieve the global fight against climate change by 2050.
- Strict rules or legislation should be put in place during the bidding process for contracts to ensure a certain amount of sustainable waste materials are used in construction.
- Further investigation should be conducted into the whole life cycle cost of road stabilised with waste materials compared to cement and lime stabilised subgrade. This will provide a wider picture of the cost benefits of using waste materials in road construction
- Further investigation can be carried out in the future to determine long-term durability and how elevated and freezing temperatures can affect subgrade materials stabilised using processed waste.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- López-Lara, T.; Hernández-Zaragoza, J.; Horta-Rangel, J.; Rojas-González, E.; López-Ayala, S.; Castaño, V. Expansion reduction of clayey soils through Surcharge application and Lime Treatment. Case Stud. Constr. Mater. 2017, 7, 102–109. [Google Scholar] [CrossRef]
- Amakye, S.Y.; Abbey, S.J. Understanding the performance of expansive subgrade materials treated with non-traditional stabilisers: A review. Clean. Eng. Technol. 2021, 4, 100159. [Google Scholar] [CrossRef]
- Jones, L.D.; Jefferson, I. Institution of civil engineers manuals series. In Expansive Soils; ICE Publishing British Geological Survey: Nottingham, UK, 2012; pp. 413–441. [Google Scholar] [CrossRef]
- Eyo, E.; Ng'Ambi, S.; Abbey, S.J. Incorporation of a nanotechnology-based additive in cementitious products for clay stabilisation. J. Rock Mech. Geotech. Eng. 2020, 12, 1056–1069. [Google Scholar] [CrossRef]
- Abbey, S.J.; Ngambi, S.; Ganjian, E. Development of Strength Models for Prediction of Unconfined Compressive Strength of Cement/Byproduct Material Improved Soils. Geotech. Test. J. 2017, 40, 20160138. [Google Scholar] [CrossRef]
- Federica, C.; Idiano, D.; Massimo, G. Sustainable management of waste-to-energy facilities. Renew. Sustain. Energy Rev. 2014, 33, 719–728. [Google Scholar]
- Wang, J.X. Expansive Soil and Practice in Foundation Engineering. PhD. Thesis, P.E. Programs of Civil Engineering Programs Louisiana Tech University, Ruston, LA, USA, 2016. Available online: https://www.ltrc.lsu.edu/ltc_16/pdf/presentations/10-University%20Transportation%20Centers%20[Part%201]-Characterization%20of%20Expansive%20Soils%20in%20Northern%20Louisiana.pdf (accessed on 7 March 2021).
- Jones, L.D.; Jefferson, I. Institution of Civil Engineers Manuals Series 2019. Available online: http://nora.nerc.ac.uk/id/eprint/17002/1/C5_expansive_soils_Oct.pdf (accessed on 18 January 2021).
- Jalal, F.E.; Xu, Y.; Jamhiri, B.; Memon, S.A. On the Recent Trends in Expansive Soil Stabilization Using Calcium-Based Stabilizer Materials (CSMs): A Comprehensive Review. Adv. Mater. Sci. Eng. 2020, 2020, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Sabat, A. A Study on Some Geotechnical Properties of Lime Stabilised Expansive Soil –Quarry Dust Mixes. Int. J. Emerg. Trends Eng. Dev. 2012, 1, 42–49. [Google Scholar]
- Elarabi, H. Damage Mechanism of Expansive Soils Damage Mechanism of Expansive Soils 2010. Available online: Gov.uk/pdf/GEHO1111BVDF-E-E.pdf (accessed on 13 April 2020).
- Osinubi, K.; Ijimdiya, T.S.; Nmadu, I. Lime Stabilization of Black Cotton Soil Using Bagasse Ash as Admixture. Adv. Mater. Res. 2009, 62–64, 3–10. [Google Scholar] [CrossRef]
- Nelson, J.D.; Miller, D.J. Expansive Soils: Problems and Practice in Foundation and Pavement Engineering, 1st ed.; Wiley: New York, NY, USA, 1992; ISBN 0471511862. [Google Scholar]
- Hossain, A.S.M.F.; Sultana, N.; Bhowmic, S.; Hoque, M.S.; Shantana, F.A. Modification of expansive soil using recycled plastic bottle chips. J. Geotech. Stud. 2019. [Google Scholar] [CrossRef]
- British Geological Survey. Available online: https://www.bgs.ac.uk/geology-projects/shallow-geohazards/clay-shrink-swell/ (accessed on 17 August 2021).
- White, J.D.; Vennapusa, P. Low-cost rural surface alternatives: Literature review and recommendations 2013. InTrans Project Reports. 28. Available online: https://lib.dr.iastate.edu/intrans_reports/28 (accessed on 16 March 2021).
- The geological society. 2012. Available online: https://www.geolsoc.org.uk/Geoscientist/Archive/March-2014/Cracking-up-in-Lincolnshire (accessed on 16 March 2021).
- Eyo, E.U.; Ng'Ambi, S.; Abbey, S.J. Performance of clay stabilized by cementitious materials and inclusion of zeolite/alkaline metals-based additive. Transp. Geotech. 2020, 23, 100330. [Google Scholar] [CrossRef]
- Al-Rawas, A.A.; Goosen, F.A. Expansive Soils: Recent Advances in Characterization and Treatment; Taylor & Francis: London, UK, 2006. [Google Scholar] [CrossRef]
- Reda, A.; Ibrahim, E.; Houssami, L. A Cure for Swelling 2016. Available online: https://dar.com/news/details/a-cure-for-swelling (accessed on 21 February 2021).
- Eyo, E.U.; Abbey, S.J.; Ngambi, S.; Ganjian, E.; Coakley, E. Incorporation of a nanotechnology-based product in cementitious binders for sustainable mitigation of sulphate-induced heaving of stabilised soils. Eng. Sci. Technol. Int. J. 2020, 24, 436–448. [Google Scholar] [CrossRef]
- Zaid, A. Swelling Expansion and Dilation of Soil 2017. Available online: https://www.slideshare.net/AhmedZaid11/swelling-expansion-and-dilation-of-soil (accessed on 11 February 2021).
- Huggett, J. Clay Minerals; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar] [CrossRef]
- Eyo, E.; Ng’Ambi, S.; Abbey, S. Investigative Study of Behaviour of Treated Expansive Soil Using Empirical Correlations. IFCEE 2018 2018, 373–384. [Google Scholar] [CrossRef]
- Uddin, F. Montmorillonite: An Introduction to Properties and Utilization; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Dakshanamurthy, V.; Raman, V. A Simple Method of Identifying an Expansive Soil. Soils Found. 1973, 13, 97–104. [Google Scholar] [CrossRef] [Green Version]
- ACPA Concrete Pavement Technology Series. Available online: http://1204075.sites.myregisteredsite.com/downloads/TS/EB204P/TS204.2P.pdf (accessed on 13 January 2021).
- Murray, H.H. Chapter 2 structure and Composition of the Clay Minerals and their Physical and Chemical Properties. Dev. Clay Sci. 2006, 2, 7–31. [Google Scholar] [CrossRef]
- Bananezhad, B.; Islami, M.R.; Ghonchepour, E.; Mostafavi, H.; Tikdari, A.M.; Rafiei, H.R. Bentonite clay as an efficient substrate for the synthesis of the super stable and recoverable magnetic nanocomposite of palladium (Fe3O4/Bentonite-Pd). Polyhedron 2019, 162, 192–200. [Google Scholar] [CrossRef]
- Jaradat, K.A.; Darbari, Z.; Elbakhshwan, M.; Abdelaziz, S.L.; Gill, S.K.; Dooryhee, E.; Ecker, L.E. Heating-freezing effects on the orientation of kaolin clay particles. Appl. Clay Sci. 2017, 150, 163–174. [Google Scholar] [CrossRef]
- Oti, J.E. The Development of Unfired Clay Building Materials for Sustainable Building Construction 2010. Available online: https://unilearn.southwales.ac.uk/webapps/blackboard/content/listContent.jsp?course_id=_141532_1&content_id=_2997727_1&mode=reset (accessed on 15 February 2021).
- British Plastic Federation (2019). Polypropylene. Available online: http://www.bpf.co.uk/plastipedia/polymers/pp.aspx (accessed on 16 March 2021).
- Behak, L. Soil Stabilization with Rice Husk Ash. Rice Technol. Prod. 2017, 29. [Google Scholar] [CrossRef] [Green Version]
- Khatib, J.M.; Baalbaki, O.; ElKordi, A.A. Waste and supplementary cementitious materials in concrete. Woodhead Publ. Ser. Civ. Struct. Eng. 2018, 493–511. [Google Scholar] [CrossRef]
- Ghassemi, M.; Andersen, P.K.; Ghassemi, A.; Chianelli, R.R. Hazardous Waste from Fossil Fuels. Encycl. Energy 2004, 119–131. [Google Scholar] [CrossRef]
- Gholhaki, M.; Kheyroddin, A.; Hajforoush, M.; Kazemi, M. An investigation on the fresh and hardened properties of self-compacting concrete incorporating magnetic water with various pozzolanic materials. Constr. Build. Mater. 2018, 158, 173–180. [Google Scholar] [CrossRef]
- Lafarge Cement UK. Manufacturing Process of Silica Fume 2012. Available online: https://www.aggregate.com/ (accessed on 17 February 2021).
- Miorslags. Available online: http://miorslags.com/ggbs.html (accessed on 14 February 2021).
- Bianco Construction & Industrial Supplies. Available online: https://www.bianco.com.au/product/view/7008 (accessed on 16 March 2021).
- Guichon Valves. Manufacturing Process of Polypropylene 2019. Available online: https://guichon-valves.com/pp-valves/ (accessed on 17 August 2021).
- Tomar, A.; Sharma, T.; Singh, S. Strength properties and durability of clay soil treated with mixture of nano silica and Polypropylene fiber. Mater. Today: Proc. 2020, 26, 3449–3457. [Google Scholar] [CrossRef]
- Mindiamart, 2021. Available online: https://www.indiamart.com/proddetail/alkali-resistant-glass-fiber-21702650255.html (accessed on 16 March 2021).
- Amakye, S.Y.; Abbey, S.J.; Olubanwo, A.O. Consistency and mechanical properties of sustainable concrete blended with brick dust waste cementitious materials. SN Appl. Sci. 2021, 3, 1–12. [Google Scholar] [CrossRef]
- Thakur, I.C.; Kisku, N.; Singh, J.P.; Kumar, S. Properties of concrete incorporated with GGBS. Int. J. Res. Eng. Technol. 2016, 5, 275–281. Available online: https://ijret.org/volumes/2016v05/i08/IJRET20160508046.pdf (accessed on 7 March 2021).
- Kalantari, B.; Prasad, A.; Huat, B.B.K. Cement and Silica Fume Treated Columns to Improve Peat Ground. Arab. J. Sci. Eng. 2012, 38, 805–816. [Google Scholar] [CrossRef]
- Khalil, A.A.; Siswomiharjo, W.; Sunarintyas, S. Effect of non dental glass fiber orientation on transverse strength of dental fiber reinforced composite. J. Teknosains 2017, 5, 104–110. [Google Scholar] [CrossRef]
- Prasad, P.D.; Nagarnaik, P.B.; Gajbhiye, A.R. Utilization of solid waste for soil stabilization: A Review. Electron. J. Geotech. Eng. 2012. Available online: https://www.researchgate.net/publication/267723862_Utilization_of_Solid_Waste_for_Soil_Stabilization_A_Review (accessed on 21 February 2021).
- Ahmad, S. Study of Concrete Involving Use of Waste Paper Sludge Ash as Partial Replacement of Cement. IOSR J. Eng. 2013, 3, 6–15. [Google Scholar] [CrossRef]
- Zorluer, I.; Afyon Kocatepe University; Gucek, S. The usability of industrial wastes on soil stabilization. Rev. De La Construcción 2020, 19, 80–89. [Google Scholar] [CrossRef]
- Yilmaz, F.; Kamiloğlu, H.; Şadoğlu, E. Soil Stabilization with Using Waste Materials against Freezing Thawing Effect. Acta Phys. Pol. A 2015, 128, 80–89. [Google Scholar] [CrossRef]
- RILON. Polypropylene Fibre: Main Characteristics, Application, products and Structure 2020. Available online: https://rilonfibers.com/blog/polypropylene-fiber/ (accessed on 28 February 2021).
- Arena, U.; Zaccariello, L.; Mastellone, M.L. Tar removal during the fluidized bed gasification of plastic waste. Waste Manag. 2009, 29, 783–791. [Google Scholar] [CrossRef] [PubMed]
- US Department of Transportation. Available online: https://www.fhwa.dot.gov/pavement/recycling/fach01.cfm (accessed on 7 March 2021).
- Chakraborty, S.; Mahmud, T.; Islam, M.M.; Islam, M.S. Use of paper industry waste in making low cost concrete 2014. 2nd International Conference on Advances in Civil Engineering. [ICACE-2014] CUET, Chittagong, Bangladesh. Available online: https://www.researchgate.net/publication/293810073_Use_of_Paper_Industry_Waste_in_Making_Low_Cost_Concrete (accessed on 19 March 2021).
- James, J.; Pandian, P.K. Industrial Wastes as Auxiliary Additives to Cement/Lime Stabilization of Soils. Adv. Civ. Eng. 2016, 2016, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Central Electricity Authority. Report on fly ash generation at coal/lignite based thermal power station and its utilisation in the country for the year 2014-15, New Delhi, India. Available online: https://cea.nic.in/wp-content/uploads/2020/04/flyash_final_1415.pdf (accessed on 17 August 2021).
- The World Bank. 2021. Available online: https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html (accessed on 16 March 2021).
- Hoornweg, D.; Bhada-Tata, P. What a Waste: A Global Review of Solid Waste Management; World Bank: Washington, DC, USA, 2012. [Google Scholar]
- Heidrich, C.; Feuerborn, H.; Weir, A. Coal combustion production: A Global Perspective. In Proceedings of the World of Coal Ash Conference, Lexington, KY, USA, 22–25 April 2013. [Google Scholar]
- Motz, H.; Ehrenberg, A.; Mudersbach, D. Dry solidification with heat recovery of ferrous slag. In Proceedings of the Third International Slag Valorisation Symposium, Leuven, Belgium, 19–20 March 2013; pp. 37–55. [Google Scholar]
- Mišík, M.; Burke, I.T.; Reismüller, M.; Pichler, C.; Rainer, B.; Mišíková, K.; Mayes, W.M.; Knasmueller, S. Red mud a byproduct of aluminum production contains soluble vanadium that causes genotoxic and cytotoxic effects in higher plants. Sci. Total Environ. 2014, 493, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Tayibi, H.; Choura, M.; López, F.A.; Alguacil, F.J.; López-Delgado, A. Environmental impact and management of phosphogypsum. J. Environ. Manag. 2009, 90, 2377–2386. [Google Scholar] [CrossRef] [Green Version]
- Kumal, P.; Rajour, A.; Siddiqui, R. Biological remediation of alkaline cement kiln dust for sustainable development. In Industrial, Medical and Environmental Application of Microorganisms; Wageningen Academic Publishers: Madrid, Spain, 2014; pp. 52–58. [Google Scholar]
- Central Electricity Authority. Report on fly ash generation at coal/lignite based thermal power station and its utilisation in the country for the year 2011-12 and 2012-14, New Delhi, India. Available online: https://cea.nic.in/wp-content/uploads/2020/04/fly_ash_final_111213.pdf (accessed on 17 August 2021).
- Teja, S.L.; Kumar, S.S.; Needhidasan, S. Stabilisation of expansive soil using brick dust. Int. J. Pure Appl. Math. 2018, 119, 903–910. Available online: https://acadpubl.eu/hub/2018-119-17/4/375.pdf (accessed on 7 March 2021).
- Bhavsar, S.; Patel, A. Analysis of Swellings and Shrinkage Properties of Expansive Soil Using Brick Dust as a Stabilizer. 2014. Available online: https://www.researchgate.net/publication/269762906_Analysis_of_Swelling_Shrinkage_Properties_of_Expansive_Soil_using_Brick_Dust_as_a_Stabilizer (accessed on 13 February 2021).
- Kumar, J.K.; Kumar, V.P. Experimental Analysis of Soil Stabilisation Using e-Waste; Saveetha School of Engineering, SIMATS: Chennai, India, 2019; Volume 22, pp. 456–459. [Google Scholar]
- Khan, T.A.; Taha, M.R.; Khan, M.M.; Shah, S.A.R.; Aslam, M.A.; Waqar, A.; Khan, A.R.; Waseem, M. Strength and Volume Change Characteristics of Clayey Soils: Performance Evaluation of Enzymes. Minerals 2020, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kumar, A.; Ved, P. Stabilization of Expansive Soil with Lime and Brick Dust. Int. J. All Res. Educ. Sci. Methods 2016, 4(9), 2455–6211. Available online: http://www.ijaresm.com/uploaded_files/document_file/Ajay_kumarNcca.pdf (accessed on 13 March 2021).
- Pokale, K.R.; Borkar, Y.R.; Jichkar, R.R. Experimental Investigation for Stabilization of Black Cotton Soil By using waste material—Dust. Int. Res. J. Eng. Technol. 2015, 2, 726. [Google Scholar]
- Neha, P.; Trived, M.K. Improvement of Pavement Soil Subgrade by Using Burnt Brick Dust. Int. J. Res. Appl. Sci. Eng. Technol. 2017, 5, 218–221. [Google Scholar]
- Soil Stabilization using Brick Kiln Dust and waste Coir Fibre. Int. J. Recent Technol. Eng. 2019, 8, 2574–2578. [CrossRef]
- Kinjal, C.C.; Padvi, H.S.; Patel, H.V.; Patel, J.A.; Tandel, J. Literature Review of Soil Stabilisation Using Different Materials. Int. J. Tech. Innov. Mod. Eng. Sci. 2018. Available online: http://ijtimes.com/papers/finished_papers/IJTIMESV04I02150228175419.pdf (accessed on 21 February 2021).
- Hairulla; Betaubun, P. The effect of using brick waste on the stabilisation of soft soil due to the unconfined compression. J. Basic Appl. Sci. Res. 2016, 6, 1–8. Available online: https://www.textroad.com/pdf/JBASR/J.%20Basic.%20Appl.%20Sci.%20Res.,%206[2]1-8,%202016.pdf (accessed on 12 February 2021).
- Rank, K.; Bhanderi, J.; Mehta, J.V. Using Brick Dust Manufacturing Waste and Cement Dust Manufacturing Waste as Stabilising Materials for Expansive Soil 2020. Available online: http://www.jetir.org/papers/JETIR2002078.pdf (accessed on 14 February 2021).
- Estabragh, A.R.; Jahani, A.; Javadi, A.A.; Babalar, M. Assessment of different agents for stabilisation of a clay soil. Int. J. Pavement Eng. 2020, 1–11. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sivapullaiah, P. Ground granulated blast furnace slag amended fly ash as an expansive soil stabilizer. Soils Found. 2016, 56, 205–212. [Google Scholar] [CrossRef]
- Prasad, S.D.; Prasad, D.S.V.; Raju, G.V.R. Stabilisation of black cotton soil using ground granulated blast furnace slag and plastic fibres. Int. J. Recent Technol. Eng. 2019. Available online: https://www.ijrte.org/wp-content/uploads/papers/v7i6c2/F11150476C219.pdf (accessed on 21 February 2021).
- Duyu, H.; Tania, T.; Dhake, M. Study on the effect of ground granulated blast furnace slag on the properties of black cotton soil and red soil. Int. J. Sci. Res. 2015. Available online: https://www.ijsr.net/archive/v6i5/ART20173214.pdf (accessed on 18 January 2021).
- Yadu, L.; Tripathi, R.K. Effects of Granulated Blast Furnace Slag in the Engineering Behaviour of Stabilised Soft Soil 2013. Available online: https://www.sciencedirect.com/science/article/pii/S1877705813000209 (accessed on 11 February 2021).
- Ashraf, A.; Sunil, A.; Dhanya, J.; Joseph, M.; Varghese, M.; Veena, M. Soil stabilisation using plastic bottles. In Proceedings of the Indian Geotechnical Conference, Kochi, Kerala, India, 15–17 December 2011; Available online: https://www.researchgate.net/publication/279999540_SOIL_STABILIISATION_USING_RAW_PLASTIC_BOTTLES (accessed on 12 February 2021).
- Wani, I.A.; Sheikh, I.M.; Maqbool, T.; Kumar, V. Experimental investigation on using plastic wastes to enhance several engineering properties of soil through stabilization. Mater. Today Proc. 2021, 45, 4571–4574. [Google Scholar] [CrossRef]
- Tang, C.-S.; Shi, B.; Gao, W.; Chen, F.; Cai, Y. Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotext. Geomembranes 2007, 25, 194–202. [Google Scholar] [CrossRef]
- Ali, N.; Raj, V.S. Effect of polypropylene fibre on swelling behaviour of black cotton soil. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Murthi, P.; Saravanan, R.; Poongodi, K. Studies on the impact of polypropylene and silica fume blended combination on the material behaviour of black cotton soil. Mater. Today Proc. 2020, 39, 621–626. [Google Scholar] [CrossRef]
- Vakili, A.H.; Ghasemi, J.; bin Selamat, M.R.; Salimi, M.; Farhadi, M.S. Internal erosional behaviour of dispersive clay stabilized with lignosulfonate and reinforced with polypropylene fiber. Constr. Build. Mater. 2018, 193, 405–415. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, F.; Ling, X.; Lin, B. Effects of freeze-thaw cycles on mechanical properties of polypropylene fibre and cement stabilised clay. Cold Reg. Sci. Technol. 2018. [Google Scholar] [CrossRef]
- Booth, C.A.; Hammond, F.N.; Lamond, J.E.; Proverbs, D.G. Solutions to Climate Change Challenges in the Built Environment; Wiley-Blackwells: Oxford, UK, 2012. [Google Scholar]
- Ping, L.; Zhao, G.; Lin, X.; Gu, Y.; Liu, W.; Cao, H.; Huang, J.; Xu, J. Feasibility and Carbon Footprint Analysis of Lime-Dried Sludge for Cement Production. Sustainability 2020, 12, 2500. [Google Scholar] [CrossRef] [Green Version]
- Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, Z.; Shen, L.; Zhao, J. Calculating of CO2 emission factors for Chinese cement production based on inorganic carbon and organic carbon. J. Clean. Prod. 2019, 217, 503–509. [Google Scholar] [CrossRef]
- Onn, C.C.; Mo, K.H.; Radwan, M.K.H.; Liew, W.H.; Ng, C.G.; Yusoff, S. Strength, Carbon Footprint and Cost Considerations of Mortar Blends with High Volume Ground Granulated Blast Furnace Slag. Sustainability 2019, 11, 7194. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency (IEA). CO2 Emission for Combustion Highlights 2010. Available online: https://www.iea.org/co2highlights (accessed on 24 March 2021).
- Anand, K.B.G.; Agrawel, S.; Dobriyal, A. Stabilisation of Cohesive Soil Using Demolished Brick Waste 2014, Innovations and Advances in Civil Engineering towards Green and Sustainable Systems. Available online: https://www.researchgate.net/publication/326972521_Stabilization_of_Cohesive_Soil_using_Demolished_Brick_Waste (accessed on 12 February 2021).
- Al-Baidhani, A.A.; Al-Taie, A. Review of brick waste in expansive soil stabilisation and other civil engineering applications. J. Geotech. Stud. 2019, 4, 14–23. [Google Scholar]
- Sachin, N.B.; Hiral, B.J.; Priyanka, K.S.; Ankit, P. Effect of burnt brick dust on engineering properties on expansive soil. Int. J. Res. Eng. Technol. 2014, 3, 433–441. [Google Scholar]
- Reddy, S.S.; Prasad, A.C.S.V.; Krishna, N.V. Lime-stabilised black cotton soil and brick powder mixture as subbase material. Adv. Civ. Eng. 2018, 18, 1–10. [Google Scholar]
- Wild, S.; Kinuthia, J.M.; Jones, G.I.; Higgins, D.D. Effect of partial substitution of lime with ground granulated blast furnace slag (GGBS) on the strength properties of lime-stabilised sulphate-bearing clay soils. Eng. Geol. 1998, 51, 37–53. [Google Scholar] [CrossRef]
- Corrêa-Silva, M.; Miranda, T.; Rouainia, M.; Araújo, N.; Glendinning, S.; Cristelo, N. Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags. J. Clean. Prod. 2020, 267, 122017. [Google Scholar] [CrossRef]
- Obuzor, G.; Kinuthia, J.; Robinson, R. Soil stabilisation with lime-activated-GGBS—A mitigation to flooding effects on road structural layers/embankments constructed on floodplains. Eng. Geol. 2012, 151, 112–119. [Google Scholar] [CrossRef]
- Celik, E.; Nalbantoglu, Z. Effects of ground granulated blastfurnace slag (GGBS) on the swelling properties of lime-stabilized sulfate-bearing soils. Eng. Geol. 2013, 163, 20–25. [Google Scholar] [CrossRef]
- Gokul, V.; Steffi, D.A.; Kaviya, R.; Harni, C.; Dharani, S. Alkali activation of clayey soil using GGBS and NaOH. Mater. Today: Proc. 2020, 43, 1707–1713. [Google Scholar] [CrossRef]
- Kassa, R.B.; Workie, T.; Abdela, A.; Fekade, M.; Saleh, M.; Dejene, Y. Soil Stabilization Using Waste Plastic Materials. Open J. Civ. Eng. 2020, 10, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Consoli, N.C.; Da Silva Lopes, L.; Foppa, D.; Heineck, K.S. Key parameters dictating strength of lime/cement-treated soils. Proc. Inst. Civ. Eng. Geotech. Eng. 2009, 162, 111–118. [Google Scholar] [CrossRef]
- Boardman, D.I.; Glendinning, S.; Rogers, C.D.F. Development of stabilisation and solidification in lime-clay mixes. Geotechnique 2001, 51, 533–543. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 5th ed.; Wiley: New York, NY, USA; Harlow, England, 2011; Available online: https://pdfcoffee.com/properties-of-concrete-fifth-edition-a-m-neville-pdf-pdf-free.html (accessed on 13 September 2021).
- Prusinski, J.R.; Bhattacharja, S. Effectiveness of Portland cement and lime in stabilising clay soils. Transp. Res. Rec. 1999, 1652, 215–227. [Google Scholar] [CrossRef]
- Walker, P. Review and Experimental Comparison of erosion tests or Earth Blocks. In Terra 2000 Postprints: 8th International Conference on the Study and Conservation of Earthen Architecture, Torquay, Devon, UK, May 2000; James & James: London, UK, 2000. [Google Scholar]
- Gooding, D.E.; Thomas, T.H. The potential of cement stabilised building blocks as an urban building material in developing countries. DTU working paper No.44. 1995. Available online: https://warwick.ac.uk/fac/sci/eng/research/grouplist/structural/dtu/pubs/wp/wp44/wp44_.pdf (accessed on 17 August 2021).
- Lea, F.M. The Chemistry of Cement and Concrete, 3rd ed.; Edward Arnold: London, UK, 1980. [Google Scholar]
- Gross, J.; Adaska, W. Guide to Cement-Stabilised Subgrade Soils. 2020. Available online: https://intrans.iastate.edu/app/uploads/2020/05/guide_to_CSS.pdf (accessed on 23 September 2021).
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford Publishing: London, UK, 1997; pp. 19–43. [Google Scholar]
- Oner, A.; Akyuz, S. An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem. Concr. Compos. 2007, 29, 505–514. [Google Scholar] [CrossRef]
- Kartini, K.; Rohaidah, M.N.; Zuraini, Z.A. Performance of ground clay bricks as partial cement replacement in grade 30 concrete. Int. Sch. Sci. Res. Innov. 2012, 6, 312–315. [Google Scholar]
- Seco, A.; Ramirez, F.; Miqueleiz, L.; Urmeneta, P.; García, B.; Prieto, E.; Oroz, E.P.A.V. Types of Waste for the Production of Pozzolanic Materials—A Review; BoD – Books on Demand: Norderstedt, Germany, 2012. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, J. Geopolymers and gropolymeric materials. J. Therm. Anal. 1989, 35, 429–441. [Google Scholar] [CrossRef]
- Srinivasan, K.; Sivakumar, A. Geopolymer Binders: A Need for Future Concrete Construction. ISRN Polym. Sci. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Gourley, J.T. Geopolymers, opportunities for environmentally friendly construction material. In Proceedings of the International Conference and Exhibition on Adaptive materials for a Modern society (Materials ’30), Sydney. Australia, 30–31 August 2003. [Google Scholar]
- Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes: A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lukey, G.C. The characteristics of source materials in fly ash-based geopolymers. Mater. Lett. 2003, 57, 1272–1280. [Google Scholar] [CrossRef]
- United Nation Sustainable Development Goals. Available online: https://sdgs.un.org/goals/goal9 (accessed on 17 August 2021).
Country | Amount (USD) | Reference |
---|---|---|
UK | >3.7 billion | [8] |
China | >1 billion | [9] |
France | >2.71 billion | [10] |
India | >73 million | [11] |
Saudi Arabia | >300 million | [12] |
Sudan | >6 million | [13] |
USA | >9 billion annually | [9] |
Category | Annual Damage (US$) |
---|---|
Highways and streets | 4,550,000,000 |
Commercial buildings | 1,440,000,000 |
Single family homes | 1,200,000,000 |
Walks, drives and parking areas | 440,000,000 |
Buried utilities and services | 400,000,000 |
Multi-story buildings | 320,000,000 |
Airport installations | 160,000,000 |
Involved in urban landslides | 100,000,000 |
Other | 390,000,000 |
Total annual damage (1987) | 9,000,000,000 |
Liquid Limit | Classification |
---|---|
0–20 | Non-Swelling |
20–35 | Low-Swelling |
35–50 | Medium-Swelling |
50–70 | High-Swelling |
70–90 | Very High-Swelling |
>90 | Extra High-Swelling |
PI (%) | Clay Fraction | Shrinkage Potential |
---|---|---|
(<0.002 mm) | ||
>35 | >95 | Very High |
22–48 | 60–95 | High |
12–32 | 30–60 | Medium |
<18 | <30 | Low |
Data from Index Tests 1 | Estimation of Probable Expansion 2, Percent Total Volume Change (Dry to Saturated Condition) | Degree of Expansion | ||
---|---|---|---|---|
Colloid Content Percent Minus 0.00004 in. (0.001 mm) (ASTM D422) | Plasticity Index (ASTMD4318) | Shrinkage Limit Percent (ASTM D427) | ||
>28 | >35 | >11 | >30 | Very High |
20–31 | 24–41 | 7–12 | 20–30 | High |
13–23 | 15–28 | 10–16 | 10–20 | Medium |
<15 | <8 | <15 | <10 | Low |
Liquid Limit | meq/100 g |
---|---|
Kaolinite | 3–18 |
Halloysite | 5–40 |
Chlorite | 10–40 |
Illite | 10–40 |
Montmorillonite | 60–150 |
Vermiculite | 100–215 |
Oxide | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | K2O | SO3 | TiO2 | Na2O | Loss of Ignition | Source |
---|---|---|---|---|---|---|---|---|---|---|---|
BDW | 52 | 41 | 0.7 | 0.12 | 4.32 | 0.53 | 0.33 | 0.65 | 0.05 | 2.01 | [43] |
GGBS | 34.72 | 19.11 | 0.5 | 8.46 | 35.27 | 0.58 | 0.18 | 0.65 | 0.16 | - | [44] |
Silica fume | 93.38 | 0.15 | 0.21 | 0.10 | 0.67 | - | 0.37 | - | - | 1.46 | [45] |
Glass fibre | 45.47 | 12.11 | 1.04 | - | 38.49 | 0.94 | 0.43 | - | - | - | [46] |
RHA (Malaysia) | 93.10 | 0.21 | 0.21 | 1.59 | 0.41 | 2.31 | - | - | - | 2.36 | [47] |
RHA (Brazil) | 92.90 | 0.18 | 0.43 | 0.35 | 1.03 | 0.72 | 0.10 | - | 0,02 | - | [47] |
RHA (Netherlands) | 86.90 | 0.84 | 0.73 | 0.57 | 1.40 | 2.46 | - | - | 0.11 | 5.14 | [47] |
RHA (India) | 90.70 | 0.40 | 0.40 | 0.50 | 0.40 | 2.20 | 0.10 | - | 0.10 | 4.80 | [47] |
RHA (Iraq) | 86.80 | 0.40 | 0.19 | 0.37 | 1.40 | 3.84 | 1.54 | - | 1.15 | 3.30 | [47] |
RHA (USA) | 94.50 | Trace | Trace | 0.23 | 0.25 | 1.10 | 1.13 | - | 0.78 | - | [47] |
RHA (Canada) | 87.20 | 0.15 | 0.16 | 0.35 | 0.55 | 3.68 | 0.24 | - | 1.12 | 8.55 | [47] |
Paper Sludge Ash | 60.57 | 2.06 | 0.92 | 3.59 | 14.94 | 0.16 | 1.07 | - | 0.22 | - | [48] |
Fly ash | 48.28 | 27.72 | 7.19 | 2.51 | 10.51 | - | 3.16 | 1.28 | - | - | [49] |
Boron | 21.64 | 0.75 | 0.19 | 9.40 | - | - | - | 16.77 | 7.88 | 35.38 | [49] |
Marble dust | 0.2 | 0.07 | 0.11 | 0.3 | 54.5 | - | 0.08 | - | 0.01 | 44.52 | [49] |
Granite dust | 89.30 | 0.19 | 0.23 | 0.46 | 0.58 | - | 0.06 | - | 0.37 | 8.26 | [49] |
Green Bayburt Stone | 68.22 | 12.06 | 1.84 | 1.14 | 2.17 | 1.54 | 0.09 | - | 6.08 | 6.79 | [50] |
Properties | Description |
---|---|
Tensile strength (gf/den) | 3.5–5.5 |
Elongation (%) | 40–100 |
Abrasion resistance | Good |
Moisture absorption (%) | 0–0.05 |
Softening point (°C) | 140 |
Melting point (°C) | 165 |
Chemical resistance | General excellent |
Relative density | 0.91 |
Thermal conductivity | 6.0 (with air as 1.0) |
Electric insulation | Excellent |
Resistance to mildew and moth | Excellent |
Properties | Description |
---|---|
C (%) | 85.0 |
H (%) | 13.8 |
N (%) | 0 |
S (%) | 0 |
O (%) | 0 |
Ashes (%) | 1.0 |
Moisture (%) | 0.2 |
Low heating value (kJ/kg) | 45,500 |
Starting devolatilization temp (°C) | ≈250 |
Devolatization Temp (°C) | ≈410 |
Diameter and thickness of fuel pellets (mm) | 5.2 |
Particle density (kg/m3) | 940 |
Bulk density (kg/m3) | 570 |
Million Metric Tonnes | Million Short Tonnes | Percent | |
---|---|---|---|
Produced | 61.84 | 68.12 | 100 |
Used | 19.98 | 22.00 | 32.3 |
Solid Waste | Fly Ash | GGBS | Steel Slag | Red Mud | Lime Sludge | Lead-Zinc Slag | Phosphorus Furnace Slag | PG | Jarosite | Kimberlite | Mine Rejects |
---|---|---|---|---|---|---|---|---|---|---|---|
Annual production | 184.14 | 10 | 12 | 4.71 | 4.5 | 0.5 | 0.5 | 11 | 0.6 | 0.6 | 750 |
(million tonnes) |
Country/Region | CCP Production (Mt) | CCP Utilisation (Mt) | Utilisation Rate (%) | CCP Production/Person (Mt) | CCP Utilisation/Person (Mt) |
---|---|---|---|---|---|
Australia | 13.1 | 6.0 | 45.8 | 0.60 | 0.27 |
Canada | 6.8 | 2.3 | 33.8 | 0.20 | 0.07 |
China | 395 | 265 | 67.1 | 0.20 | 0.20 |
Europe | 52.6 | 47.8 | 90.9 | 0.11 | 0.10 |
India | 105 | 14.5 | 13.8 | 0.09 | 0.01 |
Japan | 11.1 | 10.7 | 96.4 | 0.09 | 0.08 |
Middle East and Africa | 32.2 | 3.4 | 10.6 | 0.02 | 0.01 |
United States | 118 | 49.7 | 42.1 | 0.37 | 0.16 |
Other Asia | 16.7 | 11.1 | 66.5 | 0.05 | 0.03 |
Russian Federation | 26.6 | 5.0 | 18.8 | 0.19 | 0.04 |
Waste Type | Content (%)/Ratio | Information Source | Test | Results: UCS (kN/m2), CBR (%), Swell (mm), Shrinkage (%) | Standards |
---|---|---|---|---|---|
Brick dust | 30–50 | [65] | CBR and UCS increased | CBR = 19 & UCS = 20 | ASTM D1883-16 |
Brick dust | 30–50 | [66] | Shrinkage reduced | Shrinkage = 23.7 to 7.3 | IS 2720 |
Brick dust | 0–16 | [67] | CBR increased | CBR = 7.9 | ASTM D1883-16 |
Brick dust | 10–30 | [68] | CBR increased | CBR = 4.6 | BS1377 |
Brick dust | 5–25 | [69] | UCS and CBR increased | UCS = 3544 &CBR = 21.90 | IS:2720 part 16 |
Brick dust | 0–30 | [70] | UCS increased & swell decreased | UCS = 297.76 & Swell = 23.98 | IS:2720 Part X1991 |
Brick dust | 10–50 | [71] | Swell reduced &CBR increased | Sewll = 0 & CBR = 12.54 | IS 2720 |
Brick dust | 10–30 | [72] | CBR increased | CBR = 7.4 | IS:2720 part 16 |
Brick dust | 30–50 | [73] | CBR improved from | CBR = 1.6 to 6.8 | IS:2720 Part 16 |
Brick dust | 10–40 | [74] | UCS improved | UCS = 197 | IS:2720 Part 16 |
Brick dust | 10–20 | [75] | UCS improved | UCS = 142.2 | IS:2720 Part 16 |
Brick dust | 10–20 | [75] | CBR improved | CBR = 2.86 | ASTM D1883-16 |
Brick dust | 10–20 | [75] | Swell decreased | Swell = 0.83 | 1977STM D1883-16 |
Brick dust | 10–20 | [75] | Shear strength improved | UCS = 67.15 | BS 1377-1:2016 |
GGBS | 5–10 | [76] | UCS increased with | 5% and 10% GGBS | IS:4332 Part 5 [1970] |
GGBS | 70 ratio | [77] | UCS increased | UCS = 450 | IS:2720 Part 16 |
GGBS | 0–30 | [78] | CBR increased | CBR = 2.69 | IS:2720 Part 10-1991 |
GGBS | 0–30 | [79] | UCS increased | UCS = 263.5 | IS:2720 Part 16 |
GGBS | 3–9 | [80] | CBR increased | CBR = 2.05 to 8.29 | IS:2720 Part 40-1977STM D1883-16 |
GGBS | 3–12 | [80] | Swell reduced | Swell = 67 and 21 | IS:2720 Part 16 |
Plastic waste | 0.0–1.0 | [81] | CBR values increased | CBR = 1.967 to 2.479 | IS-2720: Part 7 |
Plastic waste | 0–1.5 | [82] | UCS and CBR increased | UCS = 40 and CBR = 2.35 | IS:2720 Part 16 |
Polypropylene | 0.5–2 | [78] | CBR increased | CBR = 8.51 | IS 2720 part 10 |
Polypropylene | 0.05–0.25 | [83] | UCS increased | UCS = 1280 | IS:2720 Part 40-1977 |
Polypropylene | 0.2–0.5 | [84] | Swell reduced considerably | Swell = 21.73 | IS:2720 Part 40-1977 |
Polypropylene | 0.5–2 | [85] | Swell pressure reduced | Swell = 110 to 59 | IS 2720 part 10 |
Polypropylene | 0.1–1.3 | [39] | UCS increased | USC = 338.7 | IS:4332 Part 5 [1970] |
Polypropylene | 0–1.4 | [86] | UCS increased by | UCS = 29.87 | IS:4332 Part 5 [1970] |
Polypropylene | 0.05–0.30 | [87] | UCS decreased | UCS = 600 to 330 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amakye, S.Y.; Abbey, S.J.; Booth, C.A.; Mahamadu, A.-M. Enhancing the Engineering Properties of Subgrade Materials Using Processed Waste: A Review. Geotechnics 2021, 1, 307-329. https://doi.org/10.3390/geotechnics1020015
Amakye SY, Abbey SJ, Booth CA, Mahamadu A-M. Enhancing the Engineering Properties of Subgrade Materials Using Processed Waste: A Review. Geotechnics. 2021; 1(2):307-329. https://doi.org/10.3390/geotechnics1020015
Chicago/Turabian StyleAmakye, Samuel Y., Samuel J. Abbey, Colin A. Booth, and Abdul-Majeed Mahamadu. 2021. "Enhancing the Engineering Properties of Subgrade Materials Using Processed Waste: A Review" Geotechnics 1, no. 2: 307-329. https://doi.org/10.3390/geotechnics1020015
APA StyleAmakye, S. Y., Abbey, S. J., Booth, C. A., & Mahamadu, A. -M. (2021). Enhancing the Engineering Properties of Subgrade Materials Using Processed Waste: A Review. Geotechnics, 1(2), 307-329. https://doi.org/10.3390/geotechnics1020015