Study of Reinforced Concrete with the Addition of Pozzolanic against the Penetration of Chlorides through Electrochemical Impedance Spectroscopy
Abstract
:1. Introduction
2. Experimental Study
3. Materials and Methods
3.1. Mix Design
3.1.1. Cement
3.1.2. Pozzolans
3.2. Tomography to Determine Porosity
3.3. Electrochemical Impedance Spectroscopy—EIS
4. Results and Discussion
4.1. Accelerated Test of Chlorides According to ASTM 1556
4.2. Tomography
4.3. Electrochemical Impedance Spectroscopy
4.4. Summary of Key Findings
5. Conclusions
- -
- In utilizing tomography, this study found varying porosity levels across different concrete types. REF concrete exhibited the highest total porosity at 2.48%, MK concrete showed a slightly lower porosity at 2.43%, and RHA concrete had the lowest porosity at 1.06%. These findings are crucial in understanding the microstructural differences among the concretes and their potential impact on durability.
- -
- The chloride diffusion coefficients, determined according to ASTM 1556, varied significantly among the concrete types. REF concrete had the highest diffusion rate (Da = m2/s), indicating a greater vulnerability to chloride penetration, whereas RHA (Da = m2/s) and MK concrete (Da = m2/s) demonstrated considerably lower diffusion rates, suggesting enhanced resistance to chloride ion ingress.
- -
- Electrochemical Impedance Spectroscopy (EIS) effectively characterized and quantified the differences in system resistance among the concrete types. These differences highlight the distinct electrochemical behaviors of the concretes and their responses to corrosive environments.
- -
- At low frequencies (around 0.01 Hz), associated with the resistance in the electrode bars/concrete system, the study identified a blend of physical and chemical resistance, with a slightly greater emphasis on physical mechanisms.
- -
- Medium frequencies (around 39 Hz) were linked to the resistance of the concrete/bar system, revealing a balance of chemical and physical resistance, but with chemical processes playing a more dominant role.
- -
- At high frequencies (around 100 kHz), corresponding to the electrolyte resistance in the system (concrete + water + NaCl), the findings suggest a nuanced balance of physical and chemical protective mechanisms, with a slight lean towards physical protection.
- -
- The addition of active mineral additives, particularly those with an alumino-silicic composition, significantly enhances the concrete’s defense against chloride ion attacks. This study illustrates the effectiveness of these additives in providing a predominantly physico-chemical protective effect.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ribeiro, D.V. Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete para monitoramento da corrosão em concreto armado. Rev. IBRACON De Estrut. E Mater. 2015, 8, 529–537. [Google Scholar] [CrossRef]
- Zhou, Y.; Gencturk, B.; Willam, K.; Attar, A. Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures. J. Mater. Civ. Eng. 2015, 27, 04014245. [Google Scholar] [CrossRef]
- Figueira, R.B. Electrochemical Sensors for Monitoring the Corrosion Conditions of Reinforced Concrete Structures: A Review. Appl. Sci. 2017, 7, 1157. [Google Scholar] [CrossRef]
- Ismail, M.; Ohtsu, M. Corrosion rate of ordinary and high-performance concrete subjected to chloride attack by AC impedance spectroscopy. Constr. Build. Mater. 2006, 20, 458–469. [Google Scholar] [CrossRef]
- Tutti, K. Corrosion of Steel in Concrete; Swedish Cement and Concrete Research Institute: Stockholm, Sweden, 1982; pp. 17–21. [Google Scholar]
- Chi, Z.; Wang, L.; Lu, S.; Zhao, D.; Yao, Y. Development of mathematical models for predicting the compressive strength and hydration process using the EIS impedance of cementitious materials. Constr. Build. Mater. 2019, 208, 659–668. [Google Scholar] [CrossRef]
- Helene, P.; Terzian, P. Manual de Dosagem e Controle do Concreto; PINI/SENAI: São Paulo, Brasil, 1993; p. 349. [Google Scholar]
- Talero, R.; Pedrajas, C.; Delgado, A.; Rahhal, V. Re-use of incinerated agro-industrial waste as pozzolanic addition. Comp. Span. Silica Fume. Mater. De Construcción 2009, 59, 53–89. [Google Scholar] [CrossRef]
- ASTM C 1559; Standard test method for determining the apparent chloride diffusion coefficient of cementitious mixture by bulk diffusion. ASTM International: West Conshohocken, PA, USA, 2022.
- Banthia, N.; Zanotti, C.; Sappakittipakorn, M. Sustainable fiber reinforced concrete for repair applications. Constr. Build. Mater. 2014, 67, 405–412. [Google Scholar] [CrossRef]
- 83992-1:2012 EX; UNE, Durabilidad Del Hormigón. Métodos de Ensayo. Ensayos de Penetración de Cloruros En El Hormigón. Parte 1: Método Natural Para La Determinación Del Tiempo Hasta Corrosión, AENOR. The Spanish Association for Standardization and Certification: Madrid, Spain, 2012.
- Mark, E. Orazem Bernard Tribollet. In Electrochemical Impedance Spectroscopy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Rentería, R.M. Contribución al estudio analítico y físico-químico del sistema cementos portland -puzolanas y escoria siderúrgica- cloruros y agua. Inf. De La Construcción 1997, 49, 73. [Google Scholar]
- Talero, R.; Trusilewicz, L.; Delgado, A.; Pedrajas, C.; Lannegrand, R.; Rahhal, V.; Mejía, R.; Delvasto, S.; Ramírez, F.A. Comparative and semi-quantitative XRD analysis of Friedel’s salt originating from pozzolan and Portland cement. Constr. Build. Mater. 2011, 25, 2370–2380. [Google Scholar] [CrossRef]
- Chung, S.Y.; Kim, J.S.; Stephan, D.; Han, T.S. Overview of the use of micro-computed tomography (micro-CT) to investigate the relation between the material characteristics and properties of cement-based materials. Constr. Build. Mater. 2019, 229, 116843. [Google Scholar] [CrossRef]
- Diamond, S.; Wild, S. A discussion of the paper Mercury porosimetry—An inappropriate method for the measurement of pore size distributions in cement-based. Cem. Concr. Res. 2001, 31, 1657–1658. [Google Scholar]
- Khatib, J.M.; Wild, S. Pore size distribution of metakaolin paste. Cem. Concr. Res. 1996, 26, 1545–1553. [Google Scholar] [CrossRef]
- du Plessis, A.; Olawuyi, B.J.; Boshoff, W.P.; le Roux, S.G. Simple and fast porosity analysis of concrete using X-ray computed tomography. Mater. Struct./Mater. Et Constr. 2016, 49, 553–562. [Google Scholar] [CrossRef]
- Park, K.B.; Kwon, S.J.; Wang, X.Y. Analysis of the effects of rice husk ash on the hydration of cementitious materials. Constr. Build. Mater. 2016, 105, 196–205. [Google Scholar] [CrossRef]
- Zain, M.F.M.; Islam, M.N.; Mahmud, F.; Jamil, M. Production of rice husk ash for use in concrete as a supplementary cementitious material. Constr. Build. Mater. 2011, 25, 798–805. [Google Scholar] [CrossRef]
- Mobasher, B.; Shekarchi, M.; Bonakdar, A.; Bakhshi, M.; Mirdamadi, A. Transport properties in metakaolin blended concrete. Constr. Build. Mater. 2010, 24, 2217–2223. [Google Scholar] [CrossRef]
- Figueiredo, C.P.; Santos, F.B.; Cascudo, O.; Carasek, H.; Cachim, P.; Velosa, A. The role of metakaolin in the protection of concrete against the deleterious action of chlorides O papel do metacaulim na proteção dos concretos contra a ação deletéria de cloretos. Rev. IBRACON De Estrut. E Mater. 2014, 7, 685–708. [Google Scholar] [CrossRef]
- Sousa, M.A.M. Modelos de Circuitos Equivalentes Para Explicar Espectros de Impedância de Dispositivos de Efeito de Campo. Master’s Thesis, Instituto de Física de São Carlos, Basel, Spain, June 2013. [Google Scholar]
- Poon, C.S.; Kou, S.C.; Lam, L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build. Mater. 2006, 20, 858–865. [Google Scholar] [CrossRef]
- Sakai, Y. Relationship between pore structure and chloride diffusion in cementitious materials. Constr. Build. Mater. 2019, 229, 116868. [Google Scholar] [CrossRef]
- Saraswathy, V.; Song, H.W. Corrosion performance of rice husk ash blended concrete. Constr. Build. Mater. 2007, 21, 1779–1784. [Google Scholar] [CrossRef]
Element | % |
---|---|
C | 0.2370 |
Si | 0.1950 |
Mn | 0.7730 |
P | 0.0044 |
S | 0.0474 |
Cr | 0.0809 |
Mo | 0.0083 |
Ni | 0.0499 |
Al | 0.0221 |
Co | <0.01 |
Cu | 0.0820 |
Nb | 0.0055 |
Ti | 0.0320 |
V | <0.001 |
W | <0.010 |
Pb | <0.002 |
Sn | 0.0027 |
Mg | <0.002 |
B | >0.132 |
Fe | <98.2 |
FRX | CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | Na2O | K2O | CaO | SrO | P2O5 | TiO2 | MnO | PPC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | 63.6 | 17.6 | 5.1 | 2.9 | 0.72 | 3.9 | 0.29 | 0.85 | 37.39 | 0.27 | 0.27 | 0.22 | 0.12 | 3.9 |
Bogue Composition | Compound | C3S | C2S | C3A | C4AF | |||||||||
% | 60.15 | 5.08 | 8.,61 | 8.82 |
Density (g/cm3) (He Pic NUMATS) | 2.47 @ 21C | 2.63 @ 21C |
---|---|---|
Blaine (cm2/g) (NUMATS) | 12,246 | 7004 |
FRX CETEM (AXIOS Panalytical) | %w/w | %w/w |
MgO | 0.29 | 0.81 |
Al2O3 | 0.19 | 43.5 |
SiO2 | 93.65 | 48.5 |
P2O5 | 0.32 | 0 |
SO3 | <0.1 | 0 |
K2O | 1.3 | 1.8 |
TiO2 | 0 | 1.3 |
Fe2O3 | <0.1 | 1.9 |
CaO | 0.44 | <0.1 |
MnO | 0.29 | 0 |
BaO | <0.1 | 0 |
Perda ao Fogo | 3.5 | 2.2 |
Total | 100.0 | 100.0 |
Tubo Cobalto | Tubo Cobalto | |
---|---|---|
XRD CETEM (Bruker D4) | RHA | MKHPMAX-Co |
Phase Name | Wt% in Original sample | Wt% in Original sample |
Kaolinite | 0.000 | 5.983 |
Muscovite | 0.000 | 3.032 |
Quartz | 0.000 | 6.430 |
Anatase | 0.000 | 1.051 |
Zircon | 0.000 | 0.000 |
Microcline | 0.000 | 3.494 |
Illite | 0.000 | 14.923 |
Cristobalite low | 5.897 | 0.000 |
Fluorite | 0.000 | 0.000 |
Amorphous | 94.1 | 65.1 |
- | 100.0 | 100.0 |
Cement | M | w/c | Mortar Ratio % | Mix Unit | Slump (cm) | Compressive Strength (MPa) |
---|---|---|---|---|---|---|
CP-V ARI HOLCIM | 5.94 | 0.70 | 53 | 1:2.679:3.262 | 12 | 26 |
5.94 | 0.70 | 53 | 1:2.679:3.262:10% RHA | 8 | 28 | |
5.94 | 0.70 | 53 | 1:2.679:3.262:10% MK | 7.5 | 27 |
Deep (mm) | Ref-N (mg/L) | RHA(mg/L) | MK (mg/L) |
---|---|---|---|
0–5 | 0.500 | 0.812 | 0.804 |
5–10 | 0.384 | 0.388 | 0.296 |
10–15 | 0.268 | 0.188 | 0.096 |
15–20 | 0.200 | 0.104 | 0.080 |
20–25 | 0.164 | 0.080 | 0.032 |
25–30 | 0.140 | 0.060 | 0.024 |
30–35 | 0.132 | 0.052 | 0.020 |
Da (m2/s) | |||
Cs (%) | 0.5653683 | 1.240761 | 1.49701 |
Interval (mm2) | REF Before Chloride (NaCl) | REF After Chloride (NaCl) |
---|---|---|
0.00–0.13 | 188,289 | 112,982 |
0.13–0.26 | 108,828 | 147,894 |
0.26–0.52 | 85,360 | 123,750 |
0.52–1.05 | 45,006 | 53,127 |
1.05–2.09 | 18,131 | 19,609 |
2.09–4.19 | 5319 | 5561 |
4.19–8.38 | 503 | 552 |
TOTAL | 2.48% | 2.80% |
Interval (mm2) | RHA Before Chloride (NaCl) | RHA After Chloride (NaCl) |
---|---|---|
0.00–0.13 | 35,487 | 105,340 |
0.13–0.26 | 34,256 | 91,903 |
0.26–0.52 | 25,485 | 49,819 |
0.52–1.05 | 15,551 | 21,077 |
1.05–2.09 | 8668 | 9911 |
2.09–4.19 | 2849 | 3233 |
4.19–8.38 | 348 | 462 |
8.38–16.75 | 1 | 11 |
16.75–33.5 | 1 | |
TOTAL | 1.06% | 1.32% |
Interval (mm2) | MK Before Chloride (NaCl) | MK After Chloride (NaCl) |
---|---|---|
0.00–0.13 | 64,516 | 112,982 |
0.13–0.26 | 91,914 | 147,894 |
0.26–0.52 | 80,558 | 123,750 |
0.52–1.05 | 42,482 | 53,127 |
1.05–2.09 | 17,430 | 19,609 |
2.09–4.19 | 4864 | 5561 |
4.19–8.38 | 979 | 552 |
8.38–16.76 | 4 | - |
TOTAL | 2.43% | 2.60% |
Frequency/Hz | REF-Months/Z′ kΩ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
100 k | 124 | 15 | 15 | 22 | 14 | 10 | 10 | 10 | 9 | 10 | 10 | 10 | 10 | 8 | 8 | 6 | 5 | 5 | 4 | 3 |
39 | 134 | 17 | 17 | 24 | 15 | 11 | 11 | 11 | 10 | 11 | 11 | 11 | 10 | 9 | 9 | 7 | 6 | 6 | 4 | 3 |
0.01 | 308 | 251 | 246 | 154 | 44 | 28 | 27 | 28 | 26 | 26 | 25 | 25 | 24 | 21 | 25 | 19 | 18 | 17 | 13 | 9 |
Frequency/Hz | REF-Months/Z″ kΩ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
100 k | 12 | 0.64 | 0.68 | 0.77 | 0.61 | 0.45 | 0.43 | 0.42 | 0.33 | 0.42 | 0.41 | 0.33 | 0.35 | 0.30 | 0.22 | 0.16 | 0.11 | 0.09 | 0.06 | 0.01 |
39 | 1.95 | 1.10 | 1.09 | 0.90 | 0.64 | 0.44 | 0.45 | 0.41 | 0.38 | 0.38 | 0.38 | 0.36 | 0.33 | 0.32 | 0.34 | 0.29 | 0.28 | 0.27 | 0.25 | 0.19 |
0.01 | 325 | 398 | 459 | 295 | 32 | 14 | 12 | 13 | 13 | 13 | 12 | 12 | 12 | 10 | 13 | 10 | 9.74 | 9.13 | 6 | 5 |
Frequency/Hz | CCA-Months/Z′ kΩ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
100 k | 114 | 60 | 70 | 73 | 62 | 77 | 81 | 88 | 85 | 74 | 82 | 78 | 84 | 94 | 37 | 48 | 19 | 20 | 25 | 13 |
39 | 131 | 69 | 80 | 85 | 72 | 92 | 97 | 98 | 109 | 106 | 93 | 104 | 100 | 107 | 112 | 47 | 61 | 23 | 24 | 15 |
0.01 | 287 | 188 | 198 | 205 | 181 | 212 | 219 | 221 | 244 | 240 | 203 | 222 | 227 | 146 | 118 | 149 | 46 | 63 | 62 | 34 |
Frequency/Hz | CCA-Months/Z″ kΩ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
100 k | 18 | 7 | 9 | 10 | 8 | 12 | 13 | 14 | 16 | 15 | 14 | 17 | 16 | 17 | 15 | 5 | 6 | 1 | 3 | 1 |
39 | 2 | 1.74 | 1.85 | 1.83 | 1.57 | 1.98 | 2.1 | 2.13 | 2.42 | 2.38 | 2.3 | 2.4 | 2.3 | 2.49 | 1.8 | 1.9 | 2.4 | 0.8 | 0.70 | 0.74 |
0.01 | 394 | 200 | 262 | 182 | 145 | 167 | 183 | 157 | 184 | 183 | 117 | 127 | 121 | 137 | 50 | 66 | 13 | 26 | 23 | 10 |
Frequency/Hz | MK-Months/Z′ kΩ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
100 k | 132 | 109 | 114 | 114 | 97 | 106 | 115 | 119 | 119 | 117 | 112 | 100 | 106 | 100 | 112 | 86 | 83 | 53 | 54 | 55 |
39 | 147 | 121 | 125 | 127 | 107 | 118 | 129 | 133 | 134 | 133 | 129 | 116 | 124 | 119 | 131 | 102 | 99 | 65 | 64 | 66 |
0.01 | 337 | 208 | 202 | 197 | 173 | 170 | 181 | 180 | 173 | 171 | 166 | 151 | 161 | 155 | 168 | 136 | 136 | 131 | 95 | 92 |
Frequency/Hz | MK-Months/Z″ kΩ | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | |
100 k | 17 | 13 | 14 | 14 | 11 | 13 | 16 | 16 | 16 | 17 | 18 | 16 | 16 | 17 | 19 | 14 | 12 | 9 | 7 | 8 |
39 | 3.1 | 1.86 | 1.88 | 1.84 | 1.60 | 1.66 | 175 | 1.77 | 1.73 | 1.81 | 1.77 | 1.67 | 1.81 | 1.77 | 1.6 | 1.8 | 1.79 | 1.91 | 1.71 | 1.41 |
0.01 | 407 | 73 | 56 | 42 | 39 | 25 | 24 | 22 | 18 | 16 | 16 | 16 | 16 | 15 | 15 | 11 | 12 | 12 | 10 | 10 |
Degrees of Freedom | Sum of Squares | Mean Square | F Statistic Value | p-Value | |
---|---|---|---|---|---|
Material | 2 | 294,150.1 | 147,075.1 | 64.21 | 1.0 × 10−16 |
Frequencies | 2 | 211,040.7 | 105,520.4 | 46.07 | 1.0 × 10−16 |
Interaction | 4 | 23,182.8 | 5795.7 | 2.53 | 0.04229 |
Model | 8 | 530,497.1 | 66,312.1 | 28.95 | 1.0 × 10−16 |
Error | 177 | 405,423.0 | 2290.5 | -- | -- |
Corrected Total | 185 | 935,920.2 | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez, A.O.; Filho, R.D.T.; Gomes, J.A.d.C.P.; Silva, R.d.S.; de Souza, E.A.; Silva, A.B.d. Study of Reinforced Concrete with the Addition of Pozzolanic against the Penetration of Chlorides through Electrochemical Impedance Spectroscopy. Constr. Mater. 2024, 4, 194-215. https://doi.org/10.3390/constrmater4010011
Domínguez AO, Filho RDT, Gomes JAdCP, Silva RdS, de Souza EA, Silva ABd. Study of Reinforced Concrete with the Addition of Pozzolanic against the Penetration of Chlorides through Electrochemical Impedance Spectroscopy. Construction Materials. 2024; 4(1):194-215. https://doi.org/10.3390/constrmater4010011
Chicago/Turabian StyleDomínguez, Anilé Ossorio, Romildo Dias Toledo Filho, José Antônio da Cunha Ponciano Gomes, Ralph dos Santos Silva, Eduardo Alencar de Souza, and Adriana Barbosa da Silva. 2024. "Study of Reinforced Concrete with the Addition of Pozzolanic against the Penetration of Chlorides through Electrochemical Impedance Spectroscopy" Construction Materials 4, no. 1: 194-215. https://doi.org/10.3390/constrmater4010011
APA StyleDomínguez, A. O., Filho, R. D. T., Gomes, J. A. d. C. P., Silva, R. d. S., de Souza, E. A., & Silva, A. B. d. (2024). Study of Reinforced Concrete with the Addition of Pozzolanic against the Penetration of Chlorides through Electrochemical Impedance Spectroscopy. Construction Materials, 4(1), 194-215. https://doi.org/10.3390/constrmater4010011