Efficiency of CFRP Strengthening Measures for Reinforced Concrete Structural Members Using Toughened Epoxies
Abstract
:1. Introduction
2. Efficiency of Interfaces-Methodology
2.1. Capacity in Transferring Loads
2.2. Capacity of Limiting Failure Propagation
2.3. Proposed Efficiency Indices
3. Experimental Campaign
3.1. Double-Lap Shear Test Description
3.2. Preparation of Specimens
3.2.1. Materials
3.2.2. Accelerated Corrosion
3.2.3. FRP Application
4. Results and Discussion
4.1. Experimental Results
4.1.1. Failure Modes
4.1.2. FRP Laminated Sheets
4.1.3. FRP Prefabricated Plates
4.1.4. FRP near Surface Mounted Bars
4.1.5. Interface Capacity (IC) Indices Estimation
5. Conclusions
- The quantification of the interface capacity is expressed with a semi-empirical expression with the IC index and is based on two criteria: (a) loads transferred to the composite through the interface and (b) strains and crack propagation up to failure. FRP integration is enhanced when the index is larger. A value of IC lower than one means the response is linearly elastic and the failure is brittle. The greater the value is the more distinct the transition points are and the crack propagation is extended.
- CFRP strengthening schemes for concrete substrates with toughened adhesive layers with lower stiffness matrix exhibit more abrupt failures, achieving higher stresses. The overall interface capacity in distributing cracks and loads is similar in sheets and plates, whereas in the NSMs case is more concentrated. The dispersion of stresses when using toughened adhesives should be further investigated in larger areas of substrates.
- The type of CFRP plays an important role in the response of the interface. The direction of the fibers of the composite can bridge the gaps from the crack development. The different composite types in combination with the adhesive layer can permit strain distribution in a more extended area. Prefabricated plates have much higher stiffness and mechanical properties with respect to laminated sheets and govern the failure mode.
- The corrosion effect is more evident in the group with externally bonded laminated sheets, where a reduction of 20% is noted both in shear resistance and deformation. The effective length of the strengthening system should be considered increased in such cases, in order to have the adhesive properties of the matrix fully developed.
- The failure mode is predominantly cohesive adhesive. The induced toughened epoxies absorb more energy and distribute stresses/strains in the matrix in contrast to the usual high mechanical brittle adhesive layers that lead to adhesive failure with peek stresses concentrated at the borders of the composites.
- Strengthening adhesives do not necessarily need high values of mechanical prop-erties. Toughened epoxy adhesives introduce moderately reduced stiffness (47–57%) for bonding FRPs still ensuring high strengthening performance for concrete retrofitting cases, and absorb more energy and strains as such the substrate’s fail-ure propagation is less significant.
- The corrosion of the substrates affected mainly the conventional epoxies schemes that is Sikadur®-30 and Sikadur®-330. These adhesives are characterized by lower strain capacity and mainly high elastic modulus, especially Sikadur®-30 having the highest elastic modulus. The influence of the toughened epoxy Sikadur®-370 was not significant. The fact that the substrate’s corrosion does not affect the system which still deforms and continues to absorb energy can be beneficial to structural applications.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbood, I.S.; aldeen Odaa, S.; Hasan, K.F.; Jasim, M.A. Properties evaluation of fiber reinforced polymers and their constituent materials used in structures–A review. Mater. Today Proc. 2021, 43, 1003–1008. [Google Scholar] [CrossRef]
- Al-Fasih, M.Y.; Mohamad, M.E.; Ibrahim, I.S.; Ahmad, Y.; Ariffin, M.M.; Sarbini, N.N.; Mohamed, R.N.; Kueh, A.B.H. Experimental and numerical evaluations of composite concrete-to-concrete interfacial shear strength under horizontal and normal stresses. PLoS ONE 2021, 16, e0252050. [Google Scholar] [CrossRef] [PubMed]
- Naser, M.Z.; Hawileh, R.A.; Abdalla, J.A. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng. Struct. 2019, 198, 109542. [Google Scholar] [CrossRef]
- Hegde, S.; Shenoy, B.S.; Chethan, K.N. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance. Mater. Today Proc. 2019, 19, 658–662. [Google Scholar] [CrossRef]
- EN1504-4:2004; Products and Systems for the Protection and Repair of Concrete Structures—Definitions, Requirements, Quality Control and Evaluation of Conformity—Part 4: Structural Bonding, European Committee for Standardization. British Standards Institution: London, UK, 1998.
- Zhang, Y.; Su, R.K.L. Concrete cover tensile capacity of corroded reinforced concrete. Constr. Build. Mater. 2017, 136, 57–64. [Google Scholar] [CrossRef]
- Triantafyllou, G.G.; Rousakis, T.C.; Karabinis, A.I. Analytical assessment of the bearing capacity of RC beams with corroded steel bars beyond concrete cover cracking. Compos. Part B Eng. 2017, 119, 132–140. [Google Scholar] [CrossRef]
- Pereira, E.N.B.; Fischer, G.; Barros, J.A.; Lepech, M. Crack Formation and Tensile Stress-Crack Opening Behavior of Fiber Reinforced Cementitious Composites (FRCC). In Proceedings of the FraMCoS-7, Jeju, Republic of Korea, 23–28 May 2010. [Google Scholar]
- De Oliveira e Sousa, J.L.A.; Gettu, R. Determining the tensile stress-crack opening curve of concrete by inverse analysis. J. Eng. Mech. 2006, 132, 141–148. [Google Scholar] [CrossRef]
- Fazli, H.; Yassin, A.M.; Shafiq, N.; Teo, W. Pull-off testing as an interfacial bond strength assessment of CFRP-concrete interface exposed to a marine environment. Int. J. Adhes. Adhes. 2018, 84, 335–342. [Google Scholar] [CrossRef]
- Batuwitage, C.; Fawzia, S.; Thambiratnam, D.; Al-Mahaidi, R. Durability of CFRP strengthened steel plate double-strap joints in accelerated corrosion environments. Compos. Struct. 2017, 160, 1287–1298. [Google Scholar] [CrossRef]
- Garbacz, A.; Piotrowski, T.; Courard, L.; Kwaśniewski, L. On the evaluation of interface quality in concrete repair system by means of impact-echo signal analysis. Constr. Build. Mater. 2017, 134, 311–323. [Google Scholar] [CrossRef]
- Attard, T.L. Toughened carbon-fiber reinforced epoxy via isophorone diisocyanate amine surface modification. Polymer 2020, 191, 122268. [Google Scholar] [CrossRef]
- Burchardt, B.; Schulenburg, J.O.; Linnenbrink, M. Neue Technologiebausteine für den Leichtbau. adhäsion Kleb. Dicht. 2009, 53, 42–47. (In German) [Google Scholar] [CrossRef]
- Kasper, Y.; Albiez, M.; Ummenhofer, T.; Mayer, C.; Meier, T.; Choffat, F.; Ciupack, Y.; Pasternak, H. Application of toughened epoxy-adhesives for strengthening of fatigue-damaged steel structures. Constr. Build. Mater. 2021, 275, 121579. [Google Scholar] [CrossRef]
- Kasper, Y.; Albiez, M.; Ummenhofer, T.; Ciupack, Y.; Ledecky, L.; Pasternak, H.; Geßler, A.; Feldmann, M. Application of carbon fibre composite materials for the rehabilitation of fatigue damaged steel structures. In Advances in Engineering Materials, Structures and Systems: Innovations; Zingoni, A., Ed.; Mechanics and Applications; CRC Press: Boca Raton, FL, USA, 2019; pp. 2148–2153. [Google Scholar]
- Feldmann, M.; Ummenhofer, T.; Geßler, A.; Pasternak, H.; Kasper, Y.; Albiez, M.; Ciupack, Y.; Ledecky, L. Einsatz geklebter CFK-Lamellen zur Verstärkung ermüdungsgeschädigter Stahlkonstruktionen. Fachbeitrag. Geklebte Cfk-Lamellen Schweißen Schneid. 2019, 71, 738–745. (In German) [Google Scholar]
- Achillopoulou, D.V. Investigation of the bond behaviour of interfaces of CFRP sheet strengthening schemes enhanced with toughened epoxy adhesive layers in corroded concrete substrates. In Proceedings of the 8th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering COMPDYN 2021, Athens, Greece, 27–30 June 2021. [Google Scholar]
- Promis, G.; Ferrier, E. Performance indices to assess the efficiency of external FRP retrofitting of reinforced concrete short columns for seismic strengthening. Constr. Build. Mater. 2012, 26, 32–40. [Google Scholar] [CrossRef]
- Park, Y.J.; Ang, A.H.S. Mechanistic seismic damage model for reinforced concrete. J. Struct. Eng. 1985, 111, 722–739. [Google Scholar] [CrossRef]
- CNR-DT 200/2004; Advisory Committee on Technical recommendations For Constructions. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Existing Structures. National Research Council: Rome, Italy, 2004; pp. 62–68; 131–132.
- Achillopoulou, D.V.; Rousakis, T.C.; Karabinis, A.I. Square reinforced concrete columns strengthened through fiber reinforced polymer (FRP) sheet straps. In Proceedings of the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012), Rome, Italy, 13–15 June 2012; pp. 13–15. [Google Scholar]
- Nisticò, N.; Pallini, F.; Rousakis, T.; Wu, Y.F.; Karabinis, A. Peak strength and ultimate strain prediction for FRP confined square and circular concrete sections. Compos. Part B Eng. 2014, 67, 543–554. [Google Scholar] [CrossRef]
- Ascione, F.; Napoli, A.; Realfonzo, R. Interface bond between FRP systems and substrate: Analytical modeling. Compos. Struct. 2021, 257, 112942. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, W.; Pham, T.M.; Hao, H. Bond behavior between basalt fibres reinforced polymer sheets and steel fibres reinforced concrete. Eng. Struct. 2018, 176, 812–824. [Google Scholar] [CrossRef]
- Jia, D.G.; Gao, W.Y.; Duan, D.X.; Yang, J.; Dai, J.G. Full-range behavior of FRP-to-concrete bonded joints subjected to combined effects of loading and temperature variation. Eng. Fract. Mech. 2021, 254, 107928. [Google Scholar] [CrossRef]
- Min, X.; Zhang, J.; Wang, C.; Song, S.; Yang, D. Experimental investigation of fatigue debonding growth in FRP–concrete interface. Materials 2020, 13, 1459. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wan, B.; Wu, Y.F.; Omboko, J. Epoxy interlocking: A novel approach to enhance FRP-to-concrete bond behavior. Constr. Build. Mater. 2018, 193, 643–653. [Google Scholar] [CrossRef]
- Mensah, C.; Wang, Z.; Bonsu, A.O.; Liang, W. Effect of different bond parameters on the mechanical properties of FRP and concrete interface. Polymers 2020, 12, 2466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Lei, D.; Ren, Q.; He, J.; Shen, H.; Yang, Z. Experimental and numerical investigation of debonding process of the FRP plate-concrete interface. Constr. Build. Mater. 2020, 235, 117457. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Hao, H.; Ou, J. Guided wave propagation and spectral element method for debonding damage assessment in RC structures. J. Sound Vib. 2009, 324, 751–772. [Google Scholar] [CrossRef]
- Mukhtar, F.M.; Faysal, R.M. A review of test methods for studying the FRP-concrete interfacial bond behavior. Constr. Build. Mater. 2018, 169, 877–887. [Google Scholar] [CrossRef]
- Hallonet, A.; Michel, L.; Ferrier, E. Investigation of the bond behavior of flax FRP strengthened RC structures through double lap shear testing. Composites Part B Eng. 2016, 100, 247–256. [Google Scholar] [CrossRef]
- Rotunno, T.; Rovero, L.; Tonietti, U.; Bati, S.B. Experimental study of bond behavior of CFRP-to-brick joints. J. Compos. Constr. 2015, 19, 04014063. [Google Scholar] [CrossRef]
- Aboubakret, S.H.; Kandil, U.F.; Taha, M.R. Creep of epoxy–clay nanocomposite adhesive at the FRP interface: A multi-scale investigation. Int. J. Adhes. Adhes. 2014, 54, 1–12. [Google Scholar] [CrossRef]
- Sneed, L.H.; D’Antino, T.O.M.M.A.S.O.; Carloni, C.; Pellegrino, C. A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests. Cem. Concr. Compos. 2015, 64, 37–48. [Google Scholar] [CrossRef]
- Van Zijl, G.P.; Paul, S.C. A novel link of the time scale in accelerated chloride-induced corrosion test in reinforced SHCC. Constr. Build. Mater. 2018, 167, 15–19. [Google Scholar] [CrossRef]
- Dodds, W.; Christodoulou, C.; Goodier, C.; Austin, S.; Dunne, D. Durability performance of sustainable structural concrete: Effect of coarse crushed concrete aggregate on rapid chloride migration and accelerated corrosion. Constr. Build. Mater. 2017, 155, 511–521. [Google Scholar] [CrossRef]
- Otieno, M.; Beushausen, H.; Alexander, M. Chloride-induced corrosion of steel in cracked concrete–Part I: Experimental studies under accelerated and natural marine environments. Cem. Concr. Res. 2016, 79, 373–385. [Google Scholar] [CrossRef]
- Kim, T.K.; Park, J.S. Evaluation of the Performance and Ductility Index of Concrete Structures Using Advanced Composite Material Strengthening Methods. Polymers 2021, 13, 4239. [Google Scholar] [CrossRef]
- Brozović, T.; Kišiček, T.; Mandić Ivanković, A. Static and dynamic response of damaged prestressed RC beams flexural strengthened with CFRP. In Proceedings of the 12th Central European Congress on Concrete Engineering Innovative Materials and Technologies for Concrete Structures, Tokaj, Hungary, 31 August–1 September 2017; p. 659. [Google Scholar]
- Ming, J.; Shi, J. Distribution of corrosion products at the steel-concrete interface: Influence of mill scale properties, reinforcing steel type and corrosion inducing method. Constr. Build. Mater. 2019, 229, 116854. [Google Scholar] [CrossRef]
- EN 1998-3; Eurocode 8: Design of Structures for Earthquake Resistance—Part 3: Assessment and Retrofitting of Buildings. European Committee for Standardisation: Brussels, Belgium, 2009.
- Kazemi, M.E.; Medeau, V.; Mencattelli, L.; Greenhalgh, E.; Robinson, P.; Finlayson, J.; Pinho, S.T. Novel zone-based hybrid laminate structures for high-velocity impact (HVI) in carbon fibre-reinforced polymer (CFRP) composites. Compos. Sci. Technol. 2023, 241, 110148. [Google Scholar] [CrossRef]
- Kuhtz, M.; Hornig, A.; Gude, M.; Jäger, H. A method to control delaminations in composites for adjusted energy dissipation characteristics. Mater. Des. 2017, 123, 103–111. [Google Scholar]
- EN 206-1; Concrete—Part 1: Specification, Performance, Production and Conformity. CEN: London, UK, 2000.
- EN 197-1-2011; Cement-Part 1: Composition, Specifications and Conformity Criteria for Common Cements. CEN: London, UK, 2000.
- ACI 318-1; Building Code Requirements for Reinforced Concrete. ACI: Farmington Hills, MI, USA, 2011.
- Kosmatka, S.H.; Wilson, M.L. Design and Control of Concrete Mixtures: The Guide to Applications, Methods, and Materials, 15th ed.; Portland Cement Association: Washington, DC, USA, 2021. [Google Scholar]
- Sumanth, H.B.; Vasugi, K. Effect of w/c ratio on the corrosion of rebar embedded in high strength concrete. J. Of. Corros. Sci. Eng. 2020, 23, Preprint 12. [Google Scholar]
- Sika Group. Pioneering Steel Bridge Repair: Sikadur®-370. Sika Innovation. Available online: https://www.sika.com/en/innovation/sika-innovation-flash/pioneering-steel-bridge-repair--sikadur--370.html (accessed on 15 June 2023).
- EN 1542; Products and Systems for the Protection and Repair of Concrete Structures-Test Methods-Measurement of Bond Strength by Pull-Off. British Standard Institution: London, UK, 1999.
- Courard, L.; Piotrowski, T.; Garbacz, A. Near-to-surface properties affecting bond strength in concrete repair. Cem. Concr. Compos. 2014, 46, 73–80. [Google Scholar] [CrossRef]
- Biscaia, H.C.; Micaelo, R.; Chastre, C. Cyclic performance of adhesively bonded joints using the Distinct Element Method: Damage and parametric analysis. Compos. Part B Eng. 2019, 178, 107468. [Google Scholar] [CrossRef]
- Sue, H.J.; Garcia-Meitin, E.I.; Pickelman, D.M. Fracture behavior of rubber-modified high-performance epoxies. In Polymer Toughening; CRC Press: Boca Raton, FL, USA, 2020; pp. 131–174. [Google Scholar]
- Leelachai, K.; Kongkachuichay, P.; Dittanet, P. Toughening of epoxy hybrid nanocomposites modified with silica nanoparticles and epoxidized natural rubber. J. Polym. Res. 2017, 24, 41. [Google Scholar] [CrossRef]
- Bagheri, R.; Marouf, B.T.; Pearson, R.A. Rubber-toughened epoxies: A critical review. J. Macromol. Sci. Part C Polym. Rev. 2009, 49, 201–225. [Google Scholar] [CrossRef]
- De Santis, S.; Carozzi, F.G.; de Felice, G.; Poggi, C. Test methods for textile reinforced mortar systems. Compos. Part B Eng. 2017, 127, 121–132. [Google Scholar] [CrossRef]
Aggregate Coarse | ||||||
---|---|---|---|---|---|---|
Material | Cement CEM I (42.5R) | Natural Sand | Crushed Sand | Medium | Large | Water |
quantity (kgr/m3) | 310 | 621 | 351 | 236 | 638 | 191 |
Type | Density ρ [kg/L] | Tensile | E-Modulus | Tensile Strain ε (EAB) [%] |
---|---|---|---|---|
Strength σu [MPa] | (0.05–0.25%) [GPa] | |||
Prefabricated plates | 1.6 | 3100 | 170 | 1.8 |
Carbodur S | ||||
Fabrics | 1.8 | 4900 | 230 | 1.7 |
SikaWrap | ||||
NSM bars | 1.6 | 3100 | 170 | 1.8 |
Sika® CarboDur® S |
Type | Density ρ [kg/L] | Tensile Strength σu [MPa] | E-Modulus (0.05–0.25%) [MPa] | Tensile Strain ε (EAB) [%] |
---|---|---|---|---|
Sikadur®-30 | ~2 | 26 | 9500 | 0.3 |
Sikadur®-330 | ~1.4 | 29 | 4000 | 1 |
Sikadur®-370 | ~1.7 | 30 | 5000 | 2.5 |
Healthy Substrate | With Corroded Products | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
τtrans | τu | γtrans | γu | E | τtrans | τu | γtrans | γu | E | |||
(MPa) | (MPa) | (%) | (%) | (MJ/m3) | (MPa) | (MPa) | (%) | (%) | (MJ/m3) | |||
Laminated sheets | Hl330_1 | 1.25 | 1.48 | 0.72 | 1.33 | 1.56 | Cr330_1 | 0.94 | 1.11 | 0.47 | 1.73 | 1.59 |
Hl330_2 | 1.28 | 1.38 | 0.57 | 1.46 | 1.76 | Cr330_2 | 0.99 | 1.2 | 0.32 | 0.6 | 0.51 | |
Hl330_3 | 0.82 | 1.37 | 0.6 | 0.91 | 0.84 | Cr330_3 | 0.83 | 1.09 | 0.12 | 0.47 | 0.39 | |
mean 330 | 1.12 | 1.41 | 0.63 | 1.23 | 1.39 | average 330 | 0.92 | 1.13 | 0.3 | 0.93 | 0.83 | |
Hl370_1 | 1.97 | 3.58 | 0.2 | 0.67 | 1.7 | Cr370_1 | 0.95 | 1.8 | 0.09 | 0.22 | 0.26 | |
Hl370_2 | 1.8 | 3.57 | 0.12 | 0.63 | 1.59 | Cr370_2 | 1.3 | 2.2 | 0.14 | 0.25 | 0.37 | |
Hl370_3 | 1.94 | 3.56 | 0.07 | 0.65 | 1.73 | Cr370_3 | 1.2 | 2.1 | 0.18 | 0.28 | 0.38 | |
mean 370 | 1.9 | 3.57 | 0.17 | 0.65 | 1.63 | average 370 | 1.15 | 2.03 | 0.14 | 0.25 | 0.34 | |
abs error 370-330 | 41% | 61% | 263% | 90% | 15% | abs error 370-330 | 20% | 44% | 122% | 273% | 147% | |
Prefabricated plates | Hl30_1 | 1.50 | 2.55 | 0.11 | 0.73 | 1.42 | Cr30_1 | - | 3.00 | - | 0.13 | 0.20 |
Hl30_2 | 1.92 | 2.38 | 0.11 | 0.14 | 0.28 | Cr30_2 | - | 2.50 | - | 0.19 | 0.24 | |
Hl30_3 | 1.80 | 3.52 | 0.11 | 0.60 | 1.50 | Cr30_3 | - | 2.10 | - | 0.05 | 0.05 | |
mean 30 | 1.74 | 2.82 | 0.11 | 0.49 | 1.06 | average 30 | - | 2.53 | - | 0.12 | 0.15 | |
Hl370_1 | - | 3.50 | - | 0.09 | 0.16 | Cr370_1 | - | 3.05 | - | 0.12 | 0.18 | |
Hl370_2 | - | 3.17 | - | 0.11 | 0.17 | Cr370_2 | - | 2.90 | - | 0.21 | 0.30 | |
Hl370_3 | - | 2.80 | - | 0.12 | 0.17 | Cr370_3 | - | 3.35 | - | 0.14 | 0.24 | |
mean 370 | - | 3.16 | - | 0.11 | 0.17 | average 370 | - | 3.10 | - | 0.16 | 0.25 | |
abs error 370-30 | - | 0.10 | - | 0.75 | 0.84 | abs error 370-30 | - | 0.02 | - | 0.47 | 0.40 | |
NSM bars | Hl30_1 | 12.10 | 12.05 | 0.06 | 0.21 | 1.85 | Cr30_1 | 12.32 | 9.25 | 0.06 | 0.25 | 1.96 |
Hl30_2 | 9.23 | 10.91 | 0.05 | 0.27 | 2.64 | Cr30_2 | 7.99 | 8.47 | 0.04 | 0.15 | 0.94 | |
Hl30_3 | 10.07 | 10.02 | 0.08 | 0.26 | 2.04 | Cr30_3 | ||||||
mean 30 | 7.85 | 9.20 | 0.08 | 0.22 | 2.18 | mean 30 | 9.85 | 8.0 | 0.05 | 0.20 | 1.45 | |
Hl330_1 | 12.36 | 9.29 | 0.04 | 0.08 | 0.70 | Cr330_1 | 10.38 | 10.10 | 0.05 | 0.16 | 1.36 | |
Hl330_2 | 13.10 | 9.80 | 0.05 | 0.09 | 0.62 | Cr330_2 | 10.15 | 10.25 | 0.04 | 0.17 | 1.38 | |
Hl330_3 | 9.28 | 7.76 | 0.05 | 0.11 | 0.57 | Cr330_3 | 6.85 | 10.10 | 0.06 | 0.21 | 1.61 | |
mean 330 | 9.1 | 6.9 | 0.04 | 0.08 | 0.63 | mean 330 | 10.05 | 10.95 | 0.08 | 0.18 | 1.45 | |
Hl370_1 | 12.34 | 9.20 | 0.04 | 0.25 | 1.92 | Cr370_1 | 13.13 | 9.38 | 0.07 | 0.25 | 1.99 | |
Hl370_2 | 8.06 | 9.83 | 0.03 | 0.27 | 2.12 | Cr370_2 | 11.22 | 8.91 | 0.06 | 0.15 | 1.05 | |
Hl370_3 | 6.69 | 9.05 | 0.03 | 0.20 | 1.41 | Cr370_3 | 7.29 | 9.86 | 0.06 | 0.27 | 1.94 | |
mean 370 | 7.95 | 7.85 | 0.05 | 0.25 | 1.81 | mean 370 | 7.85 | 7.75 | 0.07 | 0.15 | 1.66 | |
abs error 370-30 | 0.013 | 0.15 | 0.50 | 0.12 | 0.17 | abs error 370-30 | 0.2 | 0.031 | 0.29 | 0.25 | 0.13 | |
abs error 370-330 | 0.13 | 0.12 | 0.2 | 0.68 | 0.65 | abs error 370-330 | 0.22 | 0.29 | 0.13 | 0.17 | 0.13 |
Healthy | Corroded | ||||||||
---|---|---|---|---|---|---|---|---|---|
ICL | ICfp | IC | E (MJ/m3) | ICL | ICfp | IC | E (MJ/m3) | ||
Laminated | Sikadur® 330 | 0.43 | 0.02 | 0.44 | 1.39 | 0.34 | 0.02 | 0.36 | 0.83 |
sheets | Sikadur® 370 | 0.42 | 0.02 | 0.44 | 1.63 | 0.34 | 0.02 | 0.36 | 0.34 |
Prefabricated | Sikadur® 30 | 1.78 | 0.08 | 1.86 | 1.06 | 1 | 0.05 | 1.48 | 0.15 |
plates | Sikadur® 370 | 1.66 | 0.04 | 1.70 | 0.17 | 1.32 | 0.03 | 1.35 | 0.25 |
NSM | Sikadur® 30 | 1.93 | 0.07 | 2.00 | 2.18 | 1.55 | 0.00 | 1.55 | 1.45 |
bars | Sikadur® 330 | 1.83 | 0.03 | 1.86 | 0.63 | 1.46 | 0.00 | 1.47 | 1.45 |
Sikadur® 370 | 1.80 | 0.04 | 1.84 | 1.81 | 1.44 | 0.00 | 1.44 | 1.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achillopoulou, D.V.; Kosta, A.; Stamataki, N.K.; Montalbano, A.; Choffat, F. Efficiency of CFRP Strengthening Measures for Reinforced Concrete Structural Members Using Toughened Epoxies. Constr. Mater. 2024, 4, 173-193. https://doi.org/10.3390/constrmater4010010
Achillopoulou DV, Kosta A, Stamataki NK, Montalbano A, Choffat F. Efficiency of CFRP Strengthening Measures for Reinforced Concrete Structural Members Using Toughened Epoxies. Construction Materials. 2024; 4(1):173-193. https://doi.org/10.3390/constrmater4010010
Chicago/Turabian StyleAchillopoulou, Dimitra V., Angeliki Kosta, Nikoleta K. Stamataki, Antonino Montalbano, and Fabien Choffat. 2024. "Efficiency of CFRP Strengthening Measures for Reinforced Concrete Structural Members Using Toughened Epoxies" Construction Materials 4, no. 1: 173-193. https://doi.org/10.3390/constrmater4010010
APA StyleAchillopoulou, D. V., Kosta, A., Stamataki, N. K., Montalbano, A., & Choffat, F. (2024). Efficiency of CFRP Strengthening Measures for Reinforced Concrete Structural Members Using Toughened Epoxies. Construction Materials, 4(1), 173-193. https://doi.org/10.3390/constrmater4010010