Influence of the Addition of Carbon Fibres on Gypsum–PCM Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- -
- A material composed of conventional commercial gypsum (calcium sulphate hemihydrate, CaSO4.1/2H2O, brand Goldband from manufacturer Knauf), called “Plaster”;
- -
- A material made from the combination of gypsum and 20 wt.% PCM, called “Plaster + PCM”;
- -
- The effect of adding long carbon fibres was studied with a material made from the combination of gypsum, 20 wt.% PCM, and 2 wt.% long carbon fibre (3 mm length), called “Plaster + PCM + 2%-3 mm”;
- -
- In order to study the influence of the length and amount of carbon fibre, compositions were prepared with short carbon fibres (150 μm length) and with either 0.5, 2, or 4 wt.% carbon fibre; these materials are called “Plaster + PCM + 0.5%-150 μ”, “Plaster + PCM + 2%-150 μ”, and “Plaster + PCM + 4%-150 μ”.
2.2. Characterizations
2.2.1. Consistency
2.2.2. Setting Time
2.2.3. Density of Fresh Mortar
2.2.4. Shrinkage
2.2.5. Mechanical Tests
2.2.6. SEM Measurements
2.2.7. Thermal Conductivity
2.2.8. Climate Chamber Tests
3. Results and Discussion
3.1. Preparation and Characterization of Fresh Mixtures
3.2. Shrinkage and Density
3.3. Thermal Behaviour
3.3.1. Thermal Conductivities
Origin of the Data | Materials | Thermal Conductivity (W/(m.K)) | Heat Capacity (J/(kg.K)) |
---|---|---|---|
Literature (adapted from cited references) | Conventional gypsum | ~0.220 (ref. [14]) | ~1000 (ref. [14]) |
PCM Microspheres | 0.200–0.300 (ref. [34]) | ~2000 (ref. [37]) | |
Carbon fibre | 5–10 (ref. [17,36,38]) | ~700 (ref. [35]) | |
Experimental | Plaster | 0.226 | / |
Plaster + PCM | 0.208 | / | |
Plaster + PCM + 2%-3 mm | 0.225 | / | |
Plaster + PCM + 0.5%-150μ | 0.224 | / | |
Plaster + PCM + 2%-150μ | 0.230 | / | |
Plaster + PCM + 4%-150μ | 0.233 | / |
3.3.2. Thermal Performances
- Cyclic tests
- ○
- Cycle: cool nights–hot days
- ○
- Cycle: temperate nights–hot days
- Plateau at T = 40 °C
4. Comparison with a Large-Scale Study
- -
- While the surface-to-volume ratio of the laboratory study was 25 times higher than for the large-scale study, the performance of the PCM only increased 2.6 times. Further studies should be conducted to determine whether this observation is still accurate for a significantly larger volume and what would happen if convective movements and/or air renewals were present.
- -
- For both systems, the main impact of the PCM was to regulate the temperature of the plaster. The regulation of the air temperature was negligible. In the case of the laboratory study, the thermal energy of the air represents only 0.4% of the total thermal energy absorbed by the PCM, and for the large-scale study, it represents only 15.4%. This observation is essential in the field of natural cooling with PCM materials. On one hand, it is possible to say that the large amount of energy required to cool gypsum plaster prevents effective air cooling. However, since gypsum plaster was cooled by the PCM microspheres, their addition could help to maintain thermal inertia in case of air renewal inside the room. In order to set apart these influences and obtain a better understanding of the whole mechanism of cooling of the PCM, further simulations as well as experimental tests should be carried out.
- -
- The total thermal energies absorbed by the PCM in kJ/kg are much lower than what can be observed in strictly theoretical studies. In the present study, they are around 10 kJ/kg and were about 3.8 kJ/kg in the large-scale study. In contrast, in the modelling of Oliver et al. [14], 15 mm thick plasterboard with 44 wt.% PCM reached a thermal energy storage of 35 kJ/kg. Since the tests in this study were performed under dynamic conditions, the thermal inertia of the glass tile in the laboratory and the brick walls in the large-scale study could be a reason for such large differences between theoretical and experimental values.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Drissi, S.; Ling, T.C.; Mo, K.H.; Eddhahak, A. A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials. Renew. Sustain. Energy Rev. 2019, 110, 467–484. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Pisello, A.L.; Fabiani, C.; Ubertini, F.; Cabeza, L.F.; Cotana, F. Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Appl. Energy 2018, 212, 1448–1461. [Google Scholar] [CrossRef]
- Cunha, S.; Sarcinella, A.; Aguiar, J.; Frigione, M. Perspective on the Development of Energy Storage Technology Using Phase Change Materials in the Construction Industry: A Review. Energies 2023, 16, 4806. [Google Scholar] [CrossRef]
- Saffari, M.; De Gracia, A.; Fernández, C.; Zsembinszki, G.; Cabeza, L.F. Study on the optimum PCM melting temperature for energy savings in residential buildings worldwide. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012113. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Zhang, G.H. Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications. Renew. Sustain. Energy Rev. 2011, 15, 3813–3832. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K.; Akiyama, T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1373–1391. [Google Scholar] [CrossRef]
- Claude, V.; Charron, S.; de Barquin, F.; Dirkx, I. Microencapsulated Phase Changing Materials for Gypsum Plasters: A Practical Approach. Constr. Mater. 2021, 1, 188–202. [Google Scholar] [CrossRef]
- Lachheb, M.; Younsi, Z.; Naji, H.; Karkri, M.; Nasrallah, S.B. Thermal behavior of a hybrid PCM/plaster: A numerical and experimental investigation. Appl. Therm. Eng. 2017, 111, 49–59. [Google Scholar] [CrossRef]
- DeBarquin, F.; Flamant, G. Des enduits pour une climatisation douce ? CSTC Contact 2010, 27, 11–12. [Google Scholar]
- Klubal, T.; Ostrý, M.; Brzoň, R. Application of phase change materials to reduce the risk of overheating of building interior. Adv. Mater. Res. 2014, 899, 479–483. [Google Scholar] [CrossRef]
- Ostry, M.; Charvat, P. Materials for advanced heat storage in buildings. Procedia Eng. 2013, 57, 837–843. [Google Scholar] [CrossRef]
- Borreguero, A.M.; Garrido, I.; Valverde, J.L.; Rodríguez, J.F.; Carmona, M. Development of smart gypsum composites by incorporating thermoregulating microcapsules. Energy Build. 2014, 76, 631–639. [Google Scholar] [CrossRef]
- BASF. BASF Report; BASF: Ludwigshafen, Germany, 2007. [Google Scholar]
- Oliver, A. Thermal characterization of gypsum boards with PCM included: Thermal energy storage in buildings through latent heat. Energy Build. 2012, 48, 1–7. [Google Scholar] [CrossRef]
- Zhou, T.; Darkwa, J.; Kokogiannakis, G. Thermal evaluation of laminated composite phase change material gypsum board under dynamic conditions. Renew. Energy 2015, 78, 448–456. [Google Scholar] [CrossRef]
- Cui, H.; Liao, W.; Mi, X.; Lo, T.Y.; Chen, D. Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials. Energy Build. 2015, 105, 273–284. [Google Scholar] [CrossRef]
- Tavman, I.H. Preparation and Characterization of Conductive Polymer Nanocomposites Based on Ethylene–Vinylacetate Copolymer (EVA) Reinforced with Expanded and Unexpanded Graphite. Adv. Mater. Res. 2015, 1114, 92–99. [Google Scholar] [CrossRef]
- Newcomb, B.A. Processing, structure, and properties of carbon fibers. Compos. Part A. Appl. Sci. Manuf. 2016, 91, 262–282. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, Y.; Jin, X.; Lo, T.Y.; Cui, H. Thermal and Mechanical Properties of Expanded Graphite/Paraffin Gypsum-Based Composite Material Reinforced by Carbon Fiber. Materials 2018, 11, 2205. [Google Scholar] [CrossRef]
- Zhang, B.; Yang, H.; Xu, T.; Tang, W.; Cui, H. Mechanical and thermo-physical performances of gypsum-based pcm composite materials reinforced with carbon fiber. Appl. Sci. 2021, 11, 468. [Google Scholar] [CrossRef]
- Pettit Moussally, S.; Le Bacle, C.; Vincent, R.; Guimon, M.; Roos, F. Fibres de carbone et graphite, Fiche INRS. Doc. Pour Le Médecin Du Trav. 2002, 92, 353–368. [Google Scholar]
- Khizhnyak, P.E.; Chechetkin, A.V.; Glybin, A. Thermal conductivity of carbon black. Inzhenerno-Fiz. Zhurnal 1980, 37, 1073–1075. [Google Scholar] [CrossRef]
- Guglhoer, T.; Korkisch, M.; Sause, M.G.R. Influence of carbon fibres on the crystallinity of polyamide-6. In Proceedings of the 20th International Conference on Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Toppi, T.; Mazzarella, L. Gypsum based composite materials with micro-encapsulated PCM: Experimental correlations for thermal properties estimation on the basis of the composition. Energy Build. 2013, 57, 227–236. [Google Scholar] [CrossRef]
- Collepardi, M. Scienza e Tecnologia del Calcestruzzo; U. Hoepli: Milano, Italy, 1987. [Google Scholar]
- EN 13279-2; Gypsum Binders and Gypsum Plasters—Part 2: Test Methods. iTeh: Etobicoke, ON, Canada, 2014.
- EN 1015-6; Methods of test for mortar for masonry—Part 6: Determination of Bulk Density of Fresh Mortar. iTeh: Etobicoke, ON, Canada, 1998.
- ETAG 004; Guideline for European Technical Approval of External Thermal Insulation Composite Systems with Rendering. EOTA: Brussels, Belgium, 2000.
- EN 13872-1; Method of Test for Smoothing and/or Levelling Compounds—Determination of Shrinkage. European Standards: Pilsen, Czech Republic, 2004.
- NBN EN 1946-3; Thermal Performance of Building Products and Components—Specific Criteria for the Assessment of Laboratories Measuring Heat Transfer Properties—Part 3: Measurements by Heat Flow Meter Method. iTeh: Etobicoke, ON, Canada, 1999.
- EN 12667; Thermal Performance of Building Materials and Products—Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods—Products of High and Medium Thermal Resistance. iTeh: Etobicoke, ON, Canada, 2001.
- Raja, M.A.; Sophia, M. Influence of Expansive Agent on the Dimensional Stability and Mechanical Properties of Gypsum Plaster. Int. J. Recent. Technol. Eng. 2019, 8, 928–931. [Google Scholar] [CrossRef]
- Bajare, D.; Kazjonovs, J.; Korjakins, A. The thermal characteristics of gypsum boards with phase change materials (PCM). Vide Tehnol. Resur. Environ. Technol. Resour. 2011, 2, 132–138. [Google Scholar] [CrossRef]
- Bajare, D.; Kazjonovs, J.; Korjakins, A. Development of latent heat storage phase change material containing plaster. Medziagotyra 2016, 22, 94–97. [Google Scholar] [CrossRef]
- SGL Properties. Available online: https://www.sglcarbon.com/en/markets-solutions/material/sigrafil-short-carbon-fibers/ (accessed on 19 October 2023).
- Krause, B.; Rzeczkowski, P.; Pötschke, P. Thermal conductivity and electrical resistivity of melt-mixed polypropylene composites containing mixtures of carbon-based fillers. Polymers 2019, 11, 1073. [Google Scholar] [CrossRef] [PubMed]
- MikroCapsPCM25-S50 Technical Data; MikroCaps: Ljubljana, Slovenia, 2019.
- Weber, R.; Freitag, C.; Kononenko, T.V.; Hafner, M.; Onuseit, V.; Berger, P.; Graf, T. Short-pulse Laser Processing of CFRP. Phys. Procedia 2012, 39, 137–146. [Google Scholar] [CrossRef]
- da Cunha, S.R.L.; de Aguiar, J.L.B. Phase change materials and energy efficiency of buildings: A review of knowledge. J. Energy Storage 2020, 27, 101083. [Google Scholar] [CrossRef]
- Larnicol, M. 2014 Confort Thermique: Un Avenir Pour les Matériaux à Changement de Phase? Available online: https://fdocuments.fr/document/confort-thermique-un-avenir-pour-les-materiaux-a-changement-de-phase-par-maiwenn-larnicol-liege-creative-241014.html (accessed on 19 October 2023).
Designation of the Test | Test Settings |
---|---|
“Cycles cool nights/hot days” | 4 cycles, each consisting of 4 steps:
|
“Cycles temperate nights/hot days” | 4 cycles, each consisting of 4 steps:
|
“Plateau at T = 40 °C” | Sudden increase from 15 to 40 °C in 1 h (0.4 °C/min);
|
Sample Name | Plaster (g) | Water (g) | Dispersion of Water-Based PCM (g) | Fibre (g) | V Additive (mL) | Consistency (mm) | Setting Time (min) | Density of Fresh Mixture (g/L) | |
---|---|---|---|---|---|---|---|---|---|
Initial (22 mm) | Final (40 mm) | ||||||||
Plaster | 100 | 62 | - | - | - | 165 | 102 | 200 | 1305 |
Plaster + PCM (test) (Orientation test without additive) | 80 | 38 | 46.5 | - | - | 100 | - | - | - |
Plaster + PCM | 80 | 38 | 46.5 | - | 0.9 | 165 | 115 | 380 | 1283 |
Plaster + PCM + 2%-3 mm (test) (Orientation test with 0.9 mL of additive) | 78 | 38 | 46.5 | 2 | 0.9 | 113 | <60 | 110 | - |
Plaster + PCM + 2%-3 mm | 78 | 38 | 46.5 | 2 | 3.25 | 161 | 390 | 460 | 1250 |
Plaster + PCM + 0.5%-150 μ | 79.5 | 38 | 46.5 | 0.5 | 2.5 | 174 | 195 | 510 | 1324 |
Plaster + PCM + 2%-150 μ | 78 | 38 | 46.5 | 2 | 2.5 | 177 | 185 | 360 | 1241 |
Plaster + PCM + 4%-150 μ | 76 | 38 | 46.5 | 4 | 2.5 | 159 | 165 | 320 | 1218 |
Materials | Bulk Density (kg/m3) | Flexural Strength (N/m2) | Compressive Strength (N/m2) |
---|---|---|---|
Plaster | 978 | 2.17 | 3.42 |
Plaster + PCM | 1023 | 1.79 | 1.62 |
Plaster + PCM (theoretical value) | 842 1 | / | / |
Plaster + PCM + 2%-3 mm | 1041 | 5.38 | 3.26 |
Plaster + PCM + 0.5%-150 μ | 977 | 1.68 | 1.42 |
Plaster + PCM + 2%-150 μ | 1023 | 2.21 | 1.92 |
Plaster + PCM + 4%-150 μ | 957 | 1.69 | 1.53 |
Type of Test | Thickness | Plaster | Plaster + PCM | Plaster + PCM + 2%F-3 mm | Plaster + PCM + 0.5%F-150 μ | Plaster + PCM + 2%F-150 μ | Plaster + PCM + 4%F-150 μ | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmax | Tmax | Improvement (%) | Tmax | Improvement (%) | Tmax | Improvement (%) | Tmax | Improvement (%) | Tmax | Improvement (%) | ||
15–40 °C | 15 mm | 39.4 | 32.9 | 16 | 34.8 | 12 | 35.1 | 11 | 35.2 | 11 | 35.1 | 11 |
30 mm | 36.1 | 28.3 | 22 | / | / | 29.6 | 18 | 29.9 | 17 | 30.1 | 17 | |
20–40 °C | 15 mm | 39.5 | 37.2 | 6 | 37.8 | 4 | 37.8 | 4 | 37.8 | 4 | 38.0 | 4 |
30 mm | 38.2 | 35.3 | 8 | / | / | 36.0 | 6 | 35.6 | 7 | 36.2 | 5 |
Thickness | Plaster | Plaster + PCM | Plaster + PCM + 2%F-3 mm | Plaster + PCM + 0.5%F-150 μ | Plaster + PCM + 2%F-150 μ | Plaster + PCM + 4%F-150 μ | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tmax | Tmax | Improvement (%) | Phase Shift (min) | Tmax | Improvement (%) | Phase Shift (min) | Tmax | Improvement (%) | Phase Shift (min) | Tmax | Improvement (%) | Phase Shift (min) | Tmax | Improvement (%) | Phase Shift (min) | |
15 mm | 39.9 | 37.5 | 6 | 385 | 37.6 | 6 | 365 | 38.0 | 5 | 320 | 38.2 | 4 | 320 | 38.3 | 4 | 330 |
30 mm | 38.5 | 31.0 | 20 | 495 | / | 30.9 | 20 | 490 | 31.0 | 19 | 450 | 33.4 | 13 | 375 |
Properties | Laboratory Study | Large-Scale Study |
---|---|---|
Amount of PCM (kg) | 0.6 | 71.6 |
Amount of gypsum (kg) | 2.4 | 167.1 |
Room volume (m3) | 0.008 | 27 |
Wall area (m2) | 0.2 | 27 |
Ratio wall area/volume (m−1) | 25 | 1 |
Maximum indoor air difference temperature, ΔT (°C) | 2.30 | 1.28 |
Thermal energy of the air absorbed by PCM, QAir = mAir. CpAir.ΔT (Joules) | 23 | 42,505 |
Thermal energy of the plaster absorbed by PCM, QPlaster = mPlaster.CpPlaster.ΔT (Joules) | 6006 | 232,710 |
Total thermal energy absorbed by PCM, QTotal = QPlaster + QAir (Joules) | 6029 | 275,215 |
Total thermal energy absorbed by PCM per 1 kg of PCM (Joules/kg) | 10,047 | 3844 |
Efficacy ratio between the laboratory study and the large-scale study | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Claude, V.; Charron, S.; Hustin, S.; de Barquin, F. Influence of the Addition of Carbon Fibres on Gypsum–PCM Mixtures. Constr. Mater. 2024, 4, 154-172. https://doi.org/10.3390/constrmater4010009
Claude V, Charron S, Hustin S, de Barquin F. Influence of the Addition of Carbon Fibres on Gypsum–PCM Mixtures. Construction Materials. 2024; 4(1):154-172. https://doi.org/10.3390/constrmater4010009
Chicago/Turabian StyleClaude, Vincent, Stéphane Charron, Sébastien Hustin, and Fabrice de Barquin. 2024. "Influence of the Addition of Carbon Fibres on Gypsum–PCM Mixtures" Construction Materials 4, no. 1: 154-172. https://doi.org/10.3390/constrmater4010009
APA StyleClaude, V., Charron, S., Hustin, S., & de Barquin, F. (2024). Influence of the Addition of Carbon Fibres on Gypsum–PCM Mixtures. Construction Materials, 4(1), 154-172. https://doi.org/10.3390/constrmater4010009