Using Artificial Intelligence to Advance the Research and Development of Orphan Drugs
Abstract
:1. Introduction
2. Overview of Orphan Drug Development and of the Applications of AI in Medical Research
2.1. Definitions
2.2. Regulation EC 141/2000: A Turning Point for Orphan Drug Development within the EU Regulatory Framework
2.3. Artificial Intelligence in Medical Research
3. Decreasing the Barriers of Complexity and Financial Risk: How AI Systems Can Facilitate the Development of a Molecule
3.1. Using AI to Understand the Etiology of Monogenic and Complex Diseases and Drug Repurposing
3.2. Using AI to Design Molecules from Scratch
3.3. Can the Barriers of Complexity and Financial Risk Really Be Decreased by AI?
4. Decreasing the Barriers of Low Trialability and Complexity: How AI Can Facilitate Clinical Trials
4.1. Using AI to Recruit Patients
4.2. Using AI to Ensure a Smooth Run of the Clinical Trial
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguengang Wakap, S.; Lambert, D.M.; Olry, A.; Rodwell, C.; Gueydan, C.; Lanneau, V.; Murphy, D.; Le Cam, Y.; Rath, A. Estimating Cumulative Point Prevalence of Rare Diseases: Analysis of the Orphanet Database. Eur. J. Hum. Genet. 2020, 28, 165–173. [Google Scholar] [CrossRef] [PubMed]
- DGOS. Les Maladies Rares; Ministère de la Santé et de la Prévention: Paris, France, 2023. [Google Scholar]
- Ferreira, C.R. The Burden of Rare Diseases. Am. J. Med. Genet. Part A 2019, 179, 885–892. [Google Scholar] [CrossRef] [PubMed]
- National Organization for Rare Disorders. Orphan Drugs in the United States: An Examination of Patents and Orphan Drug Exclusivity; National Organization for Rare Disorders: Danbury, CT, USA, 2021. [Google Scholar]
- European Medicine Agency. Annual Report on the Use of the Special Contribution for Orphan Medicinal Products; EMA: London, UK, 2023.
- Moors, E.H.M.; Faber, J. Orphan Drugs: Unmet Societal Need for Non-Profitable Privately Supplied New Products; Elsevier: Amsterdam, The Netherlands, 2007; Volume 19. [Google Scholar]
- Althobaiti, H.; Seoane-Vazquez, E.; Brown, L.M.; Fleming, M.L.; Rodriguez-Monguio, R. Disentangling the Cost of Orphan Drugs Marketed in the United States. Healthcare 2023, 11, 558. [Google Scholar] [CrossRef]
- Nuijten, M.; Capri, S. Valuation of Medical Innovation Handling with Uncertainty and Risk. J. Mark. Access Health Policy 2024, 12, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Douglas, C.M.W.; Aith, F.; Boon, W.; de Neiva Borba, M.; Doganova, L.; Grunebaum, S.; Hagendijk, R.; Lynd, L.; Mallard, A.; Mohamed, F.A.; et al. Social Pharmaceutical Innovation and Alternative Forms of Research, Development and Deployment for Drugs for Rare Diseases. Orphanet J. Rare Dis. 2022, 17, 344. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, B.M.; Eichinger, J.; Baumgartner, M.R. A Systematic Review of Moral Reasons on Orphan Drug Reimbursement. Orphanet J. Rare Dis. 2021, 16, 292. [Google Scholar] [CrossRef]
- Belousova, O.A.; Groen, A.J.; Ouendag, A.M. Opportunities and Barriers for Innovation and Entrepreneurship in Orphan Drug Development. Technol. Forecast. Soc. Change 2020, 161, 120333. [Google Scholar] [CrossRef]
- Wang, F.; Preininger, A. AI in Health: State of the Art, Challenges, and Future Directions. Yearb. Med. Inform. 2019, 28, 16–26. [Google Scholar] [CrossRef]
- Yao, X.; Rushlow, D.R.; Inselman, J.W.; McCoy, R.G.; Thacher, T.D.; Behnken, E.M.; Bernard, M.E.; Rosas, S.L.; Akfaly, A.; Misra, A.; et al. Artificial Intelligence–Enabled Electrocardiograms for Identification of Patients with Low Ejection Fraction: A Pragmatic, Randomized Clinical Trial. Nat. Med. 2021, 27, 815–819. [Google Scholar] [CrossRef]
- European Parliament. Regulation 141/2000 Regulation (EU) No 141/2000 of the European Parliament and of the Council of the 16 December 1999 on Orphan Medicinal Products; European Parliament: Strasbourg, France, 1999.
- Bell, S.A.; Tudur Smith, C. A Comparison of Interventional Clinical Trials in Rare versus Non-Rare Diseases: An Analysis of ClinicalTrials.Gov. Orphanet J. Rare Dis. 2014, 9, 170. [Google Scholar] [CrossRef]
- Wästfelt, M.; Fadeel, B.; Henter, J.-I. A Journey of Hope: Lessons Learned from Studies on Rare Diseases and Orphan Drugs. J. Intern. Med. 2006, 260, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Aymé, S. État de La R&D Dans Les Maladies Rares, 10 Ans Après Le Règlement Européen Du Médicament Orphelin. Presse Méd. 2010, 39, 5–7. [Google Scholar] [CrossRef]
- Sprecher, F. Orphan Drugs and Paediatric Medicinal Products. Pharm. Policy Law 2013, 15, 173–194. [Google Scholar] [CrossRef]
- Maresova, P.; Klimova, B.; Kuca, K. Financial and Legislative Aspects of Drug Development of Orphan Diseases on the European Market—A Systematic Review. Appl. Econ. 2016, 48, 2562–2570. [Google Scholar] [CrossRef]
- Roche. What Is a Clinical Trial and How Does It Work? Available online: https://www.roche.com/innovation/process/clinical-trials/about (accessed on 13 March 2023).
- Microsoft Azure. What Is Machine Learning? Available online: https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-machine-learning-platform (accessed on 13 March 2023).
- Maresova, P.; Klimova, B.; Kuca, K. Legislation, Regulation and Policies Issues of Orphan Drugs in Developed Countries from 2010 to 2016. J. Appl. Biomed. 2018, 16, 175–179. [Google Scholar] [CrossRef]
- Rodwell, C.; Aymé, S. Rare Disease Policies to Improve Care for Patients in Europe. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2015, 1852, 2329–2335. [Google Scholar] [CrossRef]
- Regulation 726/2004 Regulation (EU) No 726/2004 of the European Parliament and of the Council Laying Down Community Pro-Cedures for the Authorisation and Supervision of Medicinal Products for Human and Veterinary Use and Establishing a European Medicines Agency; European Parliament: Strasbourg, France, 2004.
- Sanofi. Sanofi Invests $180 Million Equity in Owkin’s Artificial Intelligence and Federated Learning to Advance Oncology Pipeline; Sanofi: Paris, France, 2021. [Google Scholar]
- Atomwise. Atomwise Announces Multi-Year, Multi-Target Agreement with Lilly for AI- Driven Drug Discovery Program; Atomwise: San Francisco, CA, USA, 2019. [Google Scholar]
- Gulshan, V.; Peng, L.; Coram, M.; Stumpe, M.C.; Wu, D.; Narayanaswamy, A.; Venugopalan, S.; Widner, K.; Madams, T.; Cuadros, J.; et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. J. Am. Med. Assoc. 2016, 316, 2402–2410. [Google Scholar] [CrossRef]
- Shu, C. Regard Serves as a “Medical Co-Pilot” for Busy Physicians; TechCrunch: San Francisco, CA, USA, 2022. [Google Scholar]
- Miozza, M.; Brunetta, F.; Appio, F.P. Digital Transformation of the Pharmaceutical Industry: A Future Research Agenda for Management Studies. Technol. Forecast. Soc. Change 2024, 207, 123580. [Google Scholar] [CrossRef]
- Iansiti, M.; Lakhani, K.R.; Mayer, H.; Herman, K. Moderna (A); Harvard Business School: Boston, MA, USA, 2020; Volume 9–621–032. [Google Scholar]
- Moderna COVID-19 Vaccines; FDA: Silver Spring, MD, USA, 2023.
- Chen, Y.; Yang, O.; Sampat, C.; Bhalode, P.; Ramachandran, R.; Ierapetritou, M. Digital Twins in Pharmaceutical and Biopharmaceutical Manufacturing: A Literature Review. Processes 2020, 8, 1088. [Google Scholar] [CrossRef]
- Coito, T.; Martins, M.S.E.; Firme, B.; Figueiredo, J.; Vieira, S.M.; Sousa, J.M.C. Assessing the Impact of Automation in Pharmaceutical Quality Control Labs Using a Digital Twin. J. Manuf. Syst. 2022, 62, 270–285. [Google Scholar] [CrossRef]
- Garza Ramos, A.; Daim, T.; Gaats, L.; Hutmacher, D.W.; Hackenberger, D. Technology Roadmap for the Development of a 3D Cell Culture Workstation for a Biomedical Industry Startup. Technol. Forecast. Soc. Change 2022, 174, 121213. [Google Scholar] [CrossRef]
- Wu, Q.; He, Q. DIY Laboratories and Business Innovation Ecosystems: The Case of Pharmaceutical Industry. Technol. Forecast. Soc. Change 2020, 161, 120336. [Google Scholar] [CrossRef]
- Lee, Y.; Krishnan, A.; Oughtred, R.; Rust, J.; Chang, C.S.; Ryu, J.; Kristensen, V.N.; Dolinski, K.; Theesfeld, C.L.; Troyanskaya, O.G. A Computational Framework for Genome-Wide Characterization of the Human Disease Landscape. Cell Syst. 2019, 8, 152–162. [Google Scholar] [CrossRef]
- BROAD Institute. Connectivity Map (CMAP); Broad Institute: Cambridge, MA, USA, 2015. [Google Scholar]
- Mears, A.J.; Schock, S.C.; Hadwen, J.; Putos, S.; Dyment, D.; Boycott, K.M.; MacKenzie, A. Mining the Transcriptome for Rare Disease Therapies: A Comparison of the Efficiencies of Two Data Mining Approaches and a Targeted Cell-Based Drug Screen. Npj Genom. Med. 2017, 2, 1–8. [Google Scholar] [CrossRef]
- National Human Genome Research Institute. Complex Disease; Genome.Gov: Bethesda, MD, USA, 2022.
- Deep Genomics Therapeutic Approach. Available online: https://www.deepgenomics.com/ (accessed on 2 September 2024).
- Owkin. Discover—Advancing Drug Discovery; OWKIN: New York, NY, USA.
- BioXcel AI Platform—BioXcel Therapeutics Inc. Available online: https://www.bioxceltherapeutics.com/ (accessed on 2 September 2024).
- The Lancet. Neurology Rare Diseases: Maintaining Momentum. Lancet Neurol. 2022, 21, 203. [Google Scholar] [CrossRef] [PubMed]
- Sexton, J. Repurposing Generic Drugs Can Reduce Time and Cost to Develop New Treatments—But Low Profitability Remains a Barrier; The Conversation: Melbourne, Australia, 2022. [Google Scholar]
- Iansiti, M.; Lakhani, K.R. Competing in the Age of AI. Harv. Bus. Rev. 2020, 98, 60–67. [Google Scholar]
- Broom, D. 5 Charts That Tell the Story of Vaccines Today; World Economic Forum: Cologny, Switzerland, 2020. [Google Scholar]
- Merk, D.; Friedrich, L.; Grisoni, F.; Schneider, G. De Novo Design of Bioactive Small Molecules by Artificial Intelligence. Mol. Inform. 2018, 37, 1700153. [Google Scholar] [CrossRef]
- Reeves, M.; Levin, S.; Fink, T.; Levina, A. Taming Complexity. Making Sure the Benefits of Any Addition to an Organizaiton’s Systems Outweight Its Costs. Harv. Bus. Rev. 2020, 113, 1–11. [Google Scholar]
- Jayasundara, K.; Hollis, A.; Krahn, M.; Mamdani, M.; Hoch, J.S.; Grootendorst, P. Estimating the Clinical Cost of Drug Development for Orphan versus Non-Orphan Drugs. Orphanet J. Rare Dis. 2019, 14, 12. [Google Scholar] [CrossRef]
- Harrer, S.; Shah, P.; Antony, B.; Hu, J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol. Sci. 2019, 40, 577–591. [Google Scholar] [CrossRef]
- Ismail, A.; Al-Zoubi, T.; El Naqa, I.; Saeed, H. The Role of Artificial Intelligence in Hastening Time to Recruitment in Clinical Trials. BJR Open 2023, 5, 20220023. [Google Scholar] [CrossRef] [PubMed]
- Geva, A.; Gronsbell, J.L.; Cai, T.; Cai, T.; Murphy, S.N.; Lyons, J.C.; Heinz, M.M.; Natter, M.D.; Patibandla, N.; Bickel, J.; et al. A Computable Phenotype Improves Cohort Ascertainment in a Pediatric Pulmonary Hypertension Registry. J. Pediatr. 2017, 188, 224–231. [Google Scholar] [CrossRef]
- Leventakos, K.; Helgeson, J.; Mansfield, A.; Deering, E.; Schwecke, A.; Adjei, A.; Molina, J.; Hocum, C.; Parikh, K.; Halfdanarson, T.; et al. P1.16-14 Effects of an Artificial Intelligence (AI) System on Clinical Trial Enrollment in Lung Cancer. J. Thorac. Oncol. 2019, 14, S592. [Google Scholar] [CrossRef]
- IQVIA. Patient Recruitment. Available online: https://www.iqvia.com/solutions/research-and-development/clinical-trials/patient-recruitment (accessed on 15 June 2023).
- AiCure. Patient Connect—Remote Patient Monitoring Solution. AiCure. 2023. Available online: https://aicure.com/solutions/patient-connect (accessed on 1 January 2024).
- Labovitz, D.L.; Shafner, L.; Reyes Gil, M.; Virmani, D.; Hanina, A. Using Artificial Intelligence to Reduce the Risk of Nonadherence in Patients on Anticoagulation Therapy. Stroke 2017, 48, 1416–1419. [Google Scholar] [CrossRef]
- Regulation 2016/679 Regulation (EU) No 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation); European Parliament: Strasbourg, France, 2016.
- Murdoch, B. Privacy and Artificial Intelligence: Challenges for Protecting Health Information in a New Era. BMC Med. Ethics 2021, 22, 122. [Google Scholar] [CrossRef]
- McGrath, R.G.; Nerkar, A. Real Options Reasoning and a New Look at the R&d Investment Strategies of Pharmaceutical Firms. Strateg. Manag. J. 2004, 25, 1–21. [Google Scholar] [CrossRef]
- Burger-Helmchen, T. Option Chain and Change Management: A Structural Equation Application. Eur. Manag. J. 2009, 27, 176–186. [Google Scholar] [CrossRef]
- Napolitano, G.; Has, C.; Schwerk, A.; Yuan, J.-H.; Ullrich, C. Potential of Artificial Intelligence to Accelerate Drug Development for Rare Diseases. Pharm. Med. 2024, 38, 79–86. [Google Scholar] [CrossRef]
- Heraud, J.-A.; Kerr, F.; Burger-Helmchen, T. Creative Management of Complex Systems; Wiley-ISTE: Hoboken, NJ, USA, 2019; ISBN 978-1-84821-957-1. [Google Scholar]
- Neukam, M.; Bollinger, S. Encouraging Creative Teams to Integrate a Sustainable Approach to Technology. J. Bus. Res. 2022, 150, 354–364. [Google Scholar] [CrossRef]
- Stefani, U.; Schiavone, F.; Laperche, B.; Burger-Helmchen, T. New Tools and Practices for Financing Novelty: A Research Agenda. Eur. J. Innov. Manag. 2019, 23, 314–328. [Google Scholar] [CrossRef]
- Sinha, M.S.; Stern, A.D.; Rai, A.K. Four Decades of Orphan Drugs and Priorities for the Future. N. Engl. J. Med. 2024, 391, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.; Isgrò, A.; de Montalembert, M.; Leufkens, H.G.M.; Ware, R.E.; De Franceschi, L. Successes and Pitfalls in Orphan Drug Development for Sickle Cell Disease. Blood Adv. 2024, 8, 2455–2465. [Google Scholar] [CrossRef] [PubMed]
- Agyralides, G. The Future of Medicine: An Outline Attempt Using State-of-the-Art Business and Scientific Trends. Front. Med. 2024, 11, 1391727. [Google Scholar] [CrossRef] [PubMed]
Type of AI System Used | Main Outcome | Source |
---|---|---|
Natural Language Processing |
| [12] [28] |
Image Identification | Identification of diabetic retinopathy | [27] |
Machine Learning |
| [12] [30] |
Predictive Maintenance |
| [29] |
Process Visualization and Simulation |
| [32,33] |
Research and Development (R&D) |
| [34,35] |
Design Themes | Cohort Composition/Patient Recruitment | Patient Monitoring | |||||||
---|---|---|---|---|---|---|---|---|---|
Features | Suitability | Eligibility | Empowerment | Motivation | Adherence | Endpoint Detection | Retention | ||
Methodology | Clinical trial enrichment Biomarker verification | Clinical trial matching | Automatic event logging | Drop-out risk forecast and intervention | |||||
Functionality | Reduced population heterogeneity | Prognostic enrichment | Predictive enrichment | Automatic eligibility assessment | Simplification of trial description | Automatic trial recommendation | Disease diary Disease episodes, Medification administration, Health monitoring | Study protocol diary Medication administration, Record-keeping | Patient coaching Proactive intervention to prevent Drop-out |
Al techniques | Machine learning/Deep leaning Reasoning | Machine learning/Deep leaning Reasoning Human-machine interfaces | Machine learning/Deep leaning Human-machine interfaces | Machine learning/Deep leaning Reasoning Human-machine interfaces | |||||
Data | EMR Omics Medical literature Clinical domain knowledge | Clinical trial databases Trial announcements Medical literature Eligibility databases Social media EMR | Internet of Things and wearables Speech Video | ||||||
Outcomes | Optimized cohort composition ++ More effective trial planning and faster launch + Maximized chances for successful outcome ++ Faster and less expensive trials + | Optimized cohort composition ++ More effective trial planning and faster launch ++ Maximized chances for successful outcome + Faster and less expensive trials ++ | Maximized chances for successful outcome + Faster and less expensive trials ++ | Maximized chances for successful outcome + Faster and less expensive trials ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irissarry, C.; Burger-Helmchen, T. Using Artificial Intelligence to Advance the Research and Development of Orphan Drugs. Businesses 2024, 4, 453-472. https://doi.org/10.3390/businesses4030028
Irissarry C, Burger-Helmchen T. Using Artificial Intelligence to Advance the Research and Development of Orphan Drugs. Businesses. 2024; 4(3):453-472. https://doi.org/10.3390/businesses4030028
Chicago/Turabian StyleIrissarry, Carla, and Thierry Burger-Helmchen. 2024. "Using Artificial Intelligence to Advance the Research and Development of Orphan Drugs" Businesses 4, no. 3: 453-472. https://doi.org/10.3390/businesses4030028
APA StyleIrissarry, C., & Burger-Helmchen, T. (2024). Using Artificial Intelligence to Advance the Research and Development of Orphan Drugs. Businesses, 4(3), 453-472. https://doi.org/10.3390/businesses4030028