Assessing the Impact of Solar Farms on Waterbirds: A Literature Review of Ecological Interactions and Habitat Alterations
Abstract
:1. Introduction
2. Materials and Methods
- Databases: Google Scholar, Web of Science, Scopus;
- Detailed search terms, including Boolean queries, dates, and databases: Appendix A;
- Listserv inquiries: ECOLOG-L, TWS Wetland Working Group, and Afton Waterfowl;
- Individual communications with green energy, wetlands, and waterfowl scientists from around the world to collect both published and unpublished data;
- Deduplication to determine the total number of papers included in the literature review; and
- From these papers, we further narrowed the results by focusing on papers that referenced solar or photovoltaic and wildlife species. Then, we narrowed these results further by searching for avian or waterfowl-focused papers.
3. Results
4. Discussion
4.1. Environmental Contaminants
4.2. Microclimate
Factor | Effect | References |
---|---|---|
Water and hydrology | Altered soil moisture, humidity, water usage, and runoff patterns | [47,55,56,57] |
Vegetation | Potential to mitigate issues such as altered temperatures and water flow | [53,58] |
Temperature | Potential to create heat islands and alter local area albedo | [49,50,51,52] |
4.3. Land Use
4.4. Wildlife Interactions
Interaction | Effect | Reference |
---|---|---|
Altered movement patterns | Potential for habitat fracturing and altered home ranges | [75,80] |
Mortality | Mortality events due to “lake effect” collisions or solar flux | [67,85,86,87,88,89,90] |
Altered species composition | Changes in both species diversity and functional diversity for regions | [94,96,97,98] |
4.5. Relevance to Wetlands
5. Conclusions
6. Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Search Query Terms and Date of Access
Database | Date | Query | Search String | Results |
Web of Science | 19 August 2024 | Abstract OR Title OR Topic | (“solar farm *” OR “photovoltaic power station *” OR “solar power plant *” OR “solar energy farm *” OR “solar array *” OR “solar field *”) AND (habitat *) AND (impact * OR “change *”) | 50 |
Scopus | 20 August 2024 | Title, Abstract, Keywords | (“solar farm *” OR “photovoltaic power station *” OR “solar power plant *” OR “solar energy farm *” OR “solar array *” OR “solar field *”) AND (habitat *) AND (impact * OR “change *”) | 42 |
Web of Science | 20 August 2024 | Abstract OR Title OR Topic | (“solar farm” OR “solar energy” OR “solar power”) AND (construction OR development) AND (“soil health” OR “soil quality” OR “soil fertility”) AND (“soil erosion” OR “land degradation” OR “soil conservation”) | 5 |
Scopus | 21 August 2024 | Abstract, title, keywords | (“climate change” OR “global warming”) AND (“wildlife” OR “animals” OR “species”) AND (“migration” OR “migratory patterns” OR “seasonal movement”) AND (“mating” OR “reproduction” OR “breeding”) AND (“access to food” OR “food availability” OR “foraging”) AND (“extinction” OR “species decline” OR “population decline”) AND (impact OR effects OR consequences) | 17 |
Scopus | 21 August 2024 | Abstract, title, keywords | (“climate change” OR “global warming”) AND (“wildlife” OR “animals”) AND (“extinction” OR “species extinction” OR “biodiversity loss” OR “species decline”) AND (impact OR effects OR consequences) AND (“terrestrial”) | 200 |
Scopus | 23 August 2024 | Abstract, title, keywords | (“solar farms” OR “solar power”) AND (“migrating waterfowl” OR “migratory birds” OR “ducks”) AND (“impact” OR “effects” OR “influence” OR “displacement” OR “habitat disruption”) | 36 |
Scopus | 26 August 2024 | Abstract, title, keywords | (“solar farm” OR “solar energy installation” OR “photovoltaic farm”) AND (“hydrology” OR “water cycle” OR “water systems” OR “water resources”) AND (“impact” OR “effect” OR “alteration” OR “change” OR “influence”) | 14 |
Web of Science | 26 August 2024 | Topic | (“solar farm” OR “solar energy installation” OR “photovoltaic farm”) AND (“hydrology” OR “water cycle” OR “water resources” OR “watershed”) AND (“impact” OR “effect” OR “alteration” OR “change”) | 13 |
Scopus | 26 August 2024 | Abstract, title, keywords | (“solar farm *” OR “solar park *” OR “photovoltaic power station *” OR “solar power plant *” OR “solar energy farm *” OR “solar array *” OR “solar garden *” OR “solar field *”) AND (waterfowl * OR bird *) | 58 |
Scopus | 3 September 2024 | Abstract, title, keywords | (“soil quality” AND (“native plants” OR “indigenous plants”) AND (growth OR health OR development)) | 38 |
Web of Science | 9 September 2024 | Topic | (“waterfowl”) AND (“ecosystem service *”) | 169 |
Date | Search Term |
14 August 2024 | (“benefit *”) AND (“solar farm *” OR “solar energy farm *” OR “solar array *” OR “solar garden *” OR “solar field *”) AND (“waterfowl” OR “duck”) AND (“habitat”) |
14 August 2024 | (“benefit *”) AND (“solar farm *” OR “photovoltaic power station *” OR “solar power plant *” OR “solar array *” OR “solar garden *” OR “solar field *”) AND (birds OR waterfowl) AND (breeding OR nesting OR hatch survival) |
14 August 2024 | “green energy South Carolina” & “single axis solar versus fixed tilt solar energy production” & “solar farm wildlife disturbance” & “habitat alterations solar farm” |
15 August 2024 | “wildlife habitat structure loss from human activities” & “artificial habitat structures wildlife conservation solar farms” & “solar farm food webs” |
16 August 2024 | “habitat alterations solar farm” & “solar farm vegetative loss” |
17 August 2024 | “wildlife disturbance solar farm” |
19 August 2024 | fixed tilt versus tracking solar panels vegetation impacts |
21 August 2024 | (“solar farms” OR “solar energy” OR “solar power”) AND (“gene flow” OR “genetic diversity” OR “genetic connectivity”) AND (“wildlife” OR “animals” OR “species”) AND (impact OR effects OR influence) |
22 August 2024 | “wildlife habitat structure loss from solar farms” & “wildlife habitat improvement from solar farms” |
4 September 2024 | “solar panel component toxicity” & “waterfowl and solar farms” & “bird window collisions” |
References
- EPA. EPA Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2022; U.S. Environmental Protection Agency: Washington, DC, USA, 2024; p. 125. [Google Scholar]
- Kalogirou, S.A. Environmental Benefits of Domestic Solar Energy Systems. Energy Convers. Manag. 2004, 45, 3075–3092. [Google Scholar] [CrossRef]
- Wiser, R.; Millstein, D.; Mai, T.; Macknick, J.; Carpenter, A.; Cohen, S.; Cole, W.; Frew, B.; Heath, G. The Environmental and Public Health Benefits of Achieving High Penetrations of Solar Energy in the United States. Energy 2016, 113, 472–486. [Google Scholar] [CrossRef]
- Tabassum, S.; Rahman, T.; Islam, A.U.; Rahman, S.; Dipta, D.R.; Roy, S.; Mohammad, N.; Nawar, N.; Hossain, E. Solar Energy in the United States: Development, Challenges and Future Prospects. Energies 2021, 14, 8142. [Google Scholar] [CrossRef]
- U.S. EIA. What Is U.S. Electricity Generation by Energy Source? Available online: https://www.eia.gov/tools/faqs/faq.php (accessed on 16 August 2024).
- USGS. U.S. Solar Phovoltaic Database. Available online: https://eerscmap.usgs.gov/uspvdb/viewer/#3/37.25/-96.25 (accessed on 16 August 2024).
- Haegel, N.M.; Kurtz, S.R. Global Progress toward Renewable Electricity: Tracking the Role of Solar (Version 3). IEEE J. Photovolt. 2023, 13, 768–776. [Google Scholar] [CrossRef]
- U.S. EIA. Solar and Wind to Lead Growth of U.S. Power Generation for the Next Two Years—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/todayinenergy/detail.php?id=61242 (accessed on 16 August 2024).
- Huang, Y.; Li, Y.; Burt, D.W.; Chen, H.; Zhang, Y.; Qian, W.; Kim, H.; Gan, S.; Zhao, Y.; Li, J.; et al. The Duck Genome and Transcriptome Provide Insight into an Avian Influenza Virus Reservoir Species. Nat. Genet. 2013, 45, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Lakhanpal, S. Contesting Renewable Energy in the Global South: A Case-Study of Local Opposition to a Wind Power Project in the Western Ghats of India. Environ. Dev. 2019, 30, 51–60. [Google Scholar] [CrossRef]
- Shan, S.; Genç, S.Y.; Kamran, H.W.; Dinca, G. Role of Green Technology Innovation and Renewable Energy in Carbon Neutrality: A Sustainable Investigation from Turkey. J. Environ. Manag. 2021, 294, 113004. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Ma, Z.; Su, Y.; Shaheen, F.; Khan, H.U.R.; Tahir, L.M.; Sasmoko; Anser, M.K.; Zaman, K. Understanding the Importance of Sustainable Ecological Innovation in Reducing Carbon Emissions: Investigating the Green Energy Demand, Financial Development, Natural Resource Management, Industrialisation and Urbanisation Channels. Econ. Res.-Ekon. Istraživanja 2023, 36, 2137823. [Google Scholar] [CrossRef]
- Yuan, X.; Su, C.-W.; Umar, M.; Shao, X.; Lobonţ, O.-R. The Race to Zero Emissions: Can Renewable Energy Be the Path to Carbon Neutrality? J. Environ. Manag. 2022, 308, 114648. [Google Scholar] [CrossRef]
- Josimović, B.; Manić, B.; Niković, A. Environmental Protection in the Planning of Large Solar Power Plants. Appl. Sci. 2024, 14, 6043. [Google Scholar] [CrossRef]
- Dale, V.H.; Efroymson, R.A.; Kline, K.L. The Land Use–Climate Change–Energy Nexus. Landsc. Ecol. 2011, 26, 755–773. [Google Scholar] [CrossRef]
- Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M.L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; et al. Environmental Impacts of Utility-Scale Solar Energy. Renew. Sustain. Energy Rev. 2014, 29, 766–779. [Google Scholar] [CrossRef]
- Giordono, L.S.; Boudet, H.S.; Karmazina, A.; Taylor, C.L.; Steel, B.S. Opposition “Overblown”? Community Response to Wind Energy Siting in the Western United States1. Energy Res. Soc. Sci. 2018, 43, 119–131. [Google Scholar] [CrossRef]
- Gross, S. Renewables, Land Use, and Local Opposition in the United States. Available online: https://www.agrisolarclearinghouse.org/ (accessed on 15 August 2024).
- Upreti, B.R.; van der Horst, D. National Renewable Energy Policy and Local Opposition in the UK: The Failed Development of a Biomass Electricity Plant. Biomass Bioenergy 2004, 26, 61–69. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, T. Green on Green: Issues of Public Opposition to Proposed Renewable Energy Projects. Chin. J. Environ. Law 2021, 5, 199–235. [Google Scholar] [CrossRef]
- Delicado, A.; Figueiredo, E.; Silva, L. Community Perceptions of Renewable Energies in Portugal: Impacts on Environment, Landscape and Local Development. Energy Res. Soc. Sci. 2016, 13, 84–93. [Google Scholar] [CrossRef]
- Jones, C.R.; Eiser, J.R. Understanding ‘Local’ Opposition to Wind Development in the UK: How Big Is a Backyard? Energy Policy 2010, 38, 3106–3117. [Google Scholar] [CrossRef]
- Olson-Hazboun, S.K.; Krannich, R.S.; Robertson, P.G. Public Views on Renewable Energy in the Rocky Mountain Region of the United States: Distinct Attitudes, Exposure, and Other Key Predictors of Wind Energy. Energy Res. Soc. Sci. 2016, 21, 167–179. [Google Scholar] [CrossRef]
- Both, C.; Van Turnhout, C.A.M.; Bijlsma, R.G.; Siepel, H.; Van Strien, A.J.; Foppen, R.P.B. Avian Population Consequences of Climate Change Are Most Severe for Long-Distance Migrants in Seasonal Habitats. Proc. Biol. Sci. 2010, 277, 1259–1266. [Google Scholar] [CrossRef]
- Cárdenas, G.P.; Bravo, N.; Barboza, E.; Salazar, W.; Ocaña, J.; Vázquez, M. Current and Future Distribution of Shihuahuaco (Dipteryx spp.) under Climate Change Scenarios in the Central-Eastern Amazon of Peru. Sustainability 2023, 15, 7789. [Google Scholar] [CrossRef]
- Gómez-Ruiz, E.P.; Lacher, T.E., Jr. Climate Change, Range Shifts, and the Disruption of a Pollinator-Plant Complex. Sci. Rep. 2019, 9, 14048. [Google Scholar] [CrossRef]
- Morten, J.M.; Buchanan, P.J.; Egevang, C.; Glissenaar, I.A.; Maxwell, S.M.; Parr, N.; Screen, J.A.; Vigfúsdóttir, F.; Vogt-Vincent, N.S.; Williams, D.A.; et al. Global Warming and Arctic Terns: Estimating Climate Change Impacts on the World’s Longest Migration. Glob. Change Biol. 2023, 29, 5596–5614. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, R.N.; Hardin, M.G.; Bielefeldt, J.; Keyel, E.R. Are Life History Events of a Northern Breeding Population of Cooper’s Hawks Influenced by Changing Climate? Ecol. Evol. 2016, 7, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Visser, E.; Perold, V.; Ralston-Paton, S.; Cardenal, A.C.; Ryan, P.G. Assessing the Impacts of a Utility-Scale Photovoltaic Solar Energy Facility on Birds in the Northern Cape, South Africa. Renew. Energy 2019, 133, 1285–1294. [Google Scholar] [CrossRef]
- Brochet, A.-L.; Guillemain, M.; Fritz, H.; Gauthier-Clerc, M.; Green, A.J. The Role of Migratory Ducks in the Long-Distance Dispersal of Native Plants and the Spread of Exotic Plants in Europe. Ecography 2009, 32, 919–928. [Google Scholar] [CrossRef]
- Frisch, D.; Green, A.J.; Figuerola, J. High Dispersal Capacity of a Broad Spectrum of Aquatic Invertebrates via Waterbirds. Aquat. Sci. 2007, 69, 568–574. [Google Scholar] [CrossRef]
- Green, A.J.; Figuerola, J.; Sánchez, M.I. Implications of Waterbird Ecology for the Dispersal of Aquatic Organisms. Acta Oecologica 2002, 23, 177–189. [Google Scholar] [CrossRef]
- Hamilton, D.J.; Ankney, C.D.; Bailey, R.C. Predation of Zebra Mussels by Diving Ducks: An Exclosure Study. Ecology 1994, 75, 521–531. [Google Scholar] [CrossRef]
- Ansanelli, G.; Fiorentino, G.; Tammaro, M.; Zucaro, A. A Life Cycle Assessment of a Recovery Process from End-of-Life Photovoltaic Panels. Appl. Energy 2021, 290, 116727. [Google Scholar] [CrossRef]
- Lim, M.S.W.; He, D.; Tiong, J.S.M.; Hanson, S.; Yang, T.C.-K.; Tiong, T.J.; Pan, G.-T.; Chong, S. Experimental, Economic and Life Cycle Assessments of Recycling End-of-Life Monocrystalline Silicon Photovoltaic Modules. J. Clean. Prod. 2022, 340, 130796. [Google Scholar] [CrossRef]
- Padoan, F.C.S.M.; Altimari, P.; Pagnanelli, F. Recycling of End of Life Photovoltaic Panels: A Chemical Prospective on Process Development. Sol. Energy 2019, 177, 746–761. [Google Scholar] [CrossRef]
- Kilgo, M.K.; Anctil, A.; Kennedy, M.S.; Powell, B.A. Metal Leaching from Lithium-Ion and Nickel-Metal Hydride Batteries and Photovoltaic Modules in Simulated Landfill Leachates and Municipal Solid Waste Materials. Chem. Eng. J. 2022, 431, 133825. [Google Scholar] [CrossRef]
- Panthi, G.; Bajagain, R.; An, Y.-J.; Jeong, S.-W. Leaching Potential of Chemical Species from Real Perovskite and Silicon Solar Cells. Process Saf. Environ. Prot. 2021, 149, 115–122. [Google Scholar] [CrossRef]
- Zimmermann, Y.-S.; Schäffer, A.; Corvini, P.F.-X.; Lenz, M. Thin-Film Photovoltaic Cells: Long-Term Metal(Loid) Leaching at Their End-of-Life. Environ. Sci. Technol. 2013, 47, 13151–13159. [Google Scholar] [CrossRef]
- Buitrago, E.; Novello, A.M.; Meyer, T. Third-Generation Solar Cells: Toxicity and Risk of Exposure. Helv. Chim. Acta 2020, 103, e2000074. [Google Scholar] [CrossRef]
- Petroli, P.A.; Camargo, P.S.S.; De Souza, R.A.; Veit, H.M. Assessment of Toxicity Tests for Photovoltaic Panels: A Review. Curr. Opin. Green Sustain. Chem. 2024, 47, 100885. [Google Scholar] [CrossRef]
- Hu, A.; Levis, S.; Meehl, G.A.; Han, W.; Washington, W.M.; Oleson, K.W.; van Ruijven, B.J.; He, M.; Strand, W.G. Impact of Solar Panels on Global Climate. Nat. Clim. Change 2016, 6, 290–294. [Google Scholar] [CrossRef]
- Li, Y.; Kalnay, E.; Motesharrei, S.; Rivas, J.; Kucharski, F.; Kirk-Davidoff, D.; Bach, E.; Zeng, N. Climate Model Shows Large-Scale Wind and Solar Farms in the Sahara Increase Rain and Vegetation. Science 2018, 361, 1019–1022. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, Q.; Miller, P.A.; Zhang, Q.; Berntell, E.; Smith, B. Impacts of Large-Scale Sahara Solar Farms on Global Climate and Vegetation Cover. Geophys. Res. Lett. 2021, 48, e2020GL090789. [Google Scholar] [CrossRef]
- Makaronidou, M. Assessment on the Local Climate Effects of Solar Photovoltaic Parks. Ph.D. Thesis, Lancaster University, Lancaster, UK, 2020. [Google Scholar]
- Wu, C.; Liu, H.; Yu, Y.; Zhao, W.; Guo, L.; Liu, J.; Yetemen, O. Ecohydrological Insight: Solar Farms Facilitate Carbon Sink Enhancement in Drylands. J. Environ. Manag. 2023, 342, 118304. [Google Scholar] [CrossRef] [PubMed]
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable Agrivoltaic Influence on Soil Moisture, Micrometeorology and Water-Use Efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- Armstrong, A.; Waldron, S.; Whitaker, J.; Ostle, N.J. Wind Farm and Solar Park Effects on Plant–Soil Carbon Cycling: Uncertain Impacts of Changes in Ground-Level Microclimate. Glob. Change Biol. 2014, 20, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Barron-Gafford, G.A.; Minor, R.L.; Allen, N.A.; Cronin, A.D.; Brooks, A.E.; Pavao-Zuckerman, M.A. The Photovoltaic Heat Island Effect: Larger Solar Power Plants Increase Local Temperatures. Sci. Rep. 2016, 6, 35070. [Google Scholar] [CrossRef]
- Masson, V.; Bonhomme, M.; Salagnac, J.-L.; Briottet, X.; Lemonsu, A. Solar Panels Reduce Both Global Warming and Urban Heat Island. Front. Environ. Sci. 2014, 2, 1–10. [Google Scholar] [CrossRef]
- Taha, H. The Potential for Air-Temperature Impact from Large-Scale Deployment of Solar Photovoltaic Arrays in Urban Areas. Sol. Energy 2013, 91, 358–367. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Qin, Y.; Bach, E. A Global Assessment of the Effects of Solar Farms on Albedo, Vegetation, and Land Surface Temperature Using Remote Sensing. Sol. Energy 2024, 268, 112198. [Google Scholar] [CrossRef]
- Choi, C.S.; Macknick, J.; Li, Y.; Bloom, D.; McCall, J.; Ravi, S. Environmental Co-Benefits of Maintaining Native Vegetation with Solar Photovoltaic Infrastructure. Earths Future 2023, 11, e2023EF003542. [Google Scholar] [CrossRef]
- Baiamonte, G.; Gristina, L.; Palermo, S. Impact of Solar Panels on Runoff Generation Process. Hydrol. Process. 2023, 37, e15053. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Mange, A.; Dejean, C.; Liron, F.; Belaud, G. Rain Concentration and Sheltering Effect of Solar Panels on Cultivated Plots. Hydrol. Earth Syst. Sci. 2018, 22, 1285–1298. [Google Scholar] [CrossRef]
- Marrou, H.; Dufour, L.; Wery, J. How Does a Shelter of Solar Panels Influence Water Flows in a Soil–Crop System? Eur. J. Agron. 2013, 50, 38–51. [Google Scholar] [CrossRef]
- Yue, S.; Guo, M.; Zou, P.; Wu, W.; Zhou, X. Effects of Photovoltaic Panels on Soil Temperature and Moisture in Desert Areas. Environ. Sci. Pollut. Res. 2021, 28, 17506–17518. [Google Scholar] [CrossRef] [PubMed]
- Lambert, Q.; Bischoff, A.; Cueff, S.; Cluchier, A.; Gros, R. Effects of Solar Park Construction and Solar Panels on Soil Quality, Microclimate, CO Effluxes, and Vegetation under a Mediterranean Climate. Land Degrad. Dev. 2021, 32, 5190–5202. [Google Scholar] [CrossRef]
- Cook, L.M.; McCuen, R.H. Hydrologic Response of Solar Farms. J. Hydrol. Eng. 2013, 18, 536–541. [Google Scholar] [CrossRef]
- Mulla, D.; Galzki, J.; Hanson, A.; Simunek, J. Measuring and Modeling Soil Moisture and Runoff at Solar Farms Using a Disconnected Impervious Surface Approach. Vadose Zone J. 2024, 23, e20335. [Google Scholar] [CrossRef]
- Yavari, R.; Zaliwciw, D.; Cibin, R.; McPhillips, L. Minimizing Environmental Impacts of Solar Farms: A Review of Current Science on Landscape Hydrology and Guidance on Stormwater Management. Environ. Res. Infrastruct. Sustain. 2022, 2, 032002. [Google Scholar] [CrossRef]
- Cali, R.T.; Ferrara, F.; Zagaglia, G. Designing a Landscape to Promote Biodiversity in a Solar Park; Polytechnic of Milan: Milan, Italy, 2022. [Google Scholar]
- Nordberg, E.J.; Julian Caley, M.; Schwarzkopf, L. Designing Solar Farms for Synergistic Commercial and Conservation Outcomes. Sol. Energy 2021, 228, 586–593. [Google Scholar] [CrossRef]
- Gómez-Catasús, J.; Morales, M.B.; Giralt, D.; del Portillo, D.G.; Manzano-Rubio, R.; Solé-Bujalance, L.; Sardà-Palomera, F.; Traba, J.; Bota, G. Solar Photovoltaic Energy Development and Biodiversity Conservation: Current Knowledge and Research Gaps. Conserv. Lett. 2024, 17, e13025. [Google Scholar] [CrossRef]
- Conkling, T.J.; Zanden, H.B.V.; Poessel, S.; Loss, S.R.; Allison, T.D.; Diffendorfer, J.E.; Duerr, A.E.; Nelson, D.M.; Yee, J.L.; Katzner, T.E. Learning from Real-World Experience to Understand Renewable Energy Impacts to Wildlife; California Energy Commission: Sacramento, CA, USA, 2020. [Google Scholar]
- Kosciuch, K.; Riser-Espinoza, D.; Gerringer, M.; Erickson, W. A Summary of Bird Mortality at Photovoltaic Utility Scale Solar Facilities in the Southwestern U.S. PLoS ONE 2020, 15, e0232034. [Google Scholar] [CrossRef] [PubMed]
- Walston, L.J.; Rollins, K.E.; Smith, K.P.; LaGory, K.E.; Sinclair, K.; Turchi, C.; Wendelin, T.; Souder, H. A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities; Argonne National Lab. (ANL): Argonne, IL, USA, 2016; p. 1176921. [Google Scholar]
- Hartmann, H.; Patton, T.; Almer, L.; Smith, K.P. An Overview of Potential Environmental, Cultural, and Socioeconomic Impacts and Mitigation Measures for Utility-Scale Solar Energy Development; Argonne National Laboratory Environmental Science Division: Argonne, IL, USA, 2013. [Google Scholar]
- Lovich, J.E.; Ennen, J.R. Wildlife Conservation and Solar Energy Development in the Desert Southwest, United States. BioScience 2011, 61, 982–992. [Google Scholar] [CrossRef]
- Niemandt, C.; Greve, M. Fragmentation Metric Proxies Provide Insights into Historical Biodiversity Loss in Critically Endangered Grassland. Agric. Ecosyst. Environ. 2016, 235, 172–181. [Google Scholar] [CrossRef]
- Palmeirim, A.F.; Figueiredo, M.S.L.; Grelle, C.E.V.; Carbone, C.; Vieira, M.V. When Does Habitat Fragmentation Matter? A Biome-Wide Analysis of Small Mammals in the Atlantic Forest. J. Biogeogr. 2019, 46, 2811–2825. [Google Scholar] [CrossRef]
- Teckentrup, L.; Kramer-Schadt, S.; Jeltsch, F. The Risk of Ignoring Fear: Underestimating the Effects of Habitat Loss and Fragmentation on Biodiversity. Landsc. Ecol. 2019, 34, 2851–2868. [Google Scholar] [CrossRef]
- Wilson, M.C.; Chen, X.-Y.; Corlett, R.T.; Didham, R.K.; Ding, P.; Holt, R.D.; Holyoak, M.; Hu, G.; Hughes, A.C.; Jiang, L.; et al. Habitat Fragmentation and Biodiversity Conservation: Key Findings and Future Challenges. Landsc. Ecol. 2016, 31, 219–227. [Google Scholar] [CrossRef]
- Leskova, O.V.; Frakes, R.A.; Markwith, S.H. Impacting Habitat Connectivity of the Endangered Florida Panther for the Transition to Utility-Scale Solar Energy. J. Appl. Ecol. 2022, 59, 822–834. [Google Scholar] [CrossRef]
- Dougherty, R.P.; Higbie, J.; Green, T.; Arietta, A.Z.A. Solar Farm Development Impacts on Eastern Box Turtle (Terrapene Carolina) Home Ranges. J. Herpetol. 2023, 57, 11–19. [Google Scholar] [CrossRef]
- Dvořáčková, H.; Dvořáček, J.; Vlček, V.; Růžička, D. Are the Soils Degraded by the Photovoltaic Power Plant? Cogent Food Agric. 2024, 10, 2294542. [Google Scholar] [CrossRef]
- Ford, H.; Garbutt, A.; Ladd, C.; Malarkey, J.; Skov, M.W. Soil Stabilization Linked to Plant Diversity and Environmental Context in Coastal Wetlands. J. Veg. Sci. 2016, 27, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Jia, A.; Bai, Z.; Qu, S.; Zhang, M.; Kong, L.; Sun, R.; Wang, M. Photovoltaic Panels Have Altered Grassland Plant Biodiversity and Soil Microbial Diversity. Front. Microbiol. 2022, 13, 1065899. [Google Scholar] [CrossRef] [PubMed]
- Sinha, P.; Hoffman, B.; Sakers, J.; Althouse, L. Best Practices in Responsible Land Use for Improving Biodiversity at a Utility-Scale Solar Facility. Case Stud. Environ. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Barré, K.; Baudouin, A.; Froidevaux, J.S.P.; Chartendrault, V.; Kerbiriou, C. Insectivorous Bats Alter Their Flight and Feeding Behaviour at Ground-Mounted Solar Farms. J. Appl. Ecol. 2024, 61, 328–339. [Google Scholar] [CrossRef]
- Peschel, R.; Peschel, T.; Marchand, M.; Hauke, J. Solar Parks—Profits for Biodiversity; Association of Energy Market Innovators: Berlin, Geramny, 2019; pp. 1–102. [Google Scholar]
- Walston, L.J.; Hartmann, H.M.; Fox, L.; Macknick, J.; McCall, J.; Janski, J.; Jenkins, L. If You Build It, Will They Come? Insect Community Responses to Habitat Establishment at Solar Energy Facilities in Minnesota, USA. Environ. Res. Lett. 2023, 19, 014053. [Google Scholar] [CrossRef]
- Kagan, R.A.; Viner, T.C.; Trail, P.W.; Espinoza, E.O. Avian Mortality at Solar Energy Facilities in Southern California: A Preliminary Analyses; National Fish and Wildlife Forensics Laboratory: Ashland, OR, USA, 2014; pp. 1–28. [Google Scholar]
- McCrary, M.D.; McKernan, R.L.; Schreiber, R.L.; Wagner, W.D.; Sciarrotta, T.C. Avian Mortality at a Solar Energy Power Plant. J. Field Orinthology 1986, 57, 135–141. [Google Scholar]
- Walston, L.J.; Rollins, K.E.; LaGory, K.E.; Smith, K.P.; Meyers, S.A. A Preliminary Assessment of Avian Mortality at Utility-Scale Solar Energy Facilities in the United States. Renew. Energy 2016, 92, 405–414. [Google Scholar] [CrossRef]
- Costantini, D.; Gustin, M.; Ferrarini, A.; Dell’Omo, G. Estimates of Avian Collision with Power Lines and Carcass Disappearance across Differing Environments. Anim. Conserv. 2017, 20, 173–181. [Google Scholar] [CrossRef]
- Ho, C.K. Review of Avian Mortality Studies at Concentrating Solar Power Plants. AIP Conf. Proc. 2016, 1734, 070017. [Google Scholar] [CrossRef]
- Horváth, G.; Blahó, M.; Egri, Á.; Kriska, G.; Seres, I.; Robertson, B. Reducing the Maladaptive Attractiveness of Solar Panels to Polarotactic Insects. Conserv. Biol. 2010, 24, 1644–1653. [Google Scholar] [CrossRef] [PubMed]
- Jeal, C.; Perold, V.; Ralston-Paton, S.; Ryan, P.G. Impacts of a Concentrated Solar Power Trough Facility on Birds and Other Wildlife in South Africa. Ostrich 2019, 90, 129–137. [Google Scholar] [CrossRef]
- Jeal, C.; Perold, V.; Seymour, C.L.; Ralston-Paton, S.; Ryan, P.G. Utility-Scale Solar Energy Facilities—Effects on Invertebrates in an Arid Environment. J. Arid Environ. 2019, 168, 1–8. [Google Scholar] [CrossRef]
- Ho, C.K.; Wendelin, T.; Horstman, L.; Yellowhair, J. A Method to Assess Flux Hazards at CSP Plants to Reduce Avian Mortality. AIP Conf. Proc. 2017, 1850, 030026. [Google Scholar] [CrossRef]
- Ho, C.K.; Wendelin, T.; Horstman, L. Evaluation of Heliostat Standby Aiming Strategies to Reduce Avian Flux Hazards and Impacts on Operational Performance; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 2017. [Google Scholar]
- Salgado, I.; Bustamante, F. La Red Natura 2000 y las rapaces agroesteparias: El cernicalo primilla en la ZEPA ES435 Area esteparia de la margen derecha del rio Guadarrama. Rev. Catalana Ornitol. 2023, 39, 65–70. [Google Scholar] [CrossRef]
- Jarčuška, B.; Gálffyová, M.; Schnürmacher, R.; Baláž, M.; Mišík, M.; Repel, M.; Fulín, M.; Kerestúr, D.; Lackovičová, Z.; Mojžiš, M.; et al. Solar Parks Can Enhance Bird Diversity in Agricultural Landscape. J. Environ. Manag. 2024, 351, 119902. [Google Scholar] [CrossRef] [PubMed]
- Valera, F.; Salek, M.; Bolonio, L.; Vaclav, R. Comment on “Solar Parks Can Enhance Bird Diversity in Agricultural Landscape” by Jarcuska et Al. J. Environ. Manag. 2024, 366, 121781. [Google Scholar] [CrossRef]
- Collette, J. L’impact d’un projet industriel sur l’avifaune du bocage. Cormoran 2014, 19, 233–251. [Google Scholar]
- Zaplata, M.K.; Dullau, S. Applying Ecological Succession Theory to Birds in Solar Parks: An Approach to Address Protection and Planning. Land 2022, 11, 718. [Google Scholar] [CrossRef]
- Aubert, S.; Pradervand, J.-N.; Jacot, A. L’intelligence artificielle (IA) comme aide a l’inventaire de l’avifaune nicheuse et migratrice des parcs solaires alpins. Nos Oiseaux 2024, 71, 35–50. [Google Scholar]
- Loss, S.R.; Will, T.; Loss, S.S.; Marra, P.P. Bird–Building Collisions in the United States: Estimates of Annual Mortality and Species Vulnerability. Condor 2014, 116, 8–23. [Google Scholar] [CrossRef]
- Klem, D., Jr. Bird: Window Collisions. Wilson Bull. 1989, 101, 606–620. [Google Scholar]
- Arnold, T.W.; Zink, R.M. Collision Mortality Has No Discernible Effect on Population Trends of North American Birds. PLoS ONE 2011, 6, e24708. [Google Scholar] [CrossRef]
- Gelb, Y.; Delacretaz, N. Avian Window Strike Mortality at an Urban Office Building. Kingbird 2006, 56, 190–198. [Google Scholar]
- Jessel, B.; Kuler, B. Evaluation of Standalone Photovoltaic Power Plants. Naturschutz Landschaftsplanung 2006, 38, 225–232. [Google Scholar]
- Troeltzsch, P.; Neuling, E. Die Brutvogel grossflachiger Photovoltaikanlagen in Brandenburg. Vogelwelt 2013, 134, 155–179. [Google Scholar]
- U.S. Fish and Wildlife Service. Clearance Letter for Potential of Proposed Solar Power Generation Projects; U.S. Fish and Wildlife Service: Washington, DC, USA, 2023. [Google Scholar]
- West Inc. Sources of Avian Mortality and Risk Factors Based on Empirical Data from Three Photovotaic Solar Facilities; Western Ecosystems Technology, Inc.: Cheyenne, WY, USA, 2014. [Google Scholar]
- Kosciuch, K.; Riser-Espinoza, D.; Moqtaderi, C.; Erickson, W. Aquatic Habitat Bird Occurrences at Photovoltaic Solar Energy Development in Southern California, USA. Diversity 2021, 13, 524. [Google Scholar] [CrossRef]
- Kitazawa, M.; Yamaura, Y.; Senzaki, M.; Kawamura, K.; Hanioka, M.; Nakamura, F. An Evaluation of Five Agricultural Habitat Types for Openland Birds: Abandoned Farmland Can Have Comparative Values to Undisturbed Wetland. Ornithol. Sci. 2019, 18, 3–16. [Google Scholar] [CrossRef]
- Blums, P.; Nichols, J.D.; Hines, J.E.; Mednis, A. Sources of Variation in Survival and Breeding Site Fidelity in Three Species of European Ducks. J. Anim. Ecol. 2002, 71, 438–450. [Google Scholar] [CrossRef]
- Nicolai, C.A.; Flint, P.L.; Wege, M.L. Annual Survival and Site Fidelity of Northern Pintails Banded on the Yukon-Kuskokwim Detla, Alaska. J. Wildl. Manag. 2005, 69, 1202–1210. [Google Scholar] [CrossRef]
- Allen, T.; Olds, E.; Southwick, R.; Scuderi, B.; Howlett, D.; Caputo, L. Hunting in America: An Economic Force for Conservation; National Shooting Sports Foundation: Newtown, CT, USA, 2018; p. 12. [Google Scholar]
- Flynn, D.F.B.; Gogol-Prokurat, M.; Nogeire, T.; Molinari, N.; Richers, B.T.; Lin, B.B.; Simpson, N.; Mayfield, M.M.; DeClerck, F. Loss of Functional Diversity under Land Use Intensification across Multiple Taxa. Ecol. Lett. 2009, 12, 22–33. [Google Scholar] [CrossRef]
- Hahs, A.K.; Fournier, B.; Aronson, M.F.J.; Nilon, C.H.; Herrera-Montes, A.; Salisbury, A.B.; Threlfall, C.G.; Rega-Brodsky, C.C.; Lepczyk, C.A.; La Sorte, F.A.; et al. Urbanisation Generates Multiple Trait Syndromes for Terrestrial Animal Taxa Worldwide. Nat. Commun. 2023, 14, 4751. [Google Scholar] [CrossRef]
- Carr, D.; McElnea, H. Building Better Biodiversity on Solar Farms; Community Power Agency: Minneapolis, MN, USA, 2024; pp. 1–23. [Google Scholar]
- Blaydes, H.; Potts, S.G.; Whyatt, J.D.; Armstrong, A. Opportunities to Enhance Pollinator Biodiversity in Solar Parks. Renew. Sustain. Energy Rev. 2021, 145, 111065. [Google Scholar] [CrossRef]
- Cypher, B.L.; Boroski, B.B.; Burton, R.K.; Meade, D.E.; Phillips, S.E.; Leitner, P.; Kelly, E.C.; Westall, T.L.; Dart, J. Photovoltaic Solar Farms in California: Can We Have Renewable Electricity and Our Species, Too? Calif. Fish Wildl. J. 2021, 107, 231–248. [Google Scholar] [CrossRef]
- Chaker, A.; El-Fadl, K.; Chamas, L.; Hatjian, B. A Review of Strategic Environmental Assessment in 12 Selected Countries. Environ. Impact Assess. Rev. 2006, 26, 15–56. [Google Scholar] [CrossRef]
- Nilsson, M.; Björklund, A.; Finnveden, G.; Johansson, J. Testing a SEA Methodology for the Energy Sector: A Waste Incineration Tax Proposal. Environ. Impact Assess. Rev. 2005, 25, 1–32. [Google Scholar] [CrossRef]
- Nilsson, M.; Dalkmann, H. Decision Making and Strategic Environmental Assessment. J. Environ. Assess. Policy Manag. 2001, 3, 305–327. [Google Scholar] [CrossRef]
- White, L.; Noble, B.F. Strategic Environmental Assessment for Sustainability: A Review of a Decade of Academic Research. Environ. Impact Assess. Rev. 2013, 42, 60–66. [Google Scholar] [CrossRef]
- Klem, D., Jr. Preventing Bird–Window Collisions. Wilson J. Ornithol. 2009, 121, 314–321. [Google Scholar] [CrossRef]
- Grippo, M.; Hayse, J.W.; O’Connor, B.L. Solar Energy Development and Aquatic Ecosystems in the Southwestern United States: Potential Impacts, Mitigation, and Research Needs. Environ. Manag. 2015, 55, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Biesmeijer, K.; van Kolfschoten, L.; Wit, F.; Moens, M. The Effects of Solar Parks on Plants and Pollinators: The Case of Shell Moerdijk; Naturalis Biodiversity Center: Moerdijk, The Netherlands, 2020; pp. 1–28. [Google Scholar]
- Nordberg, E.J.; Schwarzkopf, L. Developing Conservoltaic Systems to Support Biodiversity on Solar Farms. Austral Ecol. 2023, 48, 643–649. [Google Scholar] [CrossRef]
- Williams, H.J.; Hashad, K.; Wang, H.; Max Zhang, K. The Potential for Agrivoltaics to Enhance Solar Farm Cooling. Appl. Energy 2023, 332, 120478. [Google Scholar] [CrossRef]
- Cowan, M.A.; Callan, M.N.; Watson, M.J.; Watson, D.M.; Doherty, T.S.; Michael, D.R.; Dunlop, J.A.; Turner, J.M.; Moore, H.A.; Watchorn, D.J.; et al. Artificial Refuges for Wildlife Conservation: What Is the State of the Science? Biol. Rev. 2021, 96, 2735–2754. [Google Scholar] [CrossRef]
- Goldingay, R.L.; Rueegger, N.N.; Grimson, M.J.; Taylor, B.D. Specific Nest Box Designs Can Improve Habitat Restoration for Cavity-Dependent Arboreal Mammals. Restor. Ecol. 2015, 23, 482–490. [Google Scholar] [CrossRef]
- Rueegger, N. Artificial Tree Hollow Creation for Cavity-Using Wildlife—Trialling an Alternative Method to That of Nest Boxes. For. Ecol. Manag. 2017, 405, 404–412. [Google Scholar] [CrossRef]
- Watchorn, D.J.; Cowan, M.A.; Driscoll, D.A.; Nimmo, D.G.; Ashman, K.R.; Garkaklis, M.J.; Wilson, B.A.; Doherty, T.S. Artificial Habitat Structures for Animal Conservation: Design and Implementation, Risks and Opportunities. Front. Ecol. Environ. 2022, 20, 301–309. [Google Scholar] [CrossRef]
- Dawoud, B.M.; Lim, S.C. Performance Comparison of Fixed and Single Axis Tracker Photovoltaic System in Large Scale Solar Power Plants in Malaysia. Indones. J. Electr. Eng. Comput. Sci. 2021, 21, 10. [Google Scholar] [CrossRef]
- Lassio, J.G.; Castelo Branco, D.; Magrini, A.; Matos, D. Environmental Life Cycle-Based Analysis of Fixed and Single-Axis Tracking Systems for Photovoltaic Power Plants: A Case Study in Brazil. Clean. Eng. Technol. 2022, 11, 100586. [Google Scholar] [CrossRef]
- Patel, M.T.; Imran, H.; Ahmed, M.S.; Butt, N.Z.; Alam, M.A.; Khan, M.R. When and Where to Track: A Worldwide Comparison of Single-Axis Tracking vs. Fixed Tilt Bifacial Farms. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, ON, Canada, 15 June–21 August 2020; pp. 1735–1737. [Google Scholar]
- Safieh, A.; Elnosh, A.; Kaiss, E.-C.A.K.; John, J.J.; Alnuaimi, A. Field Comparison Study of Fixed-Tilted and Single-Axis Tracking PV Structures in the Desert Environment of Dubai, UAE. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Virtual Meeting, 15 June–21 August 2020; pp. 2136–2139. [Google Scholar]
- Misbrener, K. Pine Gate Renewables and The Nature Conservancy Test Wildlife-Permeable Fencing for Solar Plants. Available online: https://www.solarpowerworldonline.com/2019/02/pine-gate-renewables-the-nature-conservancy-wildlife-permeable-fencing/ (accessed on 10 September 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, C.M.; Hopkins, A.P.; Anderson, J.T. Assessing the Impact of Solar Farms on Waterbirds: A Literature Review of Ecological Interactions and Habitat Alterations. Conservation 2025, 5, 4. https://doi.org/10.3390/conservation5010004
Anderson CM, Hopkins AP, Anderson JT. Assessing the Impact of Solar Farms on Waterbirds: A Literature Review of Ecological Interactions and Habitat Alterations. Conservation. 2025; 5(1):4. https://doi.org/10.3390/conservation5010004
Chicago/Turabian StyleAnderson, Crystal M., Andrew P. Hopkins, and James T. Anderson. 2025. "Assessing the Impact of Solar Farms on Waterbirds: A Literature Review of Ecological Interactions and Habitat Alterations" Conservation 5, no. 1: 4. https://doi.org/10.3390/conservation5010004
APA StyleAnderson, C. M., Hopkins, A. P., & Anderson, J. T. (2025). Assessing the Impact of Solar Farms on Waterbirds: A Literature Review of Ecological Interactions and Habitat Alterations. Conservation, 5(1), 4. https://doi.org/10.3390/conservation5010004