Low-Cost and Recyclable Photocatalysts: Metal Oxide/Polymer Composites Applied in the Catalytic Breakdown of Dyes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Compounds Used in This Work
2.2. Photopolymerization Experiments
2.3. Photocatalytic Experiments
2.4. Composite Stability in Aqueous Phase
2.5. Thermal Stability
2.6. SEM Characterization
2.7. XRD Characterization
2.8. Mechanical Properties
2.9. Optical Properties
2.10. Electron Spin Resonance (ESR Experiments)
3. Results and Discussion
3.1. Synthesis of Metal Oxide/Polymer Composites by Photopolymerization
3.2. Metal Oxide/Polymer Composite Stability
3.2.1. Stability in Aqueous Phase
3.2.2. Thermal Stability
3.3. Metal Oxide/Polymer Composite Characterization
3.3.1. Morphological Characterizations
3.3.2. X-Ray Diffraction (XRD)
3.3.3. Mechanical Properties
3.3.4. Optical Properties
3.4. Photocatalytic Activity of the Metal Oxide/Polymer Composites
3.5. Metal Oxide/Polymer Composite Recyclability Study
3.6. Photocatalytic Degradation Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, S.H.S.; Wu, Y.T.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Raizada, P.; Singh, P.; Kumar, A.; Pare, B.; Jonnalagadda, S.B. Zero valent iron-brick grain nanocomposite for enhanced solar-Fenton removal of malachite green. Sep. Purif. Technol. 2014, 133, 429–437. [Google Scholar] [CrossRef]
- Micheal, K.; Ayeshamariam, A.; Boddula, R.; Arunachalam, P.; AlSalhi, M.S.; Theerthagiri, J.; Prasad, S.; Madhavan, J.; Al-Mayouf, A.M. Assembled composite of hematite iron oxide on sponge-like BiOCl with enhanced photocatalytic activity. Mater. Sci. Energy Technol. 2019, 2, 104–111. [Google Scholar] [CrossRef]
- Sudhaik, A.; Raizada, P.; Shandilya, P.; Singh, P. Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light. J. Environ. Chem. Eng. 2018, 6, 3874–3883. [Google Scholar] [CrossRef]
- Guo, H.-X.; Lin, K.-L.; Zheng, Z.-S.; Xiao, F.-B.; Li, S.-X. Sulfanilic acid-modified P25 TiO2 nanoparticles with improved photocatalytic degradation on Congo red under visible light. Dye. Pigment. 2012, 92, 1278–1284. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Lee, S.J.; Karuppasamy, K.; Arulmani, S.; Veeralakshmi, S.; Ashokkumar, M.; Choi, M.Y. Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants. J. Hazard. Mater. 2021, 412, 125245. [Google Scholar] [CrossRef]
- Naik, S.S.; Lee, S.J.; Theerthagiri, J.; Yu, Y.; Choi, M.Y. Rapid and highly selective electrochemical sensor based on ZnS/Au-decorated f-multi-walled carbon nanotube nanocomposites produced via pulsed laser technique for detection of toxic nitro compounds. J. Hazard. Mater. 2021, 418, 126269. [Google Scholar] [CrossRef]
- Raizada, P.; Sudhaik, A.; Singh, P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts: A review. Mater. Sci. Energy Technol. 2019, 2, 509–525. [Google Scholar] [CrossRef]
- Capelo-Martínez, J.L.; Ximénez-Embún, P.; Madrid, Y.; Cámara, C. Advanced oxidation processes for sample treatment in atomic spectrometry. TrAC Trends Anal. Chem. 2004, 23, 331–340. [Google Scholar] [CrossRef]
- Brahmi, C.; Benltifa, M.; Ghali, M.; Dumur, F.; Simonnet-Jégat, C.; Monnier, V.; Morlet-Savary, F.; Bousselmi, L.; Lalevée, J. Polyoxometalates/polymer composites for the photodegradation of bisphenol-A. J. Appl. Polym. Sci. 2021, 138, 50864. [Google Scholar] [CrossRef]
- Ghali, M.; Brahmi, C.; Benltifa, M.; Dumur, F.; Duval, S.; Simonnet-Jégat, C.; Morlet-Savary, F.; Jellali, S.; Bousselmi, L.; Lalevée, J. New hybrid polyoxometalate/polymer composites for photodegradation of eosin dye. J. Polym. Sci. Part A Polym. Chem. 2019, 57, 1538–1549. [Google Scholar] [CrossRef]
- Brahmi, C.; Benltifa, M.; Vaulot, C.; Michelin, L.; Dumur, F.; Millange, F.; Frigoli, M.; Airoudj, A.; Morlet-Savary, F.; Bousselmi, L.; et al. New hybrid MOF/polymer composites for the photodegradation of organic dyes. Eur. Polym. J. 2021, 154, 110560. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, L.; Zhang, Q. Photodegradation of surfactants on the nanosized TiO2 prepared by hydrolysis of the alkoxide titanium. Chemosphere 2004, 54, 405–411. [Google Scholar] [CrossRef]
- Lin, C.; Lin, K.-S. Photocatalytic oxidation of toxic organohalides with TiO2/UV: The effects of humic substances and organic mixtures. Chemosphere 2007, 66, 1872–1877. [Google Scholar] [CrossRef] [PubMed]
- Remucal, C.K. The role of indirect photochemical degradation in the environmental fate of pesticides: A review. Environ. Sci. Processes Impacts 2014, 16, 628–653. [Google Scholar] [CrossRef] [PubMed]
- Bagabas, A.; Alshammari, A.; Aboud, M.F.A.; Kosslick, H. Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Res. Lett. 2013, 8, 516. [Google Scholar] [CrossRef] [Green Version]
- Grabowska, E.; Reszczyńska, J.; Zaleska, A. RETRACTED: Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: A review. Water Res. 2012, 46, 5453–5471. [Google Scholar] [CrossRef]
- Dasary, S.S.R.; Saloni, J.; Fletcher, A.; Anjaneyulu, Y.; Yu, H. Photodegradation of Selected PCBs in the Presence of Nano-TiO2 as Catalyst and H2O2 as an Oxidant. Int. J. Environ. Res. Public Health 2010, 7, 3987–4001. [Google Scholar] [CrossRef]
- Wu, X.; Shao, Y. Study of Kinetics Mechanism of PAHs Photodegradation in Solution. Procedia Earth Planet. Sci. 2017, 17, 348–351. [Google Scholar] [CrossRef]
- Priya, B.; Shandilya, P.; Raizada, P.; Thakur, P.; Singh, N.; Singh, P. Photocatalytic mineralization and degradation kinetics of ampicillin and oxytetracycline antibiotics using graphene sand composite and chitosan supported BiOCl. J. Mol. Catal. A Chem. 2016, 423, 400–413. [Google Scholar] [CrossRef]
- Sudhaik, A.; Raizada, P.; Shandilya, P.; Jeong, D.-Y.; Lim, J.-H.; Singh, P. Review on fabrication of graphitic carbon nitride based efficient nanocomposites for photodegradation of aqueous phase organic pollutants. J. Ind. Eng. Chem. 2018, 67, 28–51. [Google Scholar] [CrossRef]
- Schmitt, M.; Becker, D.; Lalevée, J. Performance analysis of the solidification of acrylic esters photo-initiated by systematically modified ZnO nanoparticles. Polymer 2018, 158, 83–89. [Google Scholar] [CrossRef]
- Schmitt, M. Synthesis and testing of ZnO nanoparticles for photo-initiation: Experimental observation of two different non-migration initiators for bulk polymerization. Nanoscale 2015, 7, 9532–9544. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M.; Lalevée, J. ZnO nanoparticles as polymerisation photo-initiator: Levulinic acid/NaOH content variation. Colloids Surf. A Physicochem. Eng. Asp. 2017, 532, 189–194. [Google Scholar] [CrossRef]
- Chelli, V.R.; Golder, A.K. Ag-doping on ZnO support mediated by bio-analytes rich in ascorbic acid for photocatalytic degradation of dipyrone drug. Chemosphere 2018, 208, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, S.; Zhang, J.; Yan, J.; Zhao, Y.; Mahoney, C.; Ferebee, R.; Luo, D.; Pietrasik, J.; Bockstaller, M.R.; et al. Photocatalytic Active Mesoporous Carbon/ZnO Hybrid Materials from Block Copolymer Tethered ZnO Nanocrystals. Langmuir 2017, 33, 12276–12284. [Google Scholar] [CrossRef]
- Schmitt, M.; Kuhn, S.; Wotocek, M.; Hempelmann, R. Photo-Curing of off-set Printing Inks by Functionalized ZnO Nanoparticles. Z. Für Phys. Chem. 2011, 225, 297–311. [Google Scholar] [CrossRef]
- Schmitt, M.; Garra, P.; Lalevée, J. Bulk Polymerization Photo-Initiator ZnO: Increasing of the Benzoyl Formic Acid Concentration and LED Illumination. Macromol. Chem. Phys. 2018, 219, 1800208. [Google Scholar] [CrossRef]
- Schmitt, M.; Dietlin, C.; Lalevée, J. Towards Visible LED Illumination: ZnO-ZnS Nanocomposite Particles. ChemistrySelect 2020, 5, 985–987. [Google Scholar] [CrossRef]
- Sahoo, G.P.; Samanta, S.; Bhui, D.K.; Pyne, S.; Maity, A.; Misra, A. Hydrothermal synthesis of hexagonal ZnO microstructures in HPMC polymer matrix and their catalytic activities. J. Mol. Liq. 2015, 212, 665–670. [Google Scholar] [CrossRef]
- Qiu, R.; Zhang, D.; Mo, Y.; Song, L.; Brewer, E.; Huang, X.; Xiong, Y. Photocatalytic activity of polymer-modified ZnO under visible light irradiation. J. Hazard. Mater. 2008, 156, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, S.J.T.; Nabid, M.R.; Hosseini, S.Z.; Abedi, M. Polyaniline-Supported Zinc Oxide (ZnO) Nanoparticles: An Active and Stable Heterogeneous Catalyst for the Friedel–Crafts Acylation Reaction. Synth. Commun. 2012, 42, 1432–1444. [Google Scholar] [CrossRef]
- Vidya, C.; Manjunatha, C.; Chandraprabha, M.N.; Rajshekar, M.; Mal, A.R. Hazard free green synthesis of ZnO nano-photo-catalyst using Artocarpus Heterophyllus leaf extract for the degradation of Congo red dye in water treatment applications. J. Environ. Chem. Eng. 2017, 5, 3172–3180. [Google Scholar] [CrossRef]
- Kurian, M.; Kunjachan, C. CexV1−xO2 (x: 0, 0.25–1) nanocomposites as efficient catalysts for degradation of 2,4 dichlorophenol. J. Environ. Chem. Eng. 2016, 4, 1359–1366. [Google Scholar] [CrossRef]
- López-Tenllado, F.J.; Murcia-López, S.; Gómez, D.M.; Marinas, A.; Marinas, J.M.; Urbano, F.J.; Navío, J.A.; Hidalgo, M.C.; Gatica, J.M. A comparative study of Bi2WO6, CeO2, and TiO2 as catalysts for selective photo-oxidation of alcohols to carbonyl compounds. Appl. Catal. A Gen. 2015, 505, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Issarapanacheewin, S.; Wetchakun, K.; Phanichphant, S.; Kangwansupamonkon, W.; Wetchakun, N. Efficient photocatalytic degradation of Rhodamine B by a novel CeO2/Bi2WO6 composite film. Catal. Today 2016, 278, 280–290. [Google Scholar] [CrossRef]
- Craciun, R.; Daniell, W.; Knözinger, H. The effect of CeO2 structure on the activity of supported Pd catalysts used for methane steam reforming. Appl. Catal. A Gen. 2002, 230, 153–168. [Google Scholar] [CrossRef]
- Liang, M.; Borjigin, T.; Zhang, Y.; Liu, B.; Liu, H.; Guo, H. Controlled assemble of hollow heterostructured g-C3N4@CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Appl. Catal. B Environ. 2019, 243, 566–575. [Google Scholar] [CrossRef]
- Ma, W.; Mashimo, T.; Tamura, S.; Tokuda, M.; Yoda, S.; Tsushida, M.; Koinuma, M.; Kubota, A.; Isobe, H.; Yoshiasa, A. Cerium oxide (CeO2−x) nanoparticles with high Ce3+ proportion synthesized by pulsed plasma in liquid. Ceram. Int. 2020, 46, 26502–26510. [Google Scholar] [CrossRef]
- Khan, M.M.; Ansari, S.A.; Pradhan, D.; Han, D.H.; Lee, J.; Cho, M.H. Defect-Induced Band Gap Narrowed CeO2 Nanostructures for Visible Light Activities. Ind. Eng. Chem. Res. 2014, 53, 9754–9763. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Du, Y.; Li, H.; Yang, Y.; Jia, X. Chemically controlled growth of porous CeO2 nanotubes for Cr(VI) photoreduction. Appl. Catal. B Environ. 2015, 174–175, 435–444. [Google Scholar] [CrossRef]
- Shcherbakov, A.B.; Reukov, V.V.; Yakimansky, A.V.; Krasnopeeva, E.L.; Ivanova, O.S.; Popov, A.L.; Ivanov, V.K. CeO2 Nanoparticle-Containing Polymers for Biomedical Applications: A Review. Polymers 2021, 13, 924. [Google Scholar] [CrossRef] [PubMed]
- Krishnakumar, B.; Balakrishna, A.; Arranja, C.T.; Dias, C.M.F.; Sobral, A.J.F.N. Chemically modified amino porphyrin/TiO2 for the degradation of Acid Black 1 under day light illumination. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 176, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Li, C.; Yuan, S.; Ma, M.; Qiang, Y.; Zhu, J. ZnO based heterojunctions and their application in environmental photocatalysis. Nanotechnology 2016, 27, 402001. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, M. ZnO Nanoparticle Induced Photo-Kolbe Reaction, Fragment Stabilization and Effect on Photopolymerization Monitored by Raman–UV-Vis Measurements. Macromol. Chem. Phys. 2012, 213, 1953–1962. [Google Scholar] [CrossRef]
- Schmitt, M. UV-Härtung von Acrylsäureestern Durch Nanoskalige Metalloxide; Suedwestdeutscher Verlag fuer Hochschulschriften: Saarbrücken, Germany, 2009. [Google Scholar]
- Gurylev, V.; Perng, T.P. Defect engineering of ZnO: Review on oxygen and zinc vacancies. J. Eur. Ceram. Soc. 2021, 41, 4977–4996. [Google Scholar] [CrossRef]
Composites | Dry Extract (%) |
---|---|
Poly-PEG | 100 ± 2 |
10 wt% ZnO/Poly-PEG | 98 ± 2 |
3 wt% CeO2/Poly-PEG | 100 ± 2 |
Poly-TMPTA | 100 ± 2 |
10 wt% ZnO/Poly-TMPTA | 100 ± 2 |
3 wt% CeO2/Poly-TMPTA | 100 ± 2 |
10 wt% CeO2/Poly-PEG | 95 ± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borjigin, T.; Schmitt, M.; Morlet-Savary, F.; Xiao, P.; Lalevée, J. Low-Cost and Recyclable Photocatalysts: Metal Oxide/Polymer Composites Applied in the Catalytic Breakdown of Dyes. Photochem 2022, 2, 733-751. https://doi.org/10.3390/photochem2030047
Borjigin T, Schmitt M, Morlet-Savary F, Xiao P, Lalevée J. Low-Cost and Recyclable Photocatalysts: Metal Oxide/Polymer Composites Applied in the Catalytic Breakdown of Dyes. Photochem. 2022; 2(3):733-751. https://doi.org/10.3390/photochem2030047
Chicago/Turabian StyleBorjigin, Timur, Michael Schmitt, Fabrice Morlet-Savary, Pu Xiao, and Jacques Lalevée. 2022. "Low-Cost and Recyclable Photocatalysts: Metal Oxide/Polymer Composites Applied in the Catalytic Breakdown of Dyes" Photochem 2, no. 3: 733-751. https://doi.org/10.3390/photochem2030047
APA StyleBorjigin, T., Schmitt, M., Morlet-Savary, F., Xiao, P., & Lalevée, J. (2022). Low-Cost and Recyclable Photocatalysts: Metal Oxide/Polymer Composites Applied in the Catalytic Breakdown of Dyes. Photochem, 2(3), 733-751. https://doi.org/10.3390/photochem2030047