Facile Doping of 2,2,2-Trifluoroethanol to Single-Walled Carbon Nanotubes Electrodes for Durable Perovskite Solar Cells
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis and Fabrication of Patterned SWCNTs Films
2.2. Fabrication of the Perovskite Solar Cells
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bi, D.; Yi, C.; Décoppet, J.-D.; Luo, J.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells. Science 2016, 353, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.-X.; Wu, W.-Q.; Zhou, Y.; Dong, Q.; Wang, P.; Ma, H.; Wang, Z.; Yao, C.-Y.; Chen, X.; Liu, G.-l.; et al. Room Temperature Fabrication of SnO2 Electrodes Enabling Barrier-Free Electron Extraction for Efficient Flexible Perovskite Photovoltaics. Adv. Funct. Mater. 2022, 32, 2200817. [Google Scholar] [CrossRef]
- Meng, Y.; Li, X.; Wang, S.; Lau, C.; Hu, H.; Ke, Y.; Tan, G.; Yang, J.; Long, Y. Flexible smart photovoltaic foil for energy generation and conservation in buildings. Nano Energy 2022, 91, 106632. [Google Scholar] [CrossRef]
- Nukunudompanich, M.; Sriprapai, D.; Sontikaew, S. Aspects of optical and thermal performances in flexible perovskite solar cells made of nanomaterials with potential for development of vehicle-integrated photovoltaics. Mater. Today Proc. 2022, 66, 3163–3167. [Google Scholar] [CrossRef]
- Koh, T.M.; Wang, H.; Ng, Y.F.; Bruno, A.; Mhaisalkar, S.; Mathews, N. Halide Perovskite Solar Cells for Building Integrated Photovoltaics: Transforming Building Façades into Power Generators. Adv. Mater. 2022, 34, 2104661. [Google Scholar] [CrossRef]
- Li, M.; Wang, Z.-K.; Zhuo, M.-P.; Hu, Y.; Hu, K.-H.; Ye, Q.-Q.; Jain, S.M.; Yang, Y.-G.; Gao, X.-Y.; Liao, L.-S. Pb–Sn–Cu Ternary Organometallic Halide Perovskite Solar Cells. Adv. Mater. 2018, 30, 1800258. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, W.; Yin, Y.; Wang, M.; Cai, W.; Shi, Y.; Guo, J.; Shang, W.; Zhang, C.; Dong, Q.; et al. Defective MWCNT Enabled Dual Interface Coupling for Carbon-Based Perovskite Solar Cells with Efficiency Exceeding 22%. Adv. Funct. Mater. 2022, 32, 2204831. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Z.; Wang, G.; Ding, X.; Chen, Y.; Xiao, S.; Liu, X.; Zhang, X.; Wen, S. Crystallization and Defect Chemistry Dual Engineering for MAPbI3 Perovskite Solar Cells with Efficiency Approaching 22%. ACS Sustain. Chem. Eng. 2022, 10, 17318–17326. [Google Scholar] [CrossRef]
- Yin, W.J.; Shi, T.; Yan, Y. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 2014, 104, 063903. [Google Scholar] [CrossRef]
- Yin, W.-J.; Shi, T.; Yan, Y. Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance. Adv. Mater. 2014, 26, 4653–4658. [Google Scholar]
- Zhao, Y.; Zhu, K. Efficient Planar Perovskite Solar Cells Based on 1.8 eV Band Gap CH3NH3PbI2Br Nanosheets via Thermal Decomposition. J. Am. Chem. Soc. 2014, 136, 12241–12244. [Google Scholar] [CrossRef]
- Jung, Y.-S.; Hwang, K.; Heo, Y.-J.; Kim, J.-E.; Vak, D.; Kim, D.-Y. Progress in Scalable Coating and Roll-to-Roll Compatible Printing Processes of Perovskite Solar Cells toward Realization of Commercialization. Adv. Opt. Mater. 2018, 6, 1701182. [Google Scholar] [CrossRef]
- GuO, Z.; Jena, A.K.; Kim, G.M.; Miyasaka, T. The high open-circuit voltage of perovskite solar cells: A review. Energy Environ. Sci. 2022, 15, 3171–3222. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Wu, Z.; Wang, Y.; Hong, J.; Rao, H.; Pan, Z.; Zhong, X. Crystallization control of air-processed wide-bandgap perovskite for carbon-based perovskite solar cells with 17.69% efficiency. Chem. Eng. J. 2023, 455, 140566. [Google Scholar] [CrossRef]
- Lee, H.; Lee, C. Analysis of Ion-Diffusion-Induced Interface Degradation in Inverted Perovskite Solar Cells via Restoration of the Ag Electrode. Adv. Energy Mater. 2018, 8, 1702197. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, X.; Deng, Y.; Li, T.; Shao, Y.; Gruverman, A.; Shield, J.; Huang, J. Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? Energy Environ. Sci. 2016, 9, 3650–3656. [Google Scholar] [CrossRef]
- Ueoka, N.; Oku, T. Additive effects of alkali metals on Cu-modified CH3NH3PbI3−δClδ photovoltaic devices. RSC Adv. 2019, 9, 24231–24240. [Google Scholar] [CrossRef]
- Huijie, T.; Cao, Q.; He, Z.; Wang, S.; Han, J.; Li, T.; Gao, B.; Yang, J.; Deng, D.; Li, X. SnO2–Carbon Nanotubes Hybrid Electron Transport Layer for Efficient and Hysteresis-Free Planar Perovskite Solar Cells. Sol. RRL 2020, 4, 1900415. [Google Scholar]
- Ming, W.; Yang, D.; Li, T.; Zhang, L.; Du, M.-H. Formation and Diffusion of Metal Impurities in Perovskite Solar Cell Material CH3NH3PbI3: Implications on Solar Cell Degradation and Choice of Electrode. Adv. Sci. 2018, 5, 1700662. [Google Scholar] [CrossRef]
- Baydin, A.; Tay, F.; Fan, J.; Manjappa, M.; Gao, W.; Kono, J. Carbon Nanotube Devices for Quantum Technology. Materials 2022, 15, 1535. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, H.; He, C. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT:PSS nanocomposites. Carbon 2019, 149, 25–32. [Google Scholar] [CrossRef]
- Hata, S.; Shiraishi, M.; Yasuda, S.; Juhasz, G.; Du, Y.; Shiraishi, Y.; Toshima, N. Green Route for Fabrication of Water-Treatable Thermoelectric Generators. Energy Mater. Adv. 2022, 2022, 9854657. [Google Scholar] [CrossRef]
- Nonoguchi, Y.; Ohashi, K.; Kanazawa, R.; Ashiba, K.; Hata, K.; Nakagawa, T.; Adachi, C.; Tanase, T.; Kawai, T. Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants. Sci. Rep. 2013, 3, 3344. [Google Scholar] [CrossRef] [PubMed]
- Shin, D.-W.; Lee, J.H.; Kim, Y.-H.; Yu, S.M.; Park, S.-Y.; Yoo, J.-B. A role of HNO3 on transparent conducting film with single-walled carbon nanotubes. Nanotechnology 2009, 20, 475703. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.; Seo, S.; Sato, Y.; Delacou, C.; Anisimov, A.; Suenaga, K.; Kauppinen, E.I.; Maruyama, S.; Matsuo, Y. Perovskite Solar Cells Using Carbon Nanotubes Both as Cathode and as Anode. J. Phys. Chem. C 2017, 121, 25743–25749. [Google Scholar] [CrossRef]
- Lee, J.-W.; Jeon, I.; Lin, H.-S.; Seo, S.; Han, T.-H.; Anisimov, A.; Kauppinen, E.I.; Matsuo, Y.; Maruyama, S.; Yang, Y. Vapor-Assisted Ex-Situ Doping of Carbon Nanotube toward Efficient and Stable Perovskite Solar Cells. Nano Lett. 2019, 19, 2223–2230. [Google Scholar] [CrossRef] [PubMed]
- Aharon, S.; Dymshits, A.; Rotem, A.; Etgar, L. Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells. J. Mater. Chem. A 2015, 3, 9171–9178. [Google Scholar] [CrossRef]
- Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J.Y. Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 2014, 7, 80–85. [Google Scholar] [CrossRef]
- Ueoka, N.; Oku, T.; Suzuki, A. Effects of doping with Na, K, Rb, and formamidinium cations on (CH3NH3)0.99Rb0.01Pb0.99Cu0.01I3−x(Cl, Br)x perovskite photovoltaic cells. AIP Adv. 2020, 10, 125023. [Google Scholar] [CrossRef]
- Jeon, I.; Cui, K.; Chiba, T.; Anisimov, A.; Nasibulin, A.G.; Kauppinen, E.I.; Maruyama, S.; Matsuo, Y. Direct and Dry Deposited Single-Walled Carbon Nanotube Films Doped with MoOx as Electron-Blocking Transparent Electrodes for Flexible Organic Solar Cells. J. Am. Chem. Soc. 2015, 137, 7982–7985. [Google Scholar] [CrossRef] [PubMed]
- Jeon, I.; Yoon, J.; Ahn, N.; Atwa, M.; Delacou, C.; Anisimov, A.; Kauppinen, E.I.; Choi, M.; Maruyama, S.; Matsuo, Y. Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells. J. Phys. Chem. Lett. 2017, 8, 5395–5401. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y. Creation of Highly Efficient and Durable Organic and Perovskite Solar Cells Using Nanocarbon Materials. Bull. Chem. Soc. Jpn. 2021, 94, 1080–1089. [Google Scholar] [CrossRef]
- Jeon, I.; Delacou, C.; Okada, H.; Morse, G.E.; Han, T.-H.; Sato, Y.; Anisimov, A.; Suenaga, K.; Kauppinen, E.I.; Maruyama, S.; et al. Polymeric acid-doped transparent carbon nanotube electrodes for organic solar cells with the longest doping durability. J. Mater. Chem. A 2018, 6, 14553–14559. [Google Scholar] [CrossRef]
- Gente, G.; Mesa, C.L. Water–Trifluoroethanol Mixtures: Some Physicochemical Properties. J. Solution. Chem. 2000, 29, 1159–1172. [Google Scholar] [CrossRef]
- Moisala, A.; Nasibulin, A.G.; Brown, D.P.; Jiang, H.; Khriachtchev, L.; Kauppinen, E.I. Single-walled carbon nanotube synthesis using ferrocene and iron pentacarbonyl in a laminar flow reactor. Chem. Eng. Sci. 2006, 61, 4393–4402. [Google Scholar] [CrossRef]
- Kaskela, A.; Nasibulin, A.G.; Timmermans, M.Y.; Aitchison, B.; Papadimitratos, A.; Tian, Y.; Zhu, Z.; Jiang, H.; Brown, D.P.; Zakhidov, A.; et al. Aerosol-Synthesized SWCNT Networks with Tunable Conductivity and Transparency by a Dry Transfer Technique. Nano Lett. 2010, 10, 4349–4355. [Google Scholar] [CrossRef]
- Oshima, H.; Iwase, K.; Ohno, Y. In situ monitoring of the electrical property of carbon nanotube thin film in floating catalyst chemical vapor deposition. Jpn. Appl. Phys. 2022, 61, 038002. [Google Scholar] [CrossRef]
- Matsuo, Y.; Ishikawa, S.; Amada, H.; Yokoyama, K.; Shui, Q.-J.; Huda, M.; Ueoka, N.; Lin, H.-S. Evaporable Indano[60]fullerene Ketone for the Electron Transport Layer of Inverted Perovskite Solar Cells. Chem. Lett. 2023, 52, 685–687. [Google Scholar] [CrossRef]
- Ma, D.; Lin, K.; Dong, Y.; Choubisa, H.; Proppe, A.H.; Wu, D.; Wang, Y.K.; Chen, B.; Li, P.; Fan, J.Z.; et al. Distribution control enables efficient reduced-dimensional perovskite LED. Nature 2021, 599, 594–598. [Google Scholar] [CrossRef]
- Richter, M.; Hammer, M.; Sonnet, T.; Parisi, J. Bandgap extraction from quantum efficiency spectra of Cu(In,Ga)Se2 solar cells with varied grading profile and diffusion length. Thin Solid Film. 2017, 633, 213–217. [Google Scholar] [CrossRef]
- Nasir, A.; Ahmad, S.; Khan, M.; Bragazzi, N.L. Resent Advancement on Crystalline quality, IQE, and EQE of III-nitride-based deep-ultraviolet light-emitting diodes: Comprehensive Review. Available online: https://ssrn.com/abstract=3842127 (accessed on 1 May 2021).
- Nakka, L.; Cheng, Y.; Aberle, A.G.; Lin, F. Analytical Review of Spiro-OMeTAD Hole Transport Materials: Paths Toward Stable and Efficient Perovskite Solar Cells. Adv. Energy Sustain. Res. 2022, 3, 2200045. [Google Scholar] [CrossRef]
- Makuta, S.; Liu, M.; Endo, M.; Nishimura, H.; Wakamiya, A.; Tachibana, Y. Photo-excitation intensity dependent electron and hole injections from lead iodide perovskite to nanocrystalline TiO2 and spiro-OMeTAD. Chem. Commun. 2016, 52, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, M.; Matta, S.K.; Hiltunen, A.; Deng, Z.; Wang, C.; Dai, Z.; Russo, S.P.; Vivo, P.; Zhang, H. Sulfonated Dopant-Free Hole-Transport Material Promotes Interfacial Charge Transfer Dynamics for Highly Stable Perovskite Solar Cells. Adv. Sustainable Syst. 2021, 5, 2100244. [Google Scholar] [CrossRef]
- Brauer, J.C.; Lee, Y.H.; Nazeeruddin, M.K.; Baneji, N. Ultrafast charge carrier dynamics in CH3NH3PbI3:evidence for hot hole injection into spiro-OMeTAD. J. Mater. Chem. C 2016, 4, 5922–5931. [Google Scholar] [CrossRef]
- Abdelraouf, O.A.M.; Allam, N.K. Towards nanostructured perovskite solar cells with enhanced efficiency: Coupled optical and electrical modeling. Sol. Energy 2016, 137, 364–370. [Google Scholar] [CrossRef]
- Zhu, T.; Yang, Y.; Yao, X.; Huang, Z.; Liu, L.; Hu, W.; Gong, X. Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2020, 12, 15456–15463. [Google Scholar] [CrossRef] [PubMed]
- Jianga, T.; Fu, W. Improved performance and stability of perovskite solar cells with bilayer electron-transporting layers. RSC Adv. 2018, 8, 5897–5901. [Google Scholar] [CrossRef]
- Kyaw, A.K.K.; Wang, D.H.; Wynands, D.; Zhang, J.; Nguyen, T.-Q.; Bazan, G.C.; Heeger, A.J. Improved Light Harvesting and Improved Efficiency by Insertion of an Optical Spacer (ZnO) in Solution-Processed Small-Molecule Solar Cells. Nano Lett. 2013, 13, 3796–3801. [Google Scholar] [CrossRef]
- Singh, R.; Sandhu, S.; Yadav, H.; Lee, J.-J. Stable Triple-Cation (Cs+–MA+–FA+) Perovskite Powder Formation under Ambient Conditions for Hysteresis-Free High-Efficiency Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 29941–29949. [Google Scholar] [CrossRef]
- Hua, W.; Niu, Q.; Zhang, L.; Chai, B.; Yang, J.; Zeng, W.; Xia, R.; Min, Y. Enhancing the Performance of Perovskite Solar Cells by Introducing 4-(Trifluoromethyl)-1H-imidazole Passivation Agents. Molecules 2023, 28, 4976. [Google Scholar] [CrossRef] [PubMed]
- Fukaya, N.; Kim, D.Y.; Kishimoto, S.; Noda, S.; Ohno, Y. One-Step Sub-10 μm Patterning of Carbon-Nanotube Thin Films for Transparent Conductor Applications. ACS Nano 2014, 8, 3285. [Google Scholar] [CrossRef] [PubMed]
- Cheng, I.F.; Xie, Y.; Gonzales, R.A.; Brejna, P.R.; Sundararajan, J.P.; Kengne, B.A.F.; Aston, D.E.; McIlroy, D.N.; Foutch, J.D.; Griffiths, P.R. Synthesis of graphene paper from pyrolyzed asphalt. Carbon 2011, 49, 2852–2861. [Google Scholar] [CrossRef]
- Youn, H.-C.; Bak, S.-M.; Park, S.-H.; Yoon, S.-B.; Roh, K.C.; Kim, K.-B. One-step preparation of reduced graphene oxide/carbon nanotube hybrid thin film by electrostatic spray deposition for supercapacitor applications. Met. Mater. Int. 2014, 20, 975–981. [Google Scholar] [CrossRef]
- Varga, M.; Izak, T.; Vretenar, V.; Kozak, H.; Holovsky, J.; Artemenko, A.; Hulman, M.; Skakalova, V.; Lee, D.S.; Kromka, A. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon 2017, 111, 54–61. [Google Scholar] [CrossRef]
- Ulzii, G.T.; Matsushima, T.; Adachi, C. Mini-Review on Efficiency and Stability of Perovskite Solar Cells with Spiro-OMeTAD Hole Transport Layer: Recent Progress and Perspectives. Energy Fuels 2021, 35, 18915–18927. [Google Scholar] [CrossRef]
- Jeon, I.; Ueno, H.; Seo, S.; Kerttu, A.; Nishikubo, R.; Saeki, A.; Okada, H.; Boschloo, G.; Shigeo, M.; Matsuo, Y. Lithium-Ion Endohedral Fullerene (Li+@C60) Dopants in Stable Perovskite Solar Cells Induce Instant Doping and Anti-Oxidation. Angew. Chem. Int. Ed. 2018, 57, 4607–4611. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.Y.; Singh, P. A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 2015, 5, 67583–67609. [Google Scholar]
- Marković, Z.; Kepić, D.; Antunović, I.H.; Nikolić, M.; Dramićanin, M.; Cincović, M.D.; Marković, B.T. Raman study of single wall carbon nanotube thin films treated by laser irradiation and dynamic and isothermal oxidation. J. Raman Spectrosc. 2012, 43, 1413–1422. [Google Scholar] [CrossRef]
- Hembram, K.P.S.S.; Kim, J.G.; Lee, S.G.; Park, J.; Lee, J.K. Radial-tangential made of single-wall carbon nanotubes manifested by Landau regulation: Reinterpretation of low-and intermediate-frequency Raman signals. Sci. Rep. 2023, 13, 5012. [Google Scholar] [CrossRef]
- Oku, T. Crystal Structures of CH3NH3PbI3 and Related Perovskite Compounds Used for Solar cells. In Solar Cells-New Approaches and Reviews; IntechOpen: London, UK, 2015. [Google Scholar]
- Ueoka, N.; Oku, T. Stability Characterization of PbI2-Added CH3NH3PbI3–xClx Photovoltaic Devices. ACS Appl. Mater. Interfaces 2018, 10, 44443–44451. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, C.; Zhang, P.; Ma, S.; Chen, Y.; Zhang, Y.; Yang, N.; Xiao, M.; Cheng, X.; Gao, Z.; et al. Topochemical assembly minimizes lattice heterogeneity in polycrystalline halide perovskites. Joule 2023, 7, 2361–2375. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, X.; Li, H.; Wang, C.; Gao, Z.; Zhang, P.; Niu, X.; Li, N.; Xu, Z.; Su, Z.; et al. Stress compensation based on interfacial nanostructures for stable perovskite solar cells. Interdiscip. Mater. 2023, 2, 348–359. [Google Scholar] [CrossRef]
- Li, Z.; Boix, P.P.; Xing, G.; Fu, K.; Kulkarni, S.K.; Xu, W.; Cao, A.; Sum, T.C.; Mathews, N.; Wong, L.H. Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells. Nanoscale 2016, 8, 6352–6360. [Google Scholar] [CrossRef] [PubMed]
- Habisreutinger, S.N.; Leijtens, T.; Eperon, G.E.; Stranks, S.D.; Nicholas, R.J.; Snaith, H.J. Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells. Nano Lett. 2014, 14, 5561–5568. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Endo, M.; Mouri, S.; Miyauchi, Y.; Ohno, Y.; Wakamiya, A.; Murata, Y.; Matsuda, K. Highly stable perovskite solar cells with an all-carbon hole transport layer. Nanoscale 2016, 8, 11882–11888. [Google Scholar] [CrossRef] [PubMed]
- Habisreutinger, S.N.; Leijtens, T.; Eperon, G.E.; Stranks, S.D.; Nicholas, R.J.; Snait, H.J. Enhanced Hole Extraction in Perovskite Solar Cells Through Carbon Nanotubes. J. Phys. Chem. Lett. 2014, 5, 4207–4212. [Google Scholar] [CrossRef] [PubMed]
- Habisreutinger, S.N.; Wenger, B.; Snaith, H.J.; Nicholas, R.J. Dopant-Free Planar n–i–p Perovskite Solar Cells with Steady-State Efficiencies Exceeding 18%. ACS Energy Lett. 2017, 2, 622–628. [Google Scholar] [CrossRef]
- Mazzotta, G.; Dollmann, M.; Habisreutinger, S.N.; Christoforo, M.G.; Wang, Z.; Snaith, H.J.; Riede, M.K.; Nicholas, R.J. Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 1185–1191. [Google Scholar] [CrossRef]
- Yoon, S.; Ha, T.J.; Kang, D.W. Improving the performance and reliability of inverted planar perovskite solar cells with a carbon nanotubes/PEDOT:PSS hybrid hole collector. Nanoscale 2017, 9, 9754–9761. [Google Scholar] [CrossRef]
- Lu, Y.; Zong, X.; Wang, Y.; Zhang, W.; Wu, Q.; Liang, M.; Xue, S. Noncovalent functionalization of hole-transport materials with multi-walled carbon nanotubes for stable inverted perovskite solar cells. J. Mater. Chem. C 2019, 7, 14306–14313. [Google Scholar] [CrossRef]
- Ryu, J.; Yoon, S.; Park, J.; Jeong, S.M.; Kang, D.W. Fabrication of nickel oxide composites with carbon nanotubes for enhanced charge transport in planar perovskite solar cells. Appl Surf Sci. 2020, 516, 146116. [Google Scholar] [CrossRef]
- Hu, X.G.; Lin, Z.; Ding, L.; Chang, J. Recent advances of carbon nanotubes in perovskite solar cells. SusMat 2023, 3, 639–670. [Google Scholar] [CrossRef]
Electrode | JSC (mA cm−2) | VOC (V) | FF | η (%) | RS (Ω cm2) | RSh (Ω cm2) |
---|---|---|---|---|---|---|
SWCNT (T550nm = 41%) | 20.1 | 0.901 | 0.647 | 13.0 | 10.0 | 3446 |
TFE doped SWCNT (T550nm = 41%) | 20.2 | 0.941 | 0.670 | 14.1 | 10.3 | 5723 |
TFE doped SWCNT (T550nm = 28%) | 20.1 | 0.825 | 0.649 | 11.9 | 9.1 | 3980 |
Ag (ref.) | 24.2 | 0.948 | 0.711 | 16.4 | 3.0 | 8041 |
Electrode | m | α |
---|---|---|
SWCNT (T550nm = 41%) | 3.95 | 1.01 |
TFE doped SWCNT (T550nm = 41%) | 2.55 | 1.01 |
TFE doped SWCNT (T550nm = 28%) | 3.68 | 1.03 |
Electrode | RSheet (Ω/sq) | αρ | S/m |
---|---|---|---|
SWCNT (T550nm = 41%) | 37.4 | 14.9 | 6.5 × 104 |
TFE doped SWCNT (T550nm = 41%) | 32.7 | 12.7 | 7.4 × 104 |
TFE doped SWCNT (T550nm = 28%) | 23.9 | 13.2 | 1.3 × 105 |
Samples | C=C, sp2 (%) (284.7 eV) | C–C, sp3 (%) (285.1 eV) | C–O (%) (286.1 eV) | COO (%) (288.9 eV) | π-π* (%) (291.0 eV) |
---|---|---|---|---|---|
glass/SWCNT/EtOH | 36 | 12 | 44 | 2 | 5 |
glass/SWCNT/TFE | 61 | 17 | 12 | 6 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ueoka, N.; Hidayat, A.S.; Oshima, H.; Hijikata, Y.; Matsuo, Y. Facile Doping of 2,2,2-Trifluoroethanol to Single-Walled Carbon Nanotubes Electrodes for Durable Perovskite Solar Cells. Photochem 2024, 4, 319-333. https://doi.org/10.3390/photochem4030019
Ueoka N, Hidayat AS, Oshima H, Hijikata Y, Matsuo Y. Facile Doping of 2,2,2-Trifluoroethanol to Single-Walled Carbon Nanotubes Electrodes for Durable Perovskite Solar Cells. Photochem. 2024; 4(3):319-333. https://doi.org/10.3390/photochem4030019
Chicago/Turabian StyleUeoka, Naoki, Achmad Syarif Hidayat, Hisayoshi Oshima, Yoshimasa Hijikata, and Yutaka Matsuo. 2024. "Facile Doping of 2,2,2-Trifluoroethanol to Single-Walled Carbon Nanotubes Electrodes for Durable Perovskite Solar Cells" Photochem 4, no. 3: 319-333. https://doi.org/10.3390/photochem4030019
APA StyleUeoka, N., Hidayat, A. S., Oshima, H., Hijikata, Y., & Matsuo, Y. (2024). Facile Doping of 2,2,2-Trifluoroethanol to Single-Walled Carbon Nanotubes Electrodes for Durable Perovskite Solar Cells. Photochem, 4(3), 319-333. https://doi.org/10.3390/photochem4030019