Effect of Fin Type and Geometry on Thermal and Hydraulic Performance in Conditions of Combined-Cycle Nuclear Power Plant with High-Temperature Gas-Cooled Reactors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Assumption
2.2. Fin Types and Characteristics
3. Results and Discussion
3.1. Annular Type
3.2. Square
3.3. Serrated Fins
3.4. Helical Fins
4. Conclusions and Prospects
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature | |
BC | Brayton cycle |
CC | Combined cycle |
CCPP | Combined-cycle power plant |
GCR | Gas-cooled reactors |
GT | Gas turbine |
He | Helium |
HGTS | Helium Gas Turbine System |
HTGR | High-temperature gas-cooled reactor |
NPP | Nuclear power plant |
TPs | Thermodynamic properties |
Parameters | |
d | Diameter, m |
f | Cross-section area, m2 |
G | Flow rate of helium coolant, kg/s |
H | Heat drop, kJ/kg |
h | Specific enthalpy, kJ/kg |
k | Overall heat transfer coefficient, W/(m2∙K) |
l, L | Length, height, m |
Nu | Nusselt number |
P | Pressure, MPa |
Q | Thermal power, MW |
Re | Reynolds criteria |
t | Temperature, °C |
v | Kinematic viscosity, m2/s |
α | Heat transfer coefficient, W/(m2∙K) |
δ | Thickness, m |
Δt | Temperature difference, °C |
ηf | Fin efficiency, % |
λ | Thermal conductivity, W/(m∙K) |
ρ | Density, kg/m3 |
Subscript | |
Temperature difference at pinch point | |
Thermal resistance of fouling layer | |
Thermal resistance of oxidizing layers |
References
- Kupecki, J.; Hercog, J.; Motyliński, K.; Malesa, J.; Muszyński, D.; Skrzypek, E.; Skrzypek, M.; Boettcher, A.; Tchorek, G. Advancing production of hydrogen using nuclear cycles—Integration of high temperature gas-cooled reactors (HTGR) with solid oxide electrolyzers (SOE). Int. J. Hydrogen Energy 2024, 53, 40–48. [Google Scholar] [CrossRef]
- Huning, A.J.; Chandrasekaran, S.; Garimella, S. A review of recent advances in HTGR CFD and thermal fluid analysis. Nucl. Eng. Des. 2021, 373, 111013. [Google Scholar] [CrossRef]
- Marotta, P.J. Steam Reheat in Nuclear Power Plants. PhD Thesis, University of Tennessee, Knoxville, TN, USA, 2012. [Google Scholar]
- Li, H. A brief review of the development of high temperature gas cooled reactor. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 631, p. 012080. [Google Scholar] [CrossRef]
- Florido, P.E.; Bergallo, J.E.; Clausse, A. Economics of combined nuclear-gas power generation. Nucl. Eng. Des. 2000, 195, 109–115. [Google Scholar] [CrossRef]
- Zohuri, B. Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Zohuri, B.; McDaniel, P. Combined Cycle Driven Efficiency for Next Generation Nuclear Power Plants, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Kays, W.M.; London, A.L. Compact Heat Exchangers; Krieger Pub. Co.: Malabar, FL, USA, 1998; ISBN 9781575240602. [Google Scholar]
- Hesselgreaves, J.E.; Law, R.; Reay, D. Compact Heat Exchangers Selection, Design and Operation; Butterworth-Heinemann: Oxford, UK, 2001. [Google Scholar]
- Bahrampoury, R.; Behbahaninia, A. Multi-objective optimization of heat recovery steam generators. Energy Equip. Syst. 2014, 2, 129–140. [Google Scholar] [CrossRef]
- Ghaffari, A.; Ahmadi, R. Modeling and optimization of finless and finned tube heat recovery steam generators for cogeneration plants. Eng. Rep. 2020, 2, e12262. [Google Scholar] [CrossRef]
- Ramadan, K.A.A.; Slyusarskiy, K.V. Effect of heat recovery steam generator on characteristics of combined cycle NPP with gas-cooled reactors. Prog. Nucl. Energy 2023, 164, 104879. [Google Scholar] [CrossRef]
- Ganapathy, V. Industrial Boilers and Heat Recovery Steam Generators. Design, Applications, and Calculations; Marcel Dekker, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Saha, P. Advances in Fluid and Thermal Engineering; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Qu, X.; Yang, X.; Wang, J. Characteristics Analysis of Combined Cycle Coupled With High Temperature Gas-Cooled Reactor Based on Progressive Optimization. Front. Energy Res. 2022, 9, 817373. [Google Scholar] [CrossRef]
- Wang, J.; Ding, M.; Yang, X. Performance comparison and optimization of two configurations of (Very) high temperature gas-cooled reactors combined cycles. Ann. Nucl. Energy 2016, 94, 279–287. [Google Scholar] [CrossRef]
- Xinhe, Q.; Xiaoyong, Y.; Jie, W.; Gang, Z. Combined cycle schemes coupled with a Very High Temperature gas-cooled reactor. Prog. Nucl. Energy 2018, 108, 1–10. [Google Scholar] [CrossRef]
- Eriksen, V.L. Heat Recovery Steam Generator Technology; Woodhead Publishing: Sawston, UK, 2017. [Google Scholar]
- Norouzi, E.; Amidpour, M.; Rezakazemi, M. Heat recovery steam generator: Constructal thermoeconomic optimization. Appl. Therm. Eng. 2019, 148, 747–753. [Google Scholar] [CrossRef]
- Wuryanti, S.; Jadmiko, R.D. Design of Heat-Recovery Steam Generator Components in Gas Turbine (70 MW) Combined Cycle Power Plants (105 MW). Int. J. Mech. Eng. Robot. Res. 2021, 10, 612–619. [Google Scholar] [CrossRef]
- Ahmed, A.; Esmaeil, K.K.; Irfan, M.A.; Al-Mufadi, F.A. Design methodology of heat recovery steam generator in electric utility for waste heat recovery. Int. J. Low-Carbon Technol. 2018, 13, 369–379. [Google Scholar] [CrossRef]
- Kirillov, P.L.; Ninokata, H. Heat transfer in nuclear thermal hydraulics. In Thermal-Hydraulics of Water Cooled Nuclear Reactors; Report EUR 12402 EN; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Kemp, I.C. Data extraction and energy targeting. Pinch Anal. Process Integr. 2007, 2, 41–98. [Google Scholar] [CrossRef]
- Rezaie, A.; Tsatsaronis, G.; Hellwig, U. Thermal design and optimization of a heat recovery steam generator in a combined-cycle power plant by applying a genetic algorithm. Energy 2019, 168, 346–357. [Google Scholar] [CrossRef]
- RD 24.035.05-89 Methodical Instructions. Thermal and Hydraulic Calculation of Heat Exchange Equipment of Nuclear Power Plants. Available online: https://docs.cntd.ru/document/1200085786 (accessed on 3 August 2024).
- Von Böckh, P.; Wetzel, T. Heat Transfer: Basics and Practice; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Carvajal-mariscal, I.; Sanchez-silva, F.; Pioro, I. Handbook for Transversely Finned Tubes Heat Exchanger Design; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Karnopp, D. Heat Exchanger Design Handbook; Taylor & Francis Group: Abingdon, UK, 2013. [Google Scholar]
- Mousavi Ajarostaghi, S.S.; Zaboli, M.; Javadi, H.; Badenes, B.; Urchueguia, J.F. A Review of Recent Passive Heat Transfer Enhancement Methods. Energies 2022, 15, 986. [Google Scholar] [CrossRef]
Parameter, Unit. | Symbols | Value |
---|---|---|
Pressure of He, MPa | P1 | 2.44 |
Inlet temperature of He, °C | t1 | 527.5 |
Outlet temperature of He, °C | t2 | 241.4 |
Outer diameter of tubes, m | dout | 0.0254 |
Thickness of tubes, m | δtube | 0.002415 |
Tube height, m | ltube | 8 |
Material | Stainless steel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadan, K.A.A.; Slyusarskiy, K.V. Effect of Fin Type and Geometry on Thermal and Hydraulic Performance in Conditions of Combined-Cycle Nuclear Power Plant with High-Temperature Gas-Cooled Reactors. Thermo 2024, 4, 382-393. https://doi.org/10.3390/thermo4030020
Ramadan KAA, Slyusarskiy KV. Effect of Fin Type and Geometry on Thermal and Hydraulic Performance in Conditions of Combined-Cycle Nuclear Power Plant with High-Temperature Gas-Cooled Reactors. Thermo. 2024; 4(3):382-393. https://doi.org/10.3390/thermo4030020
Chicago/Turabian StyleRamadan, Khaled A. A., and Konstantin V. Slyusarskiy. 2024. "Effect of Fin Type and Geometry on Thermal and Hydraulic Performance in Conditions of Combined-Cycle Nuclear Power Plant with High-Temperature Gas-Cooled Reactors" Thermo 4, no. 3: 382-393. https://doi.org/10.3390/thermo4030020
APA StyleRamadan, K. A. A., & Slyusarskiy, K. V. (2024). Effect of Fin Type and Geometry on Thermal and Hydraulic Performance in Conditions of Combined-Cycle Nuclear Power Plant with High-Temperature Gas-Cooled Reactors. Thermo, 4(3), 382-393. https://doi.org/10.3390/thermo4030020