Can Tumour Antigens Act as Biomarkers for the Early Detection of Non-Small Cell Lung Cancer?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Molecular Pathology of NSCLC
3. Tumour Antigens as Biomarkers for LC
4. Cancer-Testis Antigen Expression in NSCLC
Gene Name (Symbol) | Function | Healthy Tissue | Expression in LC(s) | Reference(s) |
---|---|---|---|---|
Carcinoembryonic antigen (CEA) | Glycoprotein involved in cell adhesion and signal transduction | Low expression in colon, appendix | High expression in all types at advanced stages | [30,31] |
Osteopontin (OPN) | Cell survival and angiogenesis | Gall bladder, placenta, brain | High expression associated with poor prognosis | [30,32] |
Cytokeratin 19 fragments (CYFR A 21-1) | Part of the cytoskeleton of epithelial cells | All epithelial cells | NSCLC mainly SCC. High expression is associated with a poor prognosis | [33] |
Neuron-specific enolase (NSE) | Glycolytic enzyme involved in inflammatory and neurotrophic activity regulating neuronal growth, differentiation, survival and death | Brain, adrenal, lung | Preferred for SCLC but also NSCLC and a marker of metastasis | [34] |
Serum amyloid A (SAA) | Secreted during acute inflammation, transports cholesterol to the liver, recruits immune cells to inflammatory sites | Housekeeping” role in normal human tissues | All types. High expression in late stages | [35,36] |
5. The Potential of Biomarker Panels for LC Detection
Gene | Probe Set | Survival (mo) | p-Value | Gene | Probe Set | Survival (mo) | p-Value | ||
---|---|---|---|---|---|---|---|---|---|
Low ¶ | High ¶ | Low ¶ | High ¶ | ||||||
TPX2 | 210052_s_at | 96.2 | 42 | <1 × 10−16 | TSP50 | 220126_at | 81 | 56.7 | 0.0009 |
DNAJB11 | 223054_at | 119.87 | 52 | 8.40 × 10−12 | CTAGX10-1 | 220957_at | 79.27 | 61.3 | 0.0009 |
MAGEA1 | 207325_x_at | 86.27 | 48.6 | 1.40 × 10−11 | PAGX10-4 | 205564_at | 76 | 60.73 | 0.001 |
SSX2IP | 203015_s_at | 91 | 52 | 2.80 × 10−11 | SSX3 | 211670_x_at | 78.5 | 62.2 | 0.0012 |
DDX12 | 213378_s_at | 89 | 52 | 1.70 × 10−10 | SYCP1 | 206740_x_at | 79.87 | 60 | 0.0018 |
(DNAJB14) | 222850_s_at | 52 | 111 | 1.20 × 10−9 | NXF2/CT39 | 220257_x_at | 79.87 | 62.2 | 0.0021 |
MAGEA3 | 209942_x_at | 86.27 | 49.97 | 2.70 × 10−9 | SSX1 | 206626_x_at | 78 | 64.1 | 0.0023 |
DDX11/KRG2 | 208149_x_at | 88.7 | 54 | 1.10 × 10−8 | DNAJB4 | 203811_s_at | 75.43 | 62.47 | 0.0035 |
(GAGE3)/CT4.3 | 207663_x_at | 89 | 54.2 | 1.10 × 10−7 | SGY-1/CT34 | 220284_at | 76 | 59 | 0.0053 |
MAGEA12 | 210467_x_at | 84 | 52 | 2.70 × 10−7 | MAGEA2 | 214603_at | 74 | 59.53 | 0.0058 |
GAGE1/4/7/11 | 207086_x_at | 88 | 56 | 6.00 × 10−7 | FATE/CT43 | 231573_at | 86.27 | 63 | 0.0085 |
TPTE/CT44 | 220205_at | 80.03 | 59 | 1.30 × 10−5 | GPATCH2 | 239768_x_at | 69 | 89 | 0.0094 |
SAGE | 220793_at | 79.5 | 56.5 | 2.00 × 10−5 | SSX2 | 216471_x_at | 76 | 63.3 | 0.01 |
MAGEA10 | 210295_at | 86.27 | 57.33 | 2.40 × 10−5 | SPO11/ CT35 | 222259_s_at | 76 | 62.3 | 0.0185 |
DDX10/HRH-J8 | 204977_at | 79.54 | 57 | 8.70 × 10−5 | (DNAJB13) | 230936_at | 70 | 90 | 0.0188 |
NA88A/VENTXP1 | 216726_at | 81.2 | 61.2 | 0.0001 | PLU-1/ KDM5B | 211202_s_at | 63 | 77.6 | 0.019 |
TEX15/CT42 | 221448_s_at | 79.87 | 59 | 0.0001 | LAGE1 | 215733_x_at | 73.3 | 64.1 | 0.025 |
DNAJB2 (HSPF3) | 202500_at | 62 | 74 | 0.0002 | TAF7L | 220325_at | 76 | 63.4 | 0.0254 |
MORC1/CT33 | 220850_at | 79.27 | 57 | 0.0003 | TDRD1/CT41.1 | 221018_s_at | 74 | 65.1 | 0.0284 |
LDHC/CT32/ | 207022_s_at | 78 | 62.2 | 0.0004 | PAGE-1 | 206897_at | 73.2 | 65 | 0.0299 |
DDX13 (SKIV2L) | 203727_at | 81 | 59.11 | 0.0004 | MAGE-C2 | 215932_at | 74 | 64.1 | 0.0326 |
MAGE-C1 | 206609_at | 79.5 | 61.2 | 0.0006 | LUZP4/CT28 | 220665_at | 73.3 | 65 | 0.0461 |
CAGE1 | 1563787_a_at | 91 | 62 | 0.0008 |
6. Discussion
Name of Protein(s) Evaluated | Comparison Groups | Sample Size | Sensitivity % | Specificity % | AUC 95% CI | Source |
---|---|---|---|---|---|---|
OPNV | NSCLC/nodules | 1182 | 80 | 88 | 0.88 | [49] |
Secretory phospholipase A2-IIa | NSCLC/BN/HC | 145 | 48–67 | 86 | 0.68–0.86 | [50] |
NSE + CEA + CYFRA21-1 | LC/BLD/HC | 132/48/92 | 75.76 | 89 | 0.63 | [51] |
CYFRA 21-1 | LC/BD | 161/97 | 59 | 94 | 0.85 | [52] |
HSP90α, CEA | LC/HC | 175/160 | 95.63 | 99.97 | 0.996 | [53] |
CA-125, CEA, CYFRA21-1, EGFR/HER1/ErBB1, Gro-Pan, HGF, IL-10, IL-12p70, IL-16, IL-2, IL-4, IL-5, IL-7, IL-8, IL-9, Leptin, LIF, MCP-1, MIF, MIG, MMP7, MP9, MPO, NSE, PDGF-BB, Rantes, Resistin, sFasL, SAA, sCD40-ligand, sICAM-1, TNFRI, and sTNFRII. | NSCLC/HC | 1479 | 80 | 95 | 0.96 | [54] |
Ciz1 | LC/inflammatory diseases | 35/170/160 | 95 | 74 | 0.96 | [55] |
Exosomal GCC2 | NSCLC/HC | 70/16 | 90 | 75 | 0.84 | [56] |
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | adenocarcinoma |
CAGE | cancer-associated gene |
CEA | carcinoembryonic antigen |
CT | computer tomography |
CTA | cancer testis antigen |
CYFRA21-1 | cytokeratin 19 fragments |
HE4 | human epididymis 4 |
HSP70 | heat shock protein 70 |
LC | lung cancer |
MAGE | melanoma-associated antigen gene |
NSCLC | non-small cell lung carcinoma |
NSE | neuron-specific enolase |
OPN | Osteopontin |
PET | positron emission tomography |
SAA | serum amyloid A |
SCC | squamous cell carcinoma |
SCCA | squamous cell carcinoma antigen |
TA | tumour antigens |
TAA | tumour associated antigens |
References
- Verma, V.; Simone, C.B.; Werner-Wasik, M. Acute and late toxicities of concurrent chemoradiotherapy for locally-advanced non-small cell lung cancer. Cancers 2017, 9, 120. [Google Scholar] [CrossRef] [PubMed]
- O’Dowd, E.L.; McKeever, T.M.; Baldwin, D.R.; Anwar, S.; Powell, H.A.; Gibson, J.E.; Iyen-Omofoman, B.; Hubbard, R.B. What characteristics of primary care and patients are associated with early death in patients with lung cancer in the UK? Thorax 2015, 70, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Balata, H.; Evison, M.; Sharman, A.; Crosbie, P.; Booton, R. CT screening for lung cancer: Are we ready to implement in Europe? Lung Cancer 2019, 134, 25–33. [Google Scholar] [CrossRef] [PubMed]
- El-Khoury, V.; Béland, M.; Schritz, A.; Kim, S.-Y.; Nazarov, P.V.; Gaboury, L.; Sertamo, K.; Bernardin, F.; Batutu, R.; Antunes, L.; et al. Identification of beta-arrestin-1 as a diagnostic biomarker in lung cancer. Br. J. Cancer 2018, 119, 580–590. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fillmore, C.M.; Hammerman, P.S.; Kim, C.F.; Wong, K.-K. Non-small-cell lung cancers: A heterogeneous set of diseases. Nat. Rev. Cancer 2014, 14, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Soda, M.; Choi, Y.L.; Enomoto, M.; Takada, S.; Yamashita, Y.; Ishikawa, S.; Fujiwara, S.; Watanabe, H.; Kurashina, K.; Hatanaka, H.; et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007, 448, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Sanders, H.R.; Albitar, M. Somatic mutations of signaling genes in non-small-cell lung cancer. Cancer Genet. Cytogenet. 2010, 203, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Chikwe, J.C.D.; Weiss, A. Cardiothoracic Surgery; OUP Oxford: Oxford, UK, 2013. [Google Scholar]
- Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G.; Haluska, F.G.; et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004, 350, 2129–2139. [Google Scholar] [CrossRef]
- Soma, S.; Tsuta, K.; Takano, T.; Hatanaka, Y.; Yoshida, A.; Suzuki, K.; Asamura, H.; Tsuda, H. Intratumoral distribution of EGFR-amplified and EGFR-mutated cells in pulmonary adenocarcinoma. Pathol. Res. Pract. 2014, 210, 155–160. [Google Scholar] [CrossRef]
- Lokhandwala, T.; Bittoni, M.A.; Dann, R.A.; D’Souza, A.O.; Johnson, M.; Nagy, R.J.; Lanman, R.B.; Merritt, R.E.; Carbone, D.P. Costs of diagnostic assessment for lung cancer: A medicare claims analysis. Clin. Lung Cancer 2017, 18, e27–e34. [Google Scholar] [CrossRef]
- Patz Jr, E.F.; Campa, M.J.; Gottlin, E.B.; Kusmartseva, I.; Guan, X.R.; Herndon, J.E. Panel of serum biomarkers for the diagnosis of lung cancer. J. Clin. Oncol. 2007, 25, 5578–5583. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J. Tumor markers in detection of lung cancer. Adv. Clin. Chem. 2006, 42, 1–41. [Google Scholar] [PubMed]
- Hanagiri, T.; Sugaya, M.; Takenaka, M.; Oka, S.; Baba, T.; Shigematsu, Y.; Nagata, Y.; Shimokawa, H.; Uramoto, H.; Takenoyama, M. Preoperative CYFRA 21-1 and CEA as prognostic factors in patients with stage I non-small cell lung cancer. Lung Cancer 2011, 74, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Edelman, M.J.; Hodgson, L.; Rosenblatt, P.Y.; Christenson, R.H.; Vokes, E.E.; Wang, X.; Kratzke, R. CYFRA 21-1 as a prognostic and predictive marker in advanced non-small-cell lung cancer in a prospective trial: CALGB 150304. J. Thorac. Oncol. 2012, 7, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, W.; Zhang, T.; Liu, L.; Bi, N.; Wang, X.; Hui, Z.; Liang, J.; Lv, J.; Zhou, Z.; et al. Increased CYFRA 21-1, CEA and NSE are Prognostic of Poor Outcome for Locally Advanced Squamous Cell Carcinoma in Lung: A Nomogram and Recursive Partitioning Risk Stratification Analysis. Transl. Oncol. 2018, 11, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.; Garcia Martinez, D.J.; Hosseini, M.S.; Yoong, S.Q.; Fletcher, D.; Hart, S.; Guinn, B.A. Identification of biomarkers for the early detection of non-small cell lung cancer: A systematic review and meta-analysis. Carcinogenesis 2024, 45, 1–22. [Google Scholar] [CrossRef]
- Kulpa, J.; Wojcik, E.; Reinfuss, M.; Kołodziejski, L. Carcinoembryonic antigen, squamous cell carcinoma antigen, CYFRA 21-1, and neuron-specific enolase in squamous cell lung cancer patients. Clin. Chem. 2002, 48, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Philipp, M.; Velcovsky, H.-G.; Morr, H.; Katz, N. Pro-gastrin-releasing peptide (ProGRP), neuron specific enolase (NSE), carcinoembryonic antigen (CEA) and cytokeratin 19-fragments (CYFRA 21-1) in patients with lung cancer in comparison to other lung diseases. Anticancer Res. 2003, 23, 885. [Google Scholar]
- Hikmet, F.; Rassy, M.; Backman, M.; Méar, L.; Mattsson, J.S.M.; Djureinovic, D.; Botling, J.; Brunnström, H.; Micke, P.; Lindskog, C. Expression of cancer–testis antigens in the immune microenvironment of non-small cell lung cancer. Mol. Oncol. 2023, 17, 2603–2617. [Google Scholar] [CrossRef]
- Okamura, K.; Takayama, K.; Izumi, M.; Harada, T.; Furuyama, K.; Nakanishi, Y. Diagnostic value of CEA and CYFRA 21-1 tumor markers in primary lung cancer. Lung Cancer 2013, 80, 45–49. [Google Scholar] [CrossRef]
- Gjerstorff, M.F.; Andersen, M.H.; Ditzel, H.J. Oncogenic cancer/testis antigens: Prime candidates for immunotherapy. Oncotarget 2015, 6, 15772. [Google Scholar] [CrossRef] [PubMed]
- Fratta, E.; Coral, S.; Covre, A.; Parisi, G.; Colizzi, F.; Danielli, R.; Nicolay, H.J.M.; Sigalotti, L.; Maio, M. The biology of cancer testis antigens: Putative function, regulation and therapeutic potential. Mol. Oncol. 2011, 5, 164–182. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, K.; Shia, A.; Schmid, P. Epigenetic regulation of EMT in non-small cell lung cancer. Curr. Cancer Drug Targets 2018, 18, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, D.; Li, Z.; Yang, S.; Zhou, J.; Zhang, G.; Zhang, Z.; Sun, Y.; Zhang, Z.; Li, X. BCAP31, a cancer/testis antigen-like protein, can act as a probe for non-small-cell lung cancer metastasis. Sci. Rep. 2020, 10, 4025. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Cao, S.; Li, J.; Meng, Q.; Wang, C.; Yao, L.; Lang, Y.; Cao, J.; Shen, J.; Pan, B. Cancer/testis antigens (CTAs) expression in resected lung cancer. OncoTargets Ther. 2018, 11, 4491–4499. [Google Scholar] [CrossRef] [PubMed]
- Gure, A.O.; Chua, R.; Williamson, B.; Gonen, M.; Ferrera, C.A.; Gnjatic, S.; Ritter, G.; Simpson, A.J.; Chen, Y.-T.; Old, L.J. Cancer-testis genes are coordinately expressed and are markers of poor outcome in non–small cell lung cancer. Clin. Cancer Res. 2005, 11, 8055–8062. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Saini, S.; Parashar, D.; Verma, A.; Sinha, A.; Jagadish, N.; Batra, A.; Suri, S.; Gupta, A.; Ansari, A.S. The novel cancer-testis antigen A-kinase anchor protein 4 (AKAP4) is a potential target for immunotherapy of ovarian serous carcinoma. Oncoimmunology 2013, 2, e24270. [Google Scholar] [CrossRef] [PubMed]
- Gumireddy, K.; Li, A.; Chang, D.H.; Liu, Q.; Kossenkov, A.V.; Yan, J.; Korst, R.J.; Nam, B.T.; Xu, H.; Zhang, L.; et al. AKAP4 is a circulating biomarker for non-small cell lung cancer. Oncotarget 2015, 6, 17637–17647. [Google Scholar] [CrossRef] [PubMed]
- Ayan, A.K.; Erdemci, B.; Orsal, E.; Bayraktutan, Z.; Akpinar, E.; Topcu, A.; Turkeli, M.; Seven, B. Is there any correlation between levels of serum ostepontin, CEA, and FDG uptake in lung cancer patients with bone metastasis? Rev. Española Med. Nucl. Imagen Mol. 2016, 35, 102–106. [Google Scholar] [CrossRef]
- Hammarström, S. The carcinoembryonic antigen (CEA) family: Structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 1999, 9, 67–81. [Google Scholar] [CrossRef]
- Berge, G.; Pettersen, S.; Grotterød, I.; Bettum, I.J.; Boye, K.; Mælandsmo, G.M. Osteopontin—An important downstream effector of S100A4-mediated invasion and metastasis. Int. J. Cancer 2011, 129, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhang, G.; Yang, M.; Zhang, S.; Zhao, B.; Shen, G.; Chai, Y. Systematic review of CYFRA 21-1 as a prognostic indicator and its predictive correlation with clinicopathological features in Non-small Cell Lung Cancer: A meta-analysis. Oncotarget 2017, 8, 4043. [Google Scholar] [CrossRef]
- Isgrò, M.A.; Bottoni, P.; Scatena, R. Neuron-specific enolase as a biomarker: Biochemical and clinical aspects. In Advances in Cancer Biomarkers; Springer: Berlin/Heidelberg, Germany, 2015; pp. 125–143. [Google Scholar]
- Urieli-Shoval, S.; Linke, R.P.; Matzner, Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr. Opin. Hematol. 2000, 7, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Biaoxue, R.; Hua, L.; Wenlong, G.; Shuanying, Y. Increased serum amyloid A as potential diagnostic marker for lung cancer: A meta-analysis based on nine studies. BMC Cancer 2016, 16, 836. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Shamseer, L.; Moher, D.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015, 350, g7647. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Altman, D.G. Diagnostic tests 4: Likelihood ratios. BMJ 2004, 329, 168–169. [Google Scholar] [CrossRef] [PubMed]
- Guyatt, G.; Rennie, D.; Meade, M.O.; Cook, D.J. Users’ Guides to the Medical Literature: A Manual for Evidence-Based Clinical Practice, 3rd ed.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
- Field, J.K.; Duffy, S.; Baldwin, D.R.; Whynes, D.; Devaraj, A.; Brain, K.E.; Eisen, T.; Gosney, J.; Green, B.; Holemans, J. UK Lung Cancer RCT Pilot Screening Trial: Baseline findings from the screening arm provide evidence for the potential implementation of lung cancer screening. Thorax 2016, 71, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Nasrullah, N.; Sang, J.; Alam, M.S.; Mateen, M.; Cai, B.; Hu, H. Automated Lung Nodule Detection and Classification Using Deep Learning Combined with Multiple Strategies. Sensors 2019, 19, 3722. [Google Scholar] [CrossRef]
- MacMahon, H.; Naidich, D.P.; Goo, J.M.; Lee, K.S.; Leung, A.N.; Mayo, J.R.; Mehta, A.C.; Ohno, Y.; Powell, C.A.; Prokop, M. Guidelines for management of incidental pulmonary nodules detected on CT images: From the Fleischner Society 2017. Radiology 2017, 284, 228–243. [Google Scholar] [CrossRef]
- Welch, H.G.; Prorok, P.C.; O’Malley, A.J.; Kramer, B.S. Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness. N. Engl. J. Med. 2016, 375, 1438–1447. [Google Scholar] [CrossRef] [PubMed]
- Bretthauer, M.; Kaminski, M.F.; Hassan, C.; Kalager, M.; Holme, Ø.; Hoff, G.; Løberg, M.; Regula, J.; Castells, A.; Adami, H.-O. America, we are confused: The updated US Preventive Services Task Force recommendation on colorectal cancer screening. Ann. Intern. Med. 2016, 166, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, W.; Lin, T.; Zhang, Q.; Zhao, X.; Lian, H.; Guo, H. Comparison of the complications of traditional 12 cores transrectal prostate biopsy with image fusion guided transperineal prostate biopsy. BMC Urol. 2016, 16, 68. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.B.; Pascual, J.M.; Raimondo, M.; Woodward, T.A.; McComb, B.L.; Crook, J.E.; Johnson, M.M.; Al-Haddad, M.A.; Gross, S.A.; Pungpapong, S. Minimally invasive endoscopic staging of suspected lung cancer. J. Am. Med. Assoc. 2008, 299, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Saenger, A.; Beyrau, R.; Braun, S.; Cooray, R.; Dolci, A.; Freidank, H.; Giannitsis, E.; Gustafson, S.; Handy, B.; Katus, H. Multicenter analytical evaluation of a high-sensitivity troponin T assay. Clin. Chim. Acta 2011, 412, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Joseph, S.; Harrington, R.; Walter, D.; Goldberg, J.D.; Li, X.; Beck, A.; Litton, T.; Hirsch, N.; Blasberg, J.; Slomiany, M.; et al. Plasma osteopontin velocity differentiates lung cancers from controls in a CT screening population. Cancer Biomark. Sect. A Dis. Markers 2012, 12, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Kupert, E.; Anderson, M.; Liu, Y.; Succop, P.; Levin, L.; Wang, J.; Wikenheiser-brokamp, K.; Chen, P.; Pinney, S.M.; Macdonald, T. Plasma secretory phospholipase A2-IIa as a potential biomarker for lung cancer in patients with solitary pulmonary nodules. BMC Cancer 2011, 11, 513. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, G.; Zhang, N.; Li, X.; Liu, Y. Clinical evaluation and cost-effectiveness analysis of serum tumor markers in lung cancer. BioMed Res. Int. 2013, 2013, 195692. [Google Scholar] [CrossRef] [PubMed]
- Wieskopf, B.; Demangeat, C.; Purohit, A.; Stenger, R.; Gries, P.; Kreisman, H.; Quoix, E. Cyfra 21-1 as a biologic marker of non-small cell lung cancer: Evaluation of sensitivity, specificity, and prognostic role. Chest 1995, 108, 163–169. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, L.; Hong, S.; Shi, C.; Yuan, B. Diagnostic value of HSP90α and related markers in lung cancer. J. Clin. Lab. Anal. 2022, 36, e24462. [Google Scholar] [CrossRef]
- Goebel, C.; Louden, C.L.; McKenna, R.; Onugha, O.; Wachtel, A.; Long, T. Diagnosis of non-small cell lung cancer for early stage asymptomatic patients. Cancer Genom. Proteom. 2019, 16, 229–244. [Google Scholar] [CrossRef] [PubMed]
- Higgins, G.; Roper, K.M.; Watson, I.J.; Blackhall, F.H.; Rom, W.N.; Pass, H.I.; Ainscough, J.F.; Coverley, D. Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc. Natl. Acad. Sci. USA 2012, 109, E3128–E3135. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Choi, B.H.; Park, J.; Jung, J.-H.; Shin, H.; Kang, K.-W.; Quan, Y.H.; Yu, J.; Park, J.-H.; Park, Y.; et al. GCC2 as a New Early Diagnostic Biomarker for Non-Small Cell Lung Cancer. Cancers 2021, 13, 5482. [Google Scholar] [CrossRef] [PubMed]
- Kammer, M.N.; Massion, P.P. Noninvasive biomarkers for lung cancer diagnosis, where do we stand? J. Thorac. Dis. 2020, 12, 3317–3330. [Google Scholar] [CrossRef] [PubMed]
- Yonemori, K.; Tateishi, U.; Uno, H.; Yonemori, Y.; Tsuta, K.; Takeuchi, M.; Matsuno, Y.; Fujiwara, Y.; Asamura, H.; Kusumoto, M. Development and validation of diagnostic prediction model for solitary pulmonary nodules. Respirology 2007, 12, 856–862. [Google Scholar] [CrossRef] [PubMed]
- Bigbee, W.L.; Gopalakrishnan, V.; Weissfeld, J.L.; Wilson, D.O.; Dacic, S.; Lokshin, A.E.; Siegfried, J.M. A multiplexed serum biomarker immunoassay panel discriminates clinical lung cancer patients from high-risk individuals found to be cancer-free by CT screening. J. Thorac. Oncol. 2012, 7, 698–708. [Google Scholar] [CrossRef] [PubMed]
- Boyle, P.; Chapman, C.; Holdenrieder, S.; Murray, A.; Robertson, C.; Wood, W.; Maddison, P.; Healey, G.; Fairley, G.; Barnes, A. Clinical validation of an autoantibody test for lung cancer. Ann. Oncol. 2011, 22, 383–389. [Google Scholar] [CrossRef]
- Murray, A.; Chapman, C.; Healey, G.; Peek, L.; Parsons, G.; Baldwin, D.; Barnes, A.; Sewell, H.; Fritsche, H.; Robertson, J. Technical validation of an autoantibody test for lung cancer. Ann. Oncol. 2010, 21, 1687–1693. [Google Scholar] [CrossRef]
- Daly, S.; Rinewalt, D.; Fhied, C.; Basu, S.; Mahon, B.; Liptay, M.J.; Hong, E.; Chmielewski, G.; Yoder, M.A.; Shah, P.N.; et al. Development and Validation of a Plasma Biomarker Panel for Discerning Clinical Significance of Indeterminate Pulmonary Nodules. J. Thorac. Oncol. 2013, 8, 31–36. [Google Scholar] [CrossRef]
- Tufman, A.; Tian, F.; Huber, R.M. Can microRNAs improve the management of lung cancer patients? A clinician’s perspective. Theranostics 2013, 3, 953–963. [Google Scholar] [CrossRef]
- Robbins, P.F.; Lu, Y.-C.; El-Gamil, M.; Li, Y.F.; Gross, C.; Gartner, J.; Lin, J.C.; Teer, J.K.; Cliften, P.; Tycksen, E. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat. Med. 2013, 19, 747. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in cancer immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Castle, J.C.; Kreiter, S.; Diekmann, J.; Löwer, M.; Van de Roemer, N.; de Graaf, J.; Selmi, A.; Diken, M.; Boegel, S.; Paret, C. Exploiting the mutanome for tumor vaccination. Cancer Res. 2012, 72, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Zhou, X.; Xu, C.; Chen, J.; Ju, S.; Chen, T.; Liang, Z.; Cui, Z.; Li, C.; Zhao, J. Circulating tumor cell levels and carcinoembryonic antigen: An improved diagnostic method for lung adenocarcinoma. Thorac. Cancer 2018, 9, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Massion, P.P.; Antic, S.; Ather, S.; Arteta, C.; Brabec, J.; Chen, H.; Declerck, J.; Dufek, D.; Hickes, W.; Kadir, T.; et al. Assessing the Accuracy of a Deep Learning Method to Risk Stratify Indeterminate Pulmonary Nodules. Am. J. Respir. Crit. Care Med. 2020, 202, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Yeon, M.; Lee, H.; Yeo, J.; Jeong, M.S.; Jung, H.S.; Lee, H.; Shim, K.; Jo, H.; Jeon, D.; Koh, J.; et al. Cancer/testis antigen CAGE mediates osimertinib resistance in non-small cell lung cancer cells and predicts poor prognosis in patients with pulmonary adenocarcinoma. Sci. Rep. 2023, 13, 15748. [Google Scholar] [CrossRef] [PubMed]
- Yeon, M.; Byun, J.; Kim, H.; Kim, M.; Jung, H.S.; Jeon, D.; Kim, Y.; Jeoung, D. CAGE binds to Beclin1, regulates autophagic flux and CAGE-derived peptide confers sensitivity to anti-cancer drugs in non-small cell lung cancer cells. Front. Oncol. 2018, 8, 599. [Google Scholar] [CrossRef]
- Janic, A.; Mendizabal, L.; Llamazares, S.; Rossell, D.; Gonzalez, C. Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 2010, 330, 1824–1827. [Google Scholar] [CrossRef]
- Miles, W.O.; Korenjak, M.; Griffiths, L.M.; Dyer, M.A.; Provero, P.; Dyson, N.J. Post-transcriptional gene expression control by NANOS is up-regulated and functionally important in pR b-deficient cells. EMBO J. 2014, 33, 2201–2215. [Google Scholar] [CrossRef]
- Bonnomet, A.; Polette, M.; Strumane, K.; Gilles, C.; Dalstein, V.; Kileztky, C.; Berx, G.; Van Roy, F.; Birembaut, P.; Nawrocki-Raby, B. The E-cadherin-repressed hNanos1 gene induces tumor cell invasion by upregulating MT1-MMP expression. Oncogene 2008, 27, 3692–3699. [Google Scholar] [CrossRef]
- Doyle, J.M.; Gao, J.; Wang, J.; Yang, M.; Potts, P.R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell 2010, 39, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Fanipakdel, A.; Seilanian Toussi, M.; Rezazadeh, F.; Mohamadian Roshan, N.; Javadinia, S.A. Overexpression of cancer-testis antigen melanoma-associated antigen A1 in lung cancer: A novel biomarker for prognosis, and a possible target for immunotherapy. J. Cell. Physiol. 2019, 234, 12080–12086. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.; Mirakhur, B. MAGRIT: The largest-ever phase III lung cancer trial aims to establish a novel tumor-specific approach to therapy. Clin. Lung Cancer 2009, 10, 371–374. [Google Scholar] [CrossRef] [PubMed]
- Morgan, R.A.; Chinnasamy, N.; Abate-Daga, D.D.; Gros, A.; Robbins, P.F.; Zheng, Z.; Feldman, S.A.; Yang, J.C.; Sherry, R.M.; Phan, G.Q. Cancer regression and neurologic toxicity following anti-MAGE-A3 TCR gene therapy. J. Immunother. 2013, 36, 133. [Google Scholar] [CrossRef]
- Egland, K.A.; Kumar, V.; Duray, P.; Pastan, I. Characterization of overlapping XAGE-1 transcripts encoding a cancer testis antigen expressed in lung, breast, and other types of cancers. Mol. Cancer Ther. 2002, 1, 441–450. [Google Scholar] [PubMed]
- Nakagawa, K.; Noguchi, Y.; Uenaka, A.; Sato, S.; Okumura, H.; Tanaka, M.; Shimono, M.; Ali Eldib, A.M.; Ono, T.; Ohara, N. XAGE-1 expression in non–small cell lung cancer and antibody response in patients. Clin. Cancer Res. 2005, 11, 5496–5503. [Google Scholar] [CrossRef]
- Kikuchi, E.; Yamazaki, K.; Nakayama, E.; Sato, S.; Uenaka, A.; Yamada, N.; Oizumi, S.; Dosaka-Akita, H.; Nishimura, M. Prolonged survival of patients with lung adenocarcinoma expressing XAGE-1b and HLA class I antigens. Cancer Immun. 2008, 8, 13. [Google Scholar] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, E.; Fletcher, D.; Hart, S.; Guinn, B.-a. Can Tumour Antigens Act as Biomarkers for the Early Detection of Non-Small Cell Lung Cancer? Onco 2024, 4, 87-100. https://doi.org/10.3390/onco4020008
Mohamed E, Fletcher D, Hart S, Guinn B-a. Can Tumour Antigens Act as Biomarkers for the Early Detection of Non-Small Cell Lung Cancer? Onco. 2024; 4(2):87-100. https://doi.org/10.3390/onco4020008
Chicago/Turabian StyleMohamed, Eithar, Daniel Fletcher, Simon Hart, and Barbara-ann Guinn. 2024. "Can Tumour Antigens Act as Biomarkers for the Early Detection of Non-Small Cell Lung Cancer?" Onco 4, no. 2: 87-100. https://doi.org/10.3390/onco4020008
APA StyleMohamed, E., Fletcher, D., Hart, S., & Guinn, B. -a. (2024). Can Tumour Antigens Act as Biomarkers for the Early Detection of Non-Small Cell Lung Cancer? Onco, 4(2), 87-100. https://doi.org/10.3390/onco4020008