The Prognostic Role of Prognostic Nutritional Index and Controlling Nutritional Status in Predicting Survival in Older Adults with Oncological Disease: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inclusion and Exclusion Criteria
2.2. Search Strategy
2.3. Study Selection and Data Collection
2.4. Risk-of-Bias Assessment
3. Results
3.1. Selection and Characteristics of Included Studies
3.2. Assessment of Study Quality
3.3. Prognostic Nutritional Index
3.4. Controlling Nutritional Status
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
PubMed Search Strategy | |
Search | Query |
#1 | Recurrence [MeSH Terms] OR “Neoplasm Recurrence, Local” [MeSH Terms] OR “Disease Progression” [MeSH Terms] OR “Disease-Free Survival” [MeSH Terms] OR Mortality [MeSH Terms] OR Mortality [Subheading] OR “Survival Analysis” [MeSH Terms] OR recurrence [tiab] OR recurrences [tiab] OR relapse [tiab] OR relapses [tiab] OR survivor [tiab] OR survivors [tiab] OR progression [tiab] OR survival [tiab] OR mortality [tiab] OR death [tiab] OR second cancer [tiab] |
#2 | elder* [tiab] OR “older adults” [tiab] |
#3 | Neoplasms [MeSH Terms] OR (cancer* OR neoplasm* OR tumor* OR tumor* OR carcinoma* OR adenocarcinoma*) |
#4 | “prognostic nutritional index” [tiab] OR (“Controlling Nutritional Status” [tiab] OR “conut” [tiab]) |
#5 | #1 AND #2 AND #3 AND #4 |
Web of Science Core Collection Search Strategy | |
Search | Query |
#1 | TS = (Recurrence) OR TS = (“Neoplasm Recurrence, Local”) OR TS = (“Disease Progression”) OR TS = (“Disease-Free Survival”) OR TS = (Mortality) OR TS = (“Survival Analysis”) OR TS = (recurrence*) OR TS = (“overall survival”) OR TS = (relapse*) OR TS = (survivor*) OR TS = (progression) OR TS = (survival) OR TS = (death) OR TS = (second cancer) |
#2 | TS = (elder*) OR TS = (“older adult*”) |
#3 | TS = (Neoplasm*) OR TS = (cancer*) OR TS = (tumor*) OR TS = (carcinoma*) OR TS = (adenocarcinoma*) |
#4 | TS = (“prognostic nutritional index”) OR TS = (“Controlling Nutritional Status” OR “conut”) |
#5 | #1 AND #2 AND #3 AND #4 |
References
- Ferlay, J.; Laversanne, M.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Tomorrow; International Agency for Research on Cancer: Lyon, France, 2024. [Google Scholar]
- McMillan, D.C. Systemic Inflammation, Nutritional Status and Survival in Patients with Cancer. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 223–226. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.-R.; Xu, Y.; Sun, Y.-F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.-M.; Qiu, S.-J.; Zhou, J.; et al. Systemic Immune-Inflammation Index Predicts Prognosis of Patients after Curative Resection for Hepatocellular Carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef] [PubMed]
- Dupré, A.; Malik, H.Z. Inflammation and Cancer: What a Surgical Oncologist Should Know. Eur. J. Surg. Oncol. 2018, 44, 566–570. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Y.; Zheng, F. Prognostic Significance of Elevated Preoperative Neutrophil-to-Lymphocyte Ratio for Patients with Colorectal Cancer Undergoing Curative Surgery: A Meta-Analysis. Medicine 2019, 98, e14126. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ni, X.; Tang, G. Prognostic Role of Platelet-to-Lymphocyte Ratio in Patients With Bladder Cancer: A Meta-Analysis. Front. Oncol. 2019, 9, 757. [Google Scholar] [CrossRef]
- Gao, X.; Liu, Y.; Liu, Z.; Wang, L.; Jing, C.; Zhu, S.; Zeng, F. Pretreatment Lymphocyte-to-Monocyte Ratio as a Predictor of Survival among Patients with Ovarian Cancer: A Meta-Analysis. Cancer Manag. Res. 2019, 11, 1907–1920. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, B.; Wang, L.; Wang, R.; Yang, X. Systemic Immune-Inflammation Index Is a Promising Noninvasive Marker to Predict Survival of Lung Cancer: A Meta-Analysis. Medicine 2019, 98, e13788. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hütterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN Practical Guideline: Clinical Nutrition in Cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef] [PubMed]
- De Cicco, P.; Catani, M.V.; Gasperi, V.; Sibilano, M.; Quaglietta, M.; Savini, I. Nutrition and Breast Cancer: A Literature Review on Prevention, Treatment and Recurrence. Nutrients 2019, 11, 1514. [Google Scholar] [CrossRef]
- Hariyanto, T.I.; Kurniawan, A. Appetite Problem in Cancer Patients: Pathophysiology, Diagnosis, and Treatment. Cancer Treat. Res. Commun. 2021, 27, 100336. [Google Scholar] [CrossRef]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic Nutritional Index in Gastrointestinal Surgery of Malnourished Cancer Patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar] [PubMed]
- Ignacio de Ulíbarri, J.; González-Madroño, A.; de Villar, N.G.; González, P.; González, B.; Mancha, A.; Rodríguez, F.; Fernández, G. CONUT: A Tool for Controlling Nutritional Status. First Validation in a Hospital Population. Nutr. Hosp. 2005, 20, 38–45. [Google Scholar] [PubMed]
- Yan, L.; Nakamura, T.; Casadei-Gardini, A.; Bruixola, G.; Huang, Y.-L.; Hu, Z.-D. Long-Term and Short-Term Prognostic Value of the Prognostic Nutritional Index in Cancer: A Narrative Review. Ann. Transl. Med. 2021, 9, 1630. [Google Scholar] [CrossRef] [PubMed]
- Bullock, A.F.; Greenley, S.L.; McKenzie, G.A.G.; Paton, L.W.; Johnson, M.J. Relationship between Markers of Malnutrition and Clinical Outcomes in Older Adults with Cancer: Systematic Review, Narrative Synthesis and Meta-Analysis. Eur. J. Clin. Nutr. 2020, 74, 1519–1535. [Google Scholar] [CrossRef] [PubMed]
- Miura, N.; Shoji, F.; Kozuma, Y.; Toyokawa, G.; Yamazaki, K.; Takeo, S. Preoperative Immune-Nutritional Abnormality Predicts Poor Outcome in Elderly Non-Small-Cell Lung Cancer Patients with Comorbidities. Ann. Thorac. Cardiovasc. Surg. 2020, 26, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Qian, L.; Liu, T.; Ding, J.; Zhang, X.; Song, M.-M.; Wang, Z.-W.; Ge, Y.-Z.; Hu, C.-L.; Li, X.-R.; et al. Prevalence and Prognostic Value of Malnutrition Among Elderly Cancer Patients Using Three Scoring Systems. Front. Nutr. 2021, 8, 738550. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- WHO. WHO Decade of Healthy Ageing: Baseline Report; WHO: Geneva, Switzerland, 2020. [Google Scholar]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 25 February 2024).
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef]
- Okada, S.; Shimomura, M.; Ishihara, S.; Ikebe, S.; Furuya, T.; Inoue, M. Clinical Significance of Postoperative Pulmonary Complications in Elderly Patients with Lung Cancer. Interact. Cardiovasc. Thorac. Surg. 2022, 35, ivac153. [Google Scholar] [CrossRef]
- Sugawara, K.; Yamashita, H.; Urabe, M.; Uemura, Y.; Okumura, Y.; Yagi, K.; Aikou, S.; Seto, Y. Combining Nutritional Status with TNM Stage: A Physiological Update on Gastric Cancer Staging for Improving Prognostic Accuracy in Elderly Patients. Int. J. Clin. Oncol. 2022, 27, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Hisada, H.; Tsuji, Y.; Obata, M.; Cho, R.; Nagao, S.; Miura, Y.; Mizutani, H.; Ohki, D.; Yakabi, S.; Takahashi, Y.; et al. The Impact of Sarcopenia on Short- and Long-Term Outcomes of Endoscopic Submucosal Dissection for Early Gastric Cancer. J. Gastroenterol. 2022, 57, 952–961. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cai, Y.; Ma, W.; Hu, H.; Gu, H.; Jin, Y.; Li, F. The Prognostic Nutritional Index and Tumor Pathological Characteristics Predict the Prognosis of Elderly Patients with Early-Stage Hepatocellular Carcinoma after Surgery. Biosci. Trends 2023, 17, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Lee, J.H.; Kim, Y.; Park, K.; Na, H.K.; Ahn, J.Y.; Jung, K.W.; Kim, D.H.; Choi, K.D.; Song, H.J.; et al. Comparison of Endoscopic Submucosal Dissection and Surgery for Early Gastric Cancer That Is Not Indicated for Endoscopic Resection in Elderly Patients. Surg. Endosc. 2023, 37, 4766–4773. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.H.; Choi, K.D.; Ko, Y.; Park, T.; Kim, K.W.; Park, S.Y.; Na, H.K.; Ahn, J.Y.; Lee, J.H.; Jung, K.W.; et al. Impact of Comorbidities, Sarcopenia, and Nutritional Status on the Long-Term Outcomes after Endoscopic Submucosal Dissection for Early Gastric Cancer in Elderly Patients Aged ≥ 80 Years. Cancers 2021, 13, 3598. [Google Scholar] [CrossRef] [PubMed]
- Kishida, Y.; Takizawa, K.; Kakushima, N.; Kawata, N.; Yoshida, M.; Yabuuchi, Y.; Yamamoto, Y.; Ito, S.; Imai, K.; Hotta, K.; et al. Endoscopic Submucosal Dissection versus Surgery in Elderly Patients with Early Gastric Cancer of Relative Indication for Endoscopic Resection. Dig. Endosc. 2022, 34, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Li, X.; Li, X.; Zhang, Q.; Wang, Y.; Peng, R.; Fu, W.; Wang, H. The Preoperative Geriatric Nutritional Risk Index Predicts Long-Term Prognosis in Elderly Locally Advanced Rectal Cancer Patients: A Two-Center Retrospective Cohort Study. Aging Clin. Exp. Res. 2022, 35, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Yu, R.; Li, J.; Guo, J.; Xu, J.; Wang, X.; Liu, P. Preoperative Prognostic Nutritional Index and Systemic Immune-inflammation Index Predict Survival Outcomes in Osteosarcoma: A Comparison between Young and Elderly Patients. J. Surg. Oncol. 2022, 125, 754–765. [Google Scholar] [CrossRef] [PubMed]
- Nishibeppu, K.; Sakuramoto, S.; Matsui, K.; Ebara, G.; Fujita, S.; Fujihata, S.; Oya, S.; Lee, S.; Miyawaki, Y.; Sugita, H.; et al. Dismal Prognosis of Elderly Gastric Cancer Patients Who Underwent Gastrectomy with American Society of Anesthesiologists (ASA) 3. Langenbeck’s Arch. Surg. 2022, 407, 3413–3421. [Google Scholar] [CrossRef]
- Peng, H.; Tan, X. The Prognostic Significance of Sarcopenia and the Neutrophil-to-Lymphocyte Ratio in Elderly Patients with Esophageal Squamous Cell Carcinoma. Cancer Manag. Res. 2021, 13, 3209–3218. [Google Scholar] [CrossRef]
- Pénichoux, J.; Lanic, H.; Thill, C.; Ménard, A.-L.; Camus, V.; Stamatoullas, A.; Lemasle, E.; Leprêtre, S.; Lenain, P.; Contentin, N.; et al. Prognostic Relevance of Sarcopenia, Geriatric, and Nutritional Assessments in Older Patients with Diffuse Large B-Cell Lymphoma: Results of a Multicentric Prospective Cohort Study. Ann. Hematol. 2023, 102, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Almuradova, E.; Menekse, S. Survival Outcomes and Prognostic Nutritional Index in Very Elderly Small-Cell Lung Cancer Patients: Importance of Active Treatment and Nutritional Support. Aging Male 2023, 26, 2251573. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Yang, J.; Yu, Y.; Wang, Z.; Lin, H.; Ke, D.; Zheng, H.; Li, J.; Yao, Q. Prognostic Value of Pre-Therapeutic Nutritional Risk Factors in Elderly Patients with Locally Advanced Esophageal Squamous Cell Carcinoma Receiving Definitive Chemoradiotherapy or Radiotherapy. BMC Cancer 2023, 23, 597. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Kubo, N.; Tamamori, Y.; Tamura, T.; Toyokawa, T.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Maeda, K.; Nishiguchi, Y.; et al. Long-Term Survival Estimates in Older Patients with Pathological Stage I Gastric Cancer Undergoing Gastrectomy: Duocentric Analysis of Simplified Scoring System. J. Geriatr. Oncol. 2019, 10, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Tamura, T.; Toyokawa, T.; Amano, R.; Kubo, N.; Tanaka, H.; Muguruma, K.; Yashiro, M.; Maeda, K.; Ohira, M.; et al. Low Preoperative Prognostic Nutritional Index Predicts Poor Survival Post-Gastrectomy in Elderly Patients with Gastric Cancer. Ann. Surg. Oncol. 2016, 23, 3669–3676. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Matsunaga, T.; Sakano, Y.; Makinoya, M.; Shishido, Y.; Miyatani, K.; Kono, Y.; Murakami, Y.; Hanaki, T.; Kihara, K.; et al. Preoperative Osteopenia as Risk Factor for Death from Other Diseases After Gastrectomy in Elderly Patients. In Vivo 2023, 37, 2662–2668. [Google Scholar] [CrossRef] [PubMed]
- Shoji, F.; Miura, N.; Matsubara, T.; Akamine, T.; Kozuma, Y.; Haratake, N.; Takamori, S.; Katsura, M.; Takada, K.; Toyokawa, G.; et al. Prognostic Significance of Immune-Nutritional Parameters for Surgically Resected Elderly Lung Cancer Patients: A Multicentre Retrospective Study. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 389–394. [Google Scholar] [CrossRef]
- Sugawara, K.; Aikou, S.; Yajima, S.; Uemura, Y.; Okumura, Y.; Nishida, M.; Yagi, K.; Yamashita, H.; Seto, Y. Pre- and Post-Operative Low Prognostic Nutritional Index Influences Survival in Older Patients with Gastric Carcinoma. J. Geriatr. Oncol. 2020, 11, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Kanaji, S.; Yamamoto, M.; Oshikiri, T.; Nakamura, T.; Kakeji, Y. Controlling Nutritional Status (CONUT) Score Predicts Outcomes of Curative Resection for Gastric Cancer in the Elderly. World J. Surg. 2019, 43, 1076–1084. [Google Scholar] [CrossRef]
- Tamai, K.; Okamura, S.; Makino, S.; Yamamura, N.; Fukuchi, N.; Ebisui, C.; Inoue, A.; Yano, M. C-Reactive Protein/Albumin Ratio Predicts Survival after Curative Surgery in Elderly Patients with Colorectal Cancer. Updates Surg. 2022, 74, 153–162. [Google Scholar] [CrossRef]
- Tamura, K.; Nakamori, M.; Matsuda, K.; Hotta, T.; Nakamura, M.; Yokoyama, S.; Iwahashi, M.; Yamade, N.; Yamaue, H. Elective Colorectal Cancer Surgery in Nonagenarians and Postoperative Outcomes. Updates Surg. 2023, 75, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Toya, Y.; Endo, M.; Akasaka, R.; Morishita, T.; Yanai, S.; Nakamura, S.; Eizuka, M.; Sugimoto, R.; Uesugi, N.; Sugai, T.; et al. Prognostic Nutritional Index Is an Independent Prognostic Factor for Older Patients Aged ≥ 85 Years Treated by Gastric Endoscopic Submucosal Dissection. BMC Gastroenterol. 2021, 21, 328. [Google Scholar] [CrossRef] [PubMed]
- Endo, S.; Yamatsuji, T.; Fujiwara, Y.; Higashida, M.; Kubota, H.; Matsumoto, H.; Tanaka, H.; Okada, T.; Yoshimatsu, K.; Sugimoto, K.; et al. Prognostic Factors for Elderly Gastric Cancer Patients Who Underwent Gastrectomy. World J. Surg. Oncol. 2022, 20, 10. [Google Scholar] [CrossRef] [PubMed]
- Toya, Y.; Endo, M.; Nakamura, S.; Akasaka, R.; Yanai, S.; Kawasaki, K.; Koeda, K.; Eizuka, M.; Fujita, Y.; Uesugi, N.; et al. Long-Term Outcomes and Prognostic Factors with Non-Curative Endoscopic Submucosal Dissection for Gastric Cancer in Elderly Patients Aged ≥ 75 Years. Gastric Cancer 2019, 22, 838–844. [Google Scholar] [CrossRef] [PubMed]
- Waki, K.; Shichijo, S.; Uedo, N.; Takeuchi, Y.; Maekawa, A.; Kanesaka, T.; Takeuchi, Y.; Higashino, K.; Ishihara, R.; Tanaka, Y.; et al. Long-Term Outcomes after Endoscopic Resection for Late-Elderly Patients with Early Gastric Cancer. Gastrointest. Endosc. 2022, 95, 873–883. [Google Scholar] [CrossRef]
- Watanabe, I.; Kanauchi, N.; Watanabe, H. Preoperative Prognostic Nutritional Index as a Predictor of Outcomes in Elderly Patients after Surgery for Lung Cancer. Jpn. J. Clin. Oncol. 2018, 48, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Iwatsuki, M.; Iwagami, S.; Ishimoto, T.; Baba, Y.; Baba, H. Prognostic Nutritional Index Predicts Outcomes of Gastrectomy in the Elderly. World J. Surg. 2012, 36, 1632–1639. [Google Scholar] [CrossRef]
- Xishan, Z.; Ye, Z.; Feiyan, M.; Liang, X.; Shikai, W. The Role of Prognostic Nutritional Index for Clinical Outcomes of Gastric Cancer after Total Gastrectomy. Sci. Rep. 2020, 10, 17373. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.; Shen, Z.; Zhang, S.; Hu, L.; Sun, Q.; Xu, K.; Jin, Y.; Sang, W. Prognostic Values of Geriatric Nutritional Risk Index (GNRI) and Prognostic Nutritional Index (PNI) in Elderly Patients with Diffuse Large B-Cell Lymphoma. J. Cancer 2021, 12, 7010–7017. [Google Scholar] [CrossRef]
- Yan, K.; Wei, W.; Shen, W.; Du, X.; Zhu, S.; Zhao, H.; Wang, X.; Yang, J.; Zhang, X.; Deng, W. Combining the Systemic Inflammation Response Index and Prognostic Nutritional Index to Predict the Prognosis of Locally Advanced Elderly Esophageal Squamous Cell Carcinoma Patients Undergoing Definitive Radiotherapy. J. Gastrointest. Oncol. 2022, 13, 13–25. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, H.; Zeng, Z.; Zhang, K.; Lin, Z.; Deng, G.; Deng, W.; Guan, L.; Wei, X.; Li, X.; et al. Preoperative Prognostic Nutrition Index as a Prognostic Indicator of Survival in Elderly Patients Undergoing Gastric Cancer Surgery. Cancer Manag. Res. 2021, 13, 5263–5273. [Google Scholar] [CrossRef] [PubMed]
- Giaccherini, L.; Galaverni, M.; Renna, I.; Timon, G.; Galeandro, M.; Pisanello, A.; Russo, M.; Botti, A.; Iotti, C.; Ciammella, P. Role of Multidimensional Assessment of Frailty in Predicting Outcomes in Older Patients with Glioblastoma Treated with Adjuvant Concurrent Chemo-Radiation. J. Geriatr. Oncol. 2019, 10, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Araki, M.; Sumida, Y.; Wakata, K.; Hamada, K.; Kugiyama, T.; Shibuya, A.; Nishimuta, M.; Nakamura, A. Short- and Long-Term Outcome After Gastric Cancer Resection in Patients Aged 80 Years and Older. Cancer Diagn. Progn. 2022, 2, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; To, K.; Wada, H.; Sakakibara, Y.; Ozeki, K.; Komaki, M.; Kondo, M. Total Risk Points Predict Short- and Long-Term Outcomes Following Colorectal Cancer Resection in Older Patients. Cancer Diagn. Progn. 2022, 2, 360–368. [Google Scholar] [CrossRef]
- Hirahara, N.; Tajima, Y.; Fujii, Y.; Yamamoto, T.; Hyakudomi, R.; Taniura, T.; Kaji, S.; Kawabata, Y. Preoperative Prognostic Nutritional Index Predicts Long-Term Outcome in Gastric Cancer: A Propensity Score-Matched Analysis. Anticancer Res. 2018, 38, 4735–4746. [Google Scholar] [CrossRef] [PubMed]
- Hirahara, N.; Tajima, Y.; Fujii, Y.; Kaji, S.; Yamamoto, T.; Hyakudomi, R.; Taniura, T.; Miyazaki, Y.; Kishi, T.; Kawabata, Y. Preoperative Prognostic Nutritional Index Predicts Long-Term Surgical Outcomes in Patients with Esophageal Squamous Cell Carcinoma. World J. Surg. 2018, 42, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Hisada, H.; Takahashi, Y.; Kubota, M.; Shimura, H.; Itobayashi, E.; Shimura, K.; Nakamura, A. Clinical and Therapeutic Features and Prognostic Factors of Metastatic Colorectal Cancer over Age 80: A Retrospective Study. BMC Gastroenterol. 2021, 21, 199. [Google Scholar] [CrossRef]
- Zhang, X.; Edwards, B.J. Malnutrition in Older Adults with Cancer. Curr. Oncol. Rep. 2019, 21, 80. [Google Scholar] [CrossRef] [PubMed]
- Arends, J.; Baracos, V.; Bertz, H.; Bozzetti, F.; Calder, P.C.; Deutz, N.E.P.; Erickson, N.; Laviano, A.; Lisanti, M.P.; Lobo, D.N.; et al. ESPEN Expert Group Recommendations for Action against Cancer-Related Malnutrition. Clin. Nutr. 2017, 36, 1187–1196. [Google Scholar] [CrossRef]
- Attar, A.; Malka, D.; Sabaté, J.M.; Bonnetain, F.; Lecomte, T.; Aparicio, T.; Locher, C.; Laharie, D.; Ezenfis, J.; Taieb, J. Malnutrition Is High and Underestimated During Chemotherapy in Gastrointestinal Cancer: An AGEO Prospective Cross-Sectional Multicenter Study. Nutr. Cancer 2012, 64, 535–542. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.-C.; Liu, D.-C.; Tong, C.; Wen, W.; Chen, R.-H. Clinical Significance of the Controlling Nutritional Status (CONUT) Score in Gastric Cancer Patients: A Meta-Analysis of 9,764 Participants. Front. Nutr. 2023, 10, 1156006. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Ji, W.; Zhao, Y.; He, Y.; Liu, Y.; Li, Q.; Shi, H.; Cui, J. The PG-SGA Outperforms the NRS 2002 for Nutritional Risk Screening in Cancer Patients: A Retrospective Study from China. Front. Nutr. 2023, 10, 1272420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wan, Z.; Zhu, Y.; Zhang, L.; Zhang, L.; Wan, H. Prevalence of Malnutrition Comparing NRS2002, MUST, and PG-SGA with the GLIM Criteria in Adults with Cancer: A Multi-Center Study. Nutrition 2021, 83, 111072. [Google Scholar] [CrossRef] [PubMed]
- Prasetiyo, P.D.; Baskoro, B.A.; Hariyanto, T.I. The Role of Nutrition-Based Index in Predicting Survival of Breast Cancer Patients: A Systematic Review and Meta-Analysis. Heliyon 2024, 10, e23541. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xu, R.; Hu, D.-M.; Zhang, Y.; Gong, T.-P.; Wu, X.-L. Prognostic Nutritional Index Predicts Outcomes of Patients after Gastrectomy for Cancer: A Systematic Review and Meta-Analysis of Nonrandomized Studies. Nutr. Cancer 2019, 71, 557–568. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gao, P.; Song, Y.; Sun, J.; Chen, X.; Zhao, J.; Ma, B.; Wang, Z. The Prognostic Nutritional Index Is a Predictive Indicator of Prognosis and Postoperative Complications in Gastric Cancer: A Meta-Analysis. Eur. J. Surg. Oncol. 2016, 42, 1176–1182. [Google Scholar] [CrossRef]
- Hu, Y.; Shen, J.; Liu, R.; Feng, Z.; Zhang, C.; Ling, L.; Chen, L. Prognostic Value of Pretreatment Prognostic Nutritional Index in Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. Int. J. Biol. Markers 2018, 33, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Luan, C.; Wang, F.; Wei, N.; Chen, B. Prognostic Nutritional Index and the Prognosis of Diffuse Large B-Cell Lymphoma: A Meta-Analysis. Cancer Cell Int. 2020, 20, 455. [Google Scholar] [CrossRef]
- Jepsen, P.; Johnsen, S.; Gillman, M.; Sørensen, H. Interpretation of Observational Studies. Heart 2004, 90, 956–960. [Google Scholar] [CrossRef]
Study Country | Design (Period) | Follow-Up, Months (Range) | Sample Size, n (Females) [Age] | Cancer (Treatment) | TNM Stage (%) | Blood Samples | Cut-Off (Estimation) | Outcome | Results |
---|---|---|---|---|---|---|---|---|---|
Almuradova, E. (2023) [35] Türkiye | RC (2010–2020) | 5.9 (0.9–32.5) | 71 (12) [≥75] | SCLC (None: 27% CT/RT: 73%) | NR | NR | PNI: 40 (previous studies) | OS | HR 2.22 [1.28–3.84], p = 0.004 |
Endo, S. (2022) [46] Japan | RC (2010–2019) | NR | 166 (53) [≥80] | GC (Surgery) | I: 43 II: 29 III: 20 IV: 8 | NR | High PNI: ≥45 | OS | Ref. |
Medium PNI: 40–45 | HR 1.82 [0.87–3.79], p = 0.11 | ||||||||
Low PNI: <40 (NR) | HR 1.39 [0.68–2.86], p = 0.36 | ||||||||
Giaccherini, L. (2019) [55] Australia | RC (2013–2017) | 9.7 (2.0–30.6) | 34 (11) [≥65] | GB (Surgery and RT) | NR | Before RT | PNI: 42 (NR) | OS | Univariate [p = 0.10] |
PFS | Univariate [p = 0.23] | ||||||||
Hashimoto, S. (2022) [56] Japan | RC (2013–2020) | 23.9 (0.4–81.9) | 109 (41) [≥80] | GC (Surgery) | I: 48.6 II: 28.4 III: 22.9 | NR | PNI: 44.2 (ROC curve) | OS | HR 2.06 [1.02–4.15], p = 0.04 |
Hashimoto, S. (2022) [57] Japan | RC (2015–2020) | 30.3 (0.6–72.2) | 237 (86) [≥65] | CC (Surgery) | NR | NR | PNI: 45 (previous studies) | OS | HR 2.15 [0.84–5.51], p = 0.11 |
Hirahara, N. (2018) [59] Japan | RC (2006–2015) | 60 | 59 (8) [≥70] | ESCC (Surgery) | I: 62.7 II/III: 37.3 | NR | PNI: 49.2 (ROC curve) | OS | Univariate [p = 0.13] |
CSS | Univariate [p = 0.28] | ||||||||
Hirahara, N. (2018) [58] Japan | RC (2009–2016) | NR | 126 (43) [≥70] | GC (Surgery) | I: 37.3 II: 27.0 III: 35.7 | 1 week before surgery | PNI: 44.3 (ROC curve) | OS | HR 2.23 [1.14–4.79], p = 0.02 |
CSS | Univariate [p = 0.42] | ||||||||
Hirahara, N. (2018) [58] Japan | RC (2012–2016) | NR | 43 (22) [≥80] | CC (Surgery: 74% CT/noCT: 28%/72%) | NR | NR | PNI: 35 (previous studies) | OS | HR 8.57 [2.63–27.9], p = 0.000 |
Hisada, H. (2022) [25] Japan | RC (2009–2019) | 56.1 (0.6–147.6) | 767 (208) [≥65] | GC (ESD) | NR | NR | PNI: 44.6 (NR) | OS | HR 2.68 [1.43–5.03], p = 0.002 |
Hu, Y. (2023) [26] China | RC (2010–2022) | NR | 282 (39) [≥65] | HCC (Surgery) | NR | NR | PNI: 49.05 (rank statistics) | OS | HR 0.16 [0.06–0.44], p < 0.01 |
RFS | HR 0.22 [0.12–0.41], p < 0.001 | ||||||||
Kang, S. (2023) [27] Republic of Korea | RC (2005–2015) | 91.8 (11.6–198.1) | 294 (89) [≥75] | GC (Surgery: 80% ESD: 20%) | NR | 1 month of initial therapy | PNI: 45 | OS | HR 1.43 [0.99–2.07], p = 0.06 |
CONUT: 2 (NR) | Univariate [p = 0.967] | ||||||||
Kim, G.H. (2021) [28] Republic of Korea | RC (2005–2016) | 70.5 (4–174) | 280 (98) [≥80] | GC (ESD) | NR | NR | PNI: NR (NR) | OS | HR 0.93 [0.90–0.98], p = 0.002 |
Kishida, Y. (2022) [29] Japan | RC (2002–2015) | NR | 417 (128) [≥75] | GC (Surgery: 64% ESD: 36%) | NR | 2 months of initial therapy | PNI: 45 | OS | Males: HR 2.06 [1.07–3.96], p = 0.03 Females: Univariate [p = 0.15] |
CONUT: 3 (previous studies) | Males: HR 1.26 [0.68–2.36], p = 0.46 Females: Univariate [p = 1.00] | ||||||||
Lu, S. (2022) [30] China | RC (2012–2021) | 29 | 172 (59) [≥60] | CC (Surgery) | 0/I: 48.9 II: 27.3 III: 23.8 | 2 weeks before surgery | PNI: NR | OS | Univariate [p < 0.001] |
CONUT: NR | Univariate [p = 0.002] | ||||||||
PNI: NR | DFS | Univariate [p = 0.03] | |||||||
CONUT: NR (NR) | Univariate [p = 0.79] | ||||||||
Ma, C. (2022) [31] China | RC (2012–2019) | NR | 49 [60~80] | Osteosarcoma | NR | 2 weeks before surgery | PNI: 48.5 (ROC curve) | OS | HR 0.34 [0.13–0.91], p = 0.03 |
Miura, N. (2020) [16] Japan | RC (2007–2010) | 60 (0–117) | 122 (53) [≥75] | NSCLC (Surgery) | I: 78.7 II/III: 21.3 | 2 weeks before surgery | CONUT: 1 (ROC curve) | OS | HR 2.10 [1.20–3.67], p = 0.009 |
Nishibeppu, K. (2022) [32] Japan | RC (2013–2017) | 46.5 (2.5–81.8) | 228 (54) [≥75] | GC (Surgery) | I/II: 67.1 III: 32.9 | NR | PNI: 42.7 (NR) | OS | HR 1.69 [0.82–3.4], p = 0.15 |
Peng, H. (2021) [33] China | RC (2013–2017) | 39 (1–82) | 121 (25) [≥65] | ESCC (Surgery) | NR | 1 week before surgery | PNI: 45.35 (ROC curve) | OS | HR 0.91 [0.42–1.99], p = 0.81 |
Pénichoux, J. (2023) [34] France | PC (2012–2014) | 22.7 | 95 (48) [≥70] | DLBCL (CT) | I/II: 32 III/IV: 68 | NR | PNI: 45 (previous studies) | OS | Univariate [p = 0.03] |
PFS | Univariate [p = 0.04] | ||||||||
Qiu, J. (2023) [36] China | RC (2011–2020) | 24.7 | 460 (157) [≥65] | ESCC (CRT or RT) | II: 24.8 III/IV: 75.2 | 1 week before therapy | PNI: 46.55 | OS | HR 0.91 [0.7–1.2], p = 0.49 |
CONUT: 3 | HR 1.49 [1.1–2.01], p = 0.009 | ||||||||
PNI: 46.55 | PFS | HR 1.01 [0.76–1.34], p = 0.95 | |||||||
CONUT: 3 (ROC curve) | HR 1.43 [1.04–1.96], p = 0.03 | ||||||||
Sakurai, K. (2019) [37] Japan | RC (2006–2011) | 60 (2–112) | 175 (58) [≥75] | GC (Surgery) | I: 92.5 II: 7.4 | NR | PNI: 45 (NR) | OS | HR 2.2 [1.23–2.96], p = 0.008 |
Sakurai, K. (2016) [38] Japan | RC (2004–2011) | 51 (4–115) | 147 (52) [≥75] | GC (Surgery) | I: 60.5 II: 19 III: 20.4 | NR | PNI: 43.8 (ROC curve) | OS | HR 1.88 [1.03–3.51], p = 0.04 |
Shimizu, S. (2023) [39] Japan | RC (2008–2012) | NR | 82 (26) [≥75] | GC (Surgery) | NR | NR | PNI: 45.5 (ROC curve) | OS | HR 3.65 [1.43–9.36], p = 0.007 |
Shoji, F. (2018) [40] Japan | RC (2005–2012) | 51 (0–132) | 272 (117) [≥75] | NSCLC (Surgery) | I: 74.2 II: 16.6 III: 9.2 | 2 weeks before surgery | PNI: 49.6 | OS | HR 1.15 [0.73–1.78], p = 0.54 |
CONUT: 0 (ROC curve) | HR 1.23 [0.82–1.82], p = 0.32 | ||||||||
Sugawara, K. (2020) [41] Japan | RC (2002–2016) | 58.2 | 309 (91) [≥75] | GC (Surgery) | I: 61.5 II: 21 III: 17.5 | 2 weeks before surgery | PNI: 45 (previous studies) | OS | HR 1.6 [1.03–2.5], p = 0.04 |
CSS | HR 1.48 [0.7–3.26], p = 0.31 | ||||||||
Suzuki, S. (2019) [42] Japan | RC (2000–2015) | 47 (5–185) | 211 (70) [≥75] | GC (Surgery) | I: 62.6 II: 25.1 III: 12.3 | NR | CONUT: 5 (NR) | OS | HR 2.12 [1.18–3.69], p = 0.01 |
CSS | HR 3.75 [1.3–10.43], p = 0.02 | ||||||||
Tamai, K. (2022) [43] Japan | RC (2006–2014) | 36 (1–141) | 163 (89) [≥80] | CC (Surgery) | NR | 1 month of surgery | PNI: 44.9 (ROC curve) | OS | HR 1.54 [0.75–3.27], p = 0.24 |
CSS | HR 1.51 [0.46–5.97], p = 0.52 | ||||||||
RFS | Univariate [p = 0.10] | ||||||||
Tamura, K. (2023) [44] Japan | RC (2018–2020) | NR | 81 (50) [≥90] | CC (Surgery) | I: 14.8 II: 40.7 III: 28.4 IV: 16.1 | Pre-surgery | PNI: 38 (ROC curve) | Postoperative 90-day mortality | HR 1.77 [0.09–33.82], p = 0.70 |
Toya, Y. (2021) [45] Japan | RC (2002–2017) | 72 | 70 (28) [≥85] | GC (ESD) | NR | NR | PNI: 42.5 (ROC curve) | OS | HR 3.4 [1.47–7.86], p = 0.004 |
Toya, Y. (2019) [47] Japan | RC (2002–2012) | 80 | 87 (22) [≥75] | GC (ESD) | NR | NR | PNI: 44.8 (ROC curve) | OS | HR 1.5 [0.6–3.77], p = 0.39 |
Waki, K. (2022) [48] Japan | RC (2007–2012) | 67 | 400 (108) [≥75] | GC (Surgery) | NR | NR | PNI: 49.1 (ROC curve) | OS | HR 2.49 [1.53–4.06] |
Watanabe, I. (2018) [49] Japan | RC (2008–2014) | 46.8 | 131 (63) [≥75] | LC (Surgery and CT) | I: 84 II/III/IV: 16 | 1/2 weeks before surgery | PNI: 45 (previous studies) | OS | HR 2.74 [1.12–6.09], p = 0.03 |
Watanabe, M. (2012) [50] Japan | RC (2005–2011) | 35 (5–71) | 99 [≥75] | GC (Surgery) | NR | Pre-surgery | PNI: 44.7 | OS | HR 2.69 [1.15–6.31], p = 0.02 |
Xishan, Z. (2020) [51] China | RC (2005–2015) | NR | 83 (12) [≥65] | GC (Surgery) | NR | 2 weeks before surgery | PNI: 43 (ROC curve) | CSS | HR 2.43 [0.57–4.28] |
Yan, D. (2021) [52] China | RC (2014–2018) | 35.2 | 133 (66) [≥60] | DLBCL (ICT) | I/II: 59.4 III/IV: 40.6 | NR | PNI: 47 (ROC curve) | OS | HR 0.41 [0.27–0.71], p = 0.001 |
Yan, K. (2022) [53] China | RC (2013–2016) | 21.3 (3.8–95.1) | 192 (81) [≥65] | ESCC (RT) | NR | 2 weeks before RT | PNI: 49.6 (ROC curve) | OS | HR 0.71 [0.51–0.99], p = 0.045 |
PFS | HR 0.89 [0.62–1.29], p = 0.54 | ||||||||
Zhang, Q. (2021) [17] China | PC (NR) | 43.1 | 1494 (543) [≥65] | Cancer (CT: 63% RT: 100% Surgery: 24% IT: 7%) | I: 9.8 II: 22.5 III: 25 IV: 42.7 | 1st day of admission | PNI continuous | OS | HR 0.98 [0.97–0.99], p < 0.001 |
PNI > 38: Absent | Ref. | ||||||||
PNI: 35–38: Moderate | HR 1.6 [1.17–2.19], p = 0.004 | ||||||||
PNI < 35: Severe | HR 2.08 [1.58–2.73], p < 0.001 | ||||||||
CONUT continuous | HR 1.09 [1.05–1.13], p < 0.001 | ||||||||
CONUT: 0–1: absent | Ref. | ||||||||
CONUT: 2–4: mild | HR 1.34 [1.12–1.61], p = 0.002 | ||||||||
CONUT: 5–8: moderate | HR 1.72 [1.34–2.2], p < 0.001 | ||||||||
CONUT: 9–12: severe (NR) | HR 1.89 [1.14–3.13], p = 0.01 | ||||||||
Zhang, X. (2021) [54] China | RC (2010–2017) | 36 | 454 (139) [≥60] | GC (Surgery) | I: 21.8 II: 29.5 III: 47.8 | 1 week before surgery | PNI: 45.1 (ROC curve) | OS | HR 1.69 [1.12–2.53], p = 0.01 |
Study | Selection a | Comparability b | Outcome c | Total | Quality |
---|---|---|---|---|---|
Almuradova, E. (2023) [35] | *** | ** | *** | 8 | Good |
Endo, S. (2022) [46] | *** | ** | *** | 8 | Good |
Giaccherini, L. (2019) [55] | *** | * | *** | 7 | Good |
Hashimoto, S. (2022a) [56] | *** | ** | *** | 8 | Good |
Hashimoto, S. (2022b) [57] | *** | ** | *** | 8 | Good |
Hirahara, N. (2018a) [59] | *** | ** | *** | 8 | Good |
Hirahara, N. (2018b) [58] | *** | ** | *** | 8 | Good |
Hisada, H. (2021) [60] | *** | ** | *** | 8 | Good |
Hisada, H. (2022) [25] | *** | ** | *** | 8 | Good |
Hu, Y. (2023) [26] | *** | * | *** | 7 | Good |
Kang, S. (2023) [27] | *** | * | *** | 7 | Good |
Kim, G.H. (2021) [28] | *** | ** | *** | 8 | Good |
Kishida, Y. (2022) [29] | *** | ** | *** | 8 | Good |
Lu, S. (2022) [30] | *** | ** | *** | 8 | Good |
Ma, C. (2022) [31] | *** | ** | *** | 8 | Good |
Miura, N. (2020) [16] | *** | * | *** | 7 | Good |
Nishibeppu, K. (2022) [32] | *** | ** | *** | 8 | Good |
Peng, H. (2021) [33] | *** | ** | *** | 8 | Good |
Pénichoux, J. (2023) [34] | *** | ** | *** | 8 | Good |
Qiu, J. (2023) [36] | *** | ** | *** | 8 | Good |
Sakurai, K. (2019) [37] | *** | ** | *** | 8 | Good |
Sakurai, K. (2016) [38] | *** | ** | *** | 8 | Good |
Shimizu, S. (2023) [39] | *** | * | *** | 7 | Good |
Shoji, F. (2018) [40] | *** | ** | *** | 8 | Good |
Sugawara, K. (2020) [41] | *** | ** | *** | 8 | Good |
Suzuki, S. (2019) [42] | *** | ** | *** | 8 | Good |
Tamai, K. (2022) [43] | *** | ** | *** | 8 | Good |
Tamura, K. (2023) [44] | *** | ** | ** | 7 | Good |
Toya, Y. (2021) [45] | *** | * | *** | 7 | Good |
Toya, Y. (2019) [47] | *** | * | *** | 7 | Good |
Waki, K. (2022) [48] | *** | * | *** | 7 | Good |
Watanabe, I. (2018) [49] | *** | ** | *** | 8 | Good |
Watanabe, M. (2012) [50] | *** | ** | *** | 8 | Good |
Xishan, Z. (2020) [51] | *** | * | ** | 6 | Moderate |
Yan, D. (2021) [52] | *** | ** | *** | 8 | Good |
Yan, K. (2022) [53] | *** | ** | *** | 8 | Good |
Zhang, Q. (2021) [17] | **** | ** | *** | 9 | Good |
Zhang, X. (2021) [54] | *** | ** | *** | 8 | Good |
PNI | CONUT | ||||||
---|---|---|---|---|---|---|---|
OS | CSS | PFS/ DFS/ RFS | 90-Day Mortality | OS | CSS | PFS/ DFS/ RFS | |
Gastric cancer | 13/4 | 0/3 | 1/2 | 1/0 | |||
Colorectal cancer | 1/3 | 0/1 | 0/2 | 0/1 | 0/1 | 0/1 | |
ESCC | 1/3 | 0/1 | 0/2 | 1/0 | 1/0 | ||
Lung cancer | 2/1 | 1/1 | |||||
Diffuse large B cell lymphoma | 1/1 | 0/1 | |||||
Glioblastoma | 0/1 | 0/1 | |||||
Hepatocellular carcinoma | 1/0 | 1/0 | |||||
Osteosarcoma | 1/0 | ||||||
Cancer | 1/0 | 1/0 | |||||
Total | 21/13 | 0/5 | 1/6 | 0/1 | 4/4 | 1/0 | 1/1 |
Subgroup analysis | |||||||
Japan (23 studies) | 13/7 | 0/4 | 0/1 | 2/2 | |||
China (10 studies) | 6/3 | 0/1 | 1/3 | 2/1 | |||
PNI < 45 (13 studies) | 9/4 | ||||||
PNI ≥ 45 (19 studies) | 11/8 | ||||||
CONUT < 2 (4 studies) | 2/2 | ||||||
CONUT ≥ 2 (3 studies) | 2/1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, A.F.; Fernandes, T.; Carvalho, M.d.C.; Loureiro, H.S. The Prognostic Role of Prognostic Nutritional Index and Controlling Nutritional Status in Predicting Survival in Older Adults with Oncological Disease: A Systematic Review. Onco 2024, 4, 101-115. https://doi.org/10.3390/onco4020009
Ferreira AF, Fernandes T, Carvalho MdC, Loureiro HS. The Prognostic Role of Prognostic Nutritional Index and Controlling Nutritional Status in Predicting Survival in Older Adults with Oncological Disease: A Systematic Review. Onco. 2024; 4(2):101-115. https://doi.org/10.3390/onco4020009
Chicago/Turabian StyleFerreira, Ana Filipa, Tatiana Fernandes, Maria do Carmo Carvalho, and Helena Soares Loureiro. 2024. "The Prognostic Role of Prognostic Nutritional Index and Controlling Nutritional Status in Predicting Survival in Older Adults with Oncological Disease: A Systematic Review" Onco 4, no. 2: 101-115. https://doi.org/10.3390/onco4020009
APA StyleFerreira, A. F., Fernandes, T., Carvalho, M. d. C., & Loureiro, H. S. (2024). The Prognostic Role of Prognostic Nutritional Index and Controlling Nutritional Status in Predicting Survival in Older Adults with Oncological Disease: A Systematic Review. Onco, 4(2), 101-115. https://doi.org/10.3390/onco4020009