Obtaining Novel Vitamin B12 Production Strains Acetobacter malorum HFD 3141 and Acetobacter orientalis HFD 3031 from Home-Fermented Sourdough
Abstract
:1. Introduction
2. Materials and Methods
2.1. Used Culture Media for Enrichment and Isolation
2.2. Samples
- “Symbio Extra RedCare”, Shop-Apotheke B.V., Sevenum, Netherlands: Lactobacillus acidophilus, Lacticaseibacillus paracasei, Lactococcus lactis, Bifidobacterium lactis;
- “OMNi-BiOTiC® 10”, APG Allergosan Pharma GmbH, Graz, Austria: L. acidophilus W55, L. acidophilus W37, L. plantarum W1, B. lactis W51, Enterococcus faecium W54, L. paracasei W20, Lacticaseibacillus rhamnosus W71, Ligilactobacillus salivarius W24, L. plantarum W62, Bifidobacterium bifidum W23;
- “BactoFlor 10/20”, Dr. Wolz Zell GmbH, Geisenheim, Germany: B. bifidum, Bifidobacterium breve, Bifidobacterium longum, L. acidophilus, L. paracasei, Limosilactobacillus reuteri, L. rhamnosus, L. plantarum, E. faecium;
- “Darmflora plus select”, Dr. Wolz Zell GmbH, Geisenheim, Germany: L. acidophilus, Lacticaseibacillus casei, L. rhamnosus, L. plantarum, B. breve, Streptococcus thermophilus, B. bifidum, B. lactis.
2.3. Overview of the Isolation Procedure
2.4. Sample Preparation
2.5. Modified Microbial Vitamin B12 Assay (MBA)
2.6. Growth Conditions and Determination of Bioactive Forms of Vitamin B12
2.7. Identification of the Isolated Production Strains
2.8. Testing for Low pH Growth on Apple Juice
2.9. Quantification Procedure by Microbial Vitamin B12 Assay (MBA)
3. Results
3.1. Isolation of Cobalamin Producers
3.2. Identification of the Isolated Strains
3.3. LC-MS/MS Verification of Vitamin B12 Formation
3.4. Low pH Tolerance Test
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Watanabe, F.; Bito, T. Vitamin B12 Sources and Microbial Interaction. Exp. Biol. Med. 2018, 243, 148–158. [Google Scholar] [CrossRef]
- Waldmann, A.; Koschizke, J.W.; Leitzmann, C.; Hahn, A. Dietary Intakes and Lifestyle Factors of a Vegan Population in Germany: Results from the German Vegan Study. Eur. J. Clin. Nutr. 2003, 57, 947–955. [Google Scholar] [CrossRef]
- EFSA NDA Panel. Scientific Opinion on Dietary Reference Values for Cobalamin (Vitamin B12). EFSA J. 2015, 13, 4150. [Google Scholar] [CrossRef]
- Gomes Soares, M.; Bevilaqua, G.C.; Marcondes Tassi, É.M.; Reolon Schmidt, V.C. Fermented Foods and Beverages: A Potential in situ Vitamin B12 Biofortification—A Literature Review. Int. J. Food Sci. Nutr. 2023, 74, 655–667. [Google Scholar] [CrossRef]
- Fang, H.; Kang, J.; Zhang, D. Microbial Production of Vitamin B12: A Review and Future Perspectives. Microb. Cell Fact. 2017, 16, 15. [Google Scholar] [CrossRef]
- Hugenschmidt, S.; Schwenninger, S.M.; Gnehm, N.; Lacroix, C. Screening of a Natural Biodiversity of Lactic and Propionic Acid Bacteria for Folate and Vitamin B12 Production in Supplemented Whey Permeate. Int. Dairy J. 2010, 20, 852–857. [Google Scholar] [CrossRef]
- Bernhardt, C.; Zhu, X.; Schütz, D.; Fischer, M.; Bisping, B. Cobalamin is Produced by Acetobacter pasteurianus DSM 3509. Appl. Microbiol. Biotechnol. 2019, 103, 3875–3885. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Hayashi, M.; Kamikubo, T. Isolation of 5,6-Dimethylbenzimidazolyl Cobamide Coenzyme as a Cofactor for Glutamate Formation from Acetobacter suboxydans. Biochim. Biophys. Acta 1968, 165, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Ide, M.; Utsumi, H.; Niiro, T.; Shimamura, Y.; Murata, M. Production Potency of Folate, Vitamin B12, and Thiamine by Lactic Acid Bacteria Isolated from Japanese pickles. Biosci. Biotechnol. Biochem. 2012, 76, 2061–2067. [Google Scholar] [CrossRef]
- De Angelis, M.; Bottacini, F.; Fosso, B.; Kelleher, P.; Calasso, M.; Di Cagno, R.; Ventura, M.; Picardi, E.; van Sinderen, D.; Gobbetti, M. Lactobacillus rossiae, a Vitamin B12 Producer, Represents a Metabolically Versatile Species within the Genus Lactobacillus. PLoS ONE 2014, 9, e107232. [Google Scholar] [CrossRef] [PubMed]
- Ranaei, V.; Pilevar, Z.; Khaneghah, A.M.; Hosseini, H. Propionic Acid: Method of Production, Current State and Perspectives. Food Technol. Biotechnol. 2020, 58, 115–127. [Google Scholar] [CrossRef]
- Falentin, H.; Deutsch, S.-M.; Jan, G.; Loux, V.; Thierry, A.; Parayre, S.; Maillard, M.-B.; Dherbécourt, J.; Cousin, F.J.; Jardin, J.; et al. The Complete Genome of Propionibacterium freudenreichii CIRM-BIA1, a Hardy Actinobacterium with Food and Probiotic Applications. PLoS ONE 2010, 5, e11748. [Google Scholar] [CrossRef]
- Piwowarek, K.; Lipińska, E.; Hać-Szymańczuk, E.; Kot, A.M.; Kieliszek, M.; Bonin, S. Use of Propionibacterium freudenreichii T82 Strain for Effective Biosynthesis of Propionic Acid and Trehalose in a Medium with Apple Pomace Extract and Potato Wastewater. Molecules 2021, 26, 3965. [Google Scholar] [CrossRef] [PubMed]
- Rehberger, J.L.; Glatz, B.A. Response of Cultures of Propionibacterium to Acid and Low pH: Tolerance and Inhibition. J. Food Prot. 1998, 61, 211–216. [Google Scholar] [CrossRef]
- Thierry, A.; Deutsch, S.-M.; Falentin, H.; Dalmasso, M.; Cousin, F.J.; Jan, G. New Insights into Physiology and Metabolism of Propionibacterium freudenreichii. Int. J. Food Microbiol. 2011, 149, 19–27. [Google Scholar] [CrossRef]
- Teusink, B.; Molenaar, D. Systems Biology of Lactic Acid Bacteria: For Food and Thought. Curr. Opin. Syst. Biol. 2017, 6, 7–13. [Google Scholar] [CrossRef]
- König, H.; Berkelmann-Löhnertz, B. Maintenance of Wine-Associated Microorganisms. In Biology of Microorganisms on Grapes, in Must and in Wine; König, H., Unden, G., Fröhlich, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 451–468. ISBN 9783540854623. [Google Scholar]
- Banerjee, R.; Ragsdale, S.W. The Many Faces of Vitamin B12: Catalysis by Cobalamin-Dependent Enzymes. Annu. Rev. Biochem. 2003, 72, 209–247. [Google Scholar] [CrossRef] [PubMed]
- Shelton, A.N.; Seth, E.C.; Mok, K.C.; Han, A.W.; Jackson, S.N.; Haft, D.R.; Taga, M.E. Uneven Distribution of Cobamide Biosynthesis and Dependence in Bacteria Predicted by Comparative Genomics. ISME J. 2019, 13, 789–804. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B.; Tomar, S.K.; Mandal, S. Phenotypic and Genotypic Screening of Human-Originated Lactobacilli for Vitamin B12 Production Potential: Process Validation by Micro-Assay and UFLC. Appl. Microbiol. Biotechnol. 2016, 100, 6791–6803. [Google Scholar] [CrossRef]
- Okada, N.; Chettanachitara, C.; Daengsubha, W. Screening of Bacteria Producing Vitamin B12 from Tua-Nao in Thailand. Jpn. Int. Res. Cent. Agric. Sci. 1995, 2, 49–57. [Google Scholar]
- Ribeiro, M.; Maciel, C.; Cruz, P.; Darmancier, H.; Nogueira, T.; Costa, M.; Laranjeira, J.; Morais, R.M.S.C.; Teixeira, P. Exploiting Potential Probiotic Lactic Acid Bacteria Isolated from Chlorella vulgaris Photobioreactors as Promising Vitamin B12 Producers. Foods 2023, 12, 3277. [Google Scholar] [CrossRef]
- Dudko, D.; Milker, S.; Holtmann, D.; Buchhaupt, M. Identification of Vitamin B12 Producing Bacteria Based on the Presence of bluB/cobT2 Homologues. Biotechnol. Lett. 2023, 45, 563–572. [Google Scholar] [CrossRef]
- Deptula, P.; Kylli, P.; Chamlagain, B.; Holm, L.; Kostiainen, R.; Piironen, V.; Savijoki, K.; Varmanen, P. BluB/CobT2 Fusion Enzyme Activity Reveals Mechanisms Responsible for Production of Active Form of Vitamin B12 by Propionibacterium freudenreichii. Microb. Cell Fact. 2015, 14, 186. [Google Scholar] [CrossRef]
- Kumari, M.; Bhushan, B.; Kokkiligadda, A.; Kumar, V.; Behare, P.; Tomar, S.K. Vitamin B12 Biofortification of Soymilk through Optimized Fermentation with Extracellular B12 Producing Lactobacillus Isolates of Human Fecal Origin. Curr. Res. Food Sci. 2021, 4, 646–654. [Google Scholar] [CrossRef] [PubMed]
- Raux, E.; Thermes, C.; Heathcote, P.; Rambach, A.; Warren, M.J. A Role for Salmonella typhimurium cbiK in Cobalamin (Vitamin B12) and Siroheme Biosynthesis. J. Bacteriol. 1997, 179, 3202–3212. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Lenz, T.; Maxones, A.; Pichner, R.; Birringer, M. Determination of Vitamin B12 in Commercial Pepsin Preparations Using Immunoaffinity Chromatography and LC-MS/MS. Appl. Res. 2023, 2, e202200112. [Google Scholar] [CrossRef]
- Wang, M.; Asam, S.; Chen, J.; Ehrmann, M.; Rychlik, M. Production of Four 15N-Labelled Cobalamins via Biosynthesis Using Propionibacterium freudenreichii. Front. Microbiol. 2021, 12, 713321. [Google Scholar] [CrossRef]
- Lisdiyanti, P.; Kawasaki, H.; Seki, T.; Yamada, Y.; Uchimura, T.; Komagata, K. Identification of Acetobacter Strains Isolated from Indonesian Sources, and Proposals of Acetobacter syzygii sp. nov., Acetobacter cibinongensis sp. nov., and Acetobacter orientalis sp. nov. J. Gen. Appl. Microbiol. 2001, 47, 119–131. [Google Scholar] [CrossRef]
- Cleenwerck, I.; Vandemeulebroecke, K.; Janssens, D.; Swings, J. Re-Examination of the Genus Acetobacter, with Descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int. J. Syst. Evol. Microbiol. 2002, 52, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Es-Sbata, I.; Lakhlifi, T.; Yatim, M.; El-Abid, H.; Belhaj, A.; Hafidi, M.; Zouhair, R. Screening and Molecular Characterization of New Thermo- and Ethanol-Tolerant Acetobacter malorum Strains Isolated from Two Biomes Moroccan Cactus Fruits. Biotechnol. Appl. Biochem. 2021, 68, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Rainard, P. Mammary Microbiota of Dairy Ruminants: Fact or Fiction? Vet. Res. 2017, 48, 25. [Google Scholar] [CrossRef] [PubMed]
- Williamson, J.R.; Callaway, T.R.; Lourenco, J.M.; Ryman, V.E. Characterization of Rumen, Fecal, and Milk Microbiota in Lactating Dairy Cows. Front. Microbiol. 2022, 13, 984119. [Google Scholar] [CrossRef] [PubMed]
- Gomes, R.J.; Borges, M.d.F.; Rosa, M.d.F.; Castro-Gómez, R.J.H.; Spinosa, W.A. Acetic Acid Bacteria in the Food Industry: Systematics, Characteristics and Applications. Food Technol. Biotechnol. 2018, 56, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Wieme, A.D.; Spitaels, F.; Aerts, M.; de Bruyne, K.; van Landschoot, A.; Vandamme, P. Effects of Growth Medium on Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectra: A Case Study of Acetic Acid Bacteria. Appl. Environ. Microbiol. 2014, 80, 1528–1538. [Google Scholar] [CrossRef]
- Valera, M.J.; Laich, F.; González, S.S.; Torija, M.J.; Mateo, E.; Mas, A. Diversity of Acetic Acid Bacteria Present in Healthy Grapes from the Canary Islands. Int. J. Food Microbiol. 2011, 151, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Hosono, R.; Lisdyanti, P.; Widyastuti, Y.; Saono, S.; Uchimura, T.; Komagata, K. Identification of Acetic Acid Bacteria Isolated from Indonesian Sources, Especially of Isolates Classified in the Genus Gluconobacter. J. Gen. Appl. Microbiol. 1999, 45, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Garcia, R.; McCubbin, T.; Navone, L.; Stowers, C.; Nielsen, L.; Marcellin, E. Microbial Propionic Acid Production. Fermentation 2017, 3, 21. [Google Scholar] [CrossRef]
- Amelia, R.; Philip, K.; Pratama, Y.E.; Purwati, E. Characterization and Probiotic Potential of Lactic Acid Bacteria Isolated from Dadiah Sampled in West Sumatra. Food Sci. Technol. 2021, 41, 746–752. [Google Scholar] [CrossRef]
- Malimas, T.; Thi Lan Vu, H.; Muramatsu, Y.; Yukphan, P.; Tanasupawat, S.; Yamada, Y. Systematics of Acetic Acid Bacteria. In Acetic Acid Bacteria; Sengun, I.Y., Ed.; Series: Food biology series|A science publishers book; CRC Press: Boca Raton, FL, USA, 2017; pp. 3–43. ISBN 9781315153490. [Google Scholar]
- Crofts, T.S.; Seth, E.C.; Hazra, A.B.; Taga, M.E. Cobamide Structure Depends on Both Lower Ligand Availability and CobT Substrate Specificity. Chem. Biol. 2013, 20, 1265–1274. [Google Scholar] [CrossRef]
- Hazra, A.B.; Tran, J.L.A.; Crofts, T.S.; Taga, M.E. Analysis of Substrate Specificity in CobT Homologs Reveals Widespread Preference for DMB, the Lower Axial Ligand of Vitamin B12. Chem. Biol. 2013, 20, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Sokolovskaya, O.M.; Mok, K.C.; Park, J.D.; Tran, J.L.A.; Quanstrom, K.A.; Taga, M.E. Cofactor Selectivity in Methylmalonyl Coenzyme A Mutase, a Model Cobamide-Dependent Enzyme. mBio 2019, 10, e01303-19. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Xiang, S.; Chen, J.; Shi, Y.; Chen, Y.; Wang, H.; Zhu, X. Effect of Lactobacillus reuteri on Vitamin B12 Content and Microbiota Composition of Furu Fermentation. LWT 2019, 100, 138–143. [Google Scholar] [CrossRef]
- Kantachote, D.; Ratanaburee, A.; Hayisama-ae, W.; Sukhoom, A.; Nunkaew, T. The Use of Potential Probiotic Lactobacillus plantarum DW12 for Producing a Novel Functional Beverage from Mature Coconut Water. J. Funct. Foods 2017, 32, 401–408. [Google Scholar] [CrossRef]
- Tindjau, R.; Chua, J.-Y.; Liu, S.-Q. Co-Culturing Propionibacterium freudenreichii and Bifidobacterium animalis subsp. lactis Improves Short-Chain Fatty Acids and Vitamin B12 Contents in Soy Whey. Food Microbiol. 2024, 121, 104525. [Google Scholar] [CrossRef] [PubMed]
- Chamlagain, B.; Edelmann, M.; Katina, K.; Varmanen, P.; Piironen, V. Vitamin B12 Production in Solubilized Protein Extract of Bioprocessed Wheat Bran with Propionibacterium freudenreichii. LWT 2024, 192, 115731. [Google Scholar] [CrossRef]
- Chamlagain, B.; Deptula, P.; Edelmann, M.; Kariluoto, S.; Grattepanche, F.; Lacroix, C.; Varmanen, P.; Piironen, V. Effect of the Lower Ligand Precursors on Vitamin B12 Production by Food-Grade Propionibacteria. LWT 2016, 72, 117–124. [Google Scholar] [CrossRef]
- Yassunaka Hata, N.N.; Surek, M.; Sartori, D.; Vassoler Serrato, R.; Aparecida Spinosa, W. Role of Acetic Acid Bacteria in Food and Beverages. Food Technol. Biotechnol. 2023, 61, 85–103. [Google Scholar] [CrossRef]
- Landis, E.A.; Oliverio, A.M.; McKenney, E.A.; Nichols, L.M.; Kfoury, N.; Biango-Daniels, M.; Shell, L.K.; Madden, A.A.; Shapiro, L.; Sakunala, S.; et al. The Diversity and Function of Sourdough Starter Microbiomes. Elife 2021, 10, e61644. [Google Scholar] [CrossRef]
Indicator Growth | Number of Products | Microbial Community | Isolates |
---|---|---|---|
Negative | 9 | 6 | 15 |
Positive | 7 L. reuteri DSM 20016 | 1 (sourdough) L. reuteri DSM 20016 | 6 L. reuteri DSM 20016 |
Initial pH | A. orientalis HFD 3031 | A. malorum HFD 3141 | ||||
---|---|---|---|---|---|---|
ΔOD600 | ΔpH | Vitamin B12 [µg/L] | ΔOD600 | ΔpH | Vitamin B12 [µg/L] | |
2.85 | 0.068 ± 0.24 | −0.05 | 0.35 ± 0.90 | 0.000 ± 0.008 | −0.05 | <LOD * |
3.05 | 0.193 ± 0.42 | −0.05 | 2.68 ± 0.92 | 0.059 ± 0.018 | −0.08 | 0.89 ± 0.92 |
3.30 (Original) | 0.248 ± 0.063 | −0.07 | 3.19 ± 0.13 | 0.069 ± 0.005 | −0.18 | 0.21 ± 0.96 |
3.55 | 0.349 ± 0.064 | −0.26 | 10.29 ± 0.50 | 0.088 ± 0.006 | −0.22 | 3.81 ± 1.42 |
3.80 | 0.438 ± 0.026 | −0.33 | 18.89 ± 2.33 | 0.181 ± 0.024 | −0.38 | 7.97 ± 1.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stumpf, L.; Schildbach, S.; Coffey, A. Obtaining Novel Vitamin B12 Production Strains Acetobacter malorum HFD 3141 and Acetobacter orientalis HFD 3031 from Home-Fermented Sourdough. Appl. Microbiol. 2024, 4, 986-999. https://doi.org/10.3390/applmicrobiol4030067
Stumpf L, Schildbach S, Coffey A. Obtaining Novel Vitamin B12 Production Strains Acetobacter malorum HFD 3141 and Acetobacter orientalis HFD 3031 from Home-Fermented Sourdough. Applied Microbiology. 2024; 4(3):986-999. https://doi.org/10.3390/applmicrobiol4030067
Chicago/Turabian StyleStumpf, Lisa, Stefan Schildbach, and Aidan Coffey. 2024. "Obtaining Novel Vitamin B12 Production Strains Acetobacter malorum HFD 3141 and Acetobacter orientalis HFD 3031 from Home-Fermented Sourdough" Applied Microbiology 4, no. 3: 986-999. https://doi.org/10.3390/applmicrobiol4030067
APA StyleStumpf, L., Schildbach, S., & Coffey, A. (2024). Obtaining Novel Vitamin B12 Production Strains Acetobacter malorum HFD 3141 and Acetobacter orientalis HFD 3031 from Home-Fermented Sourdough. Applied Microbiology, 4(3), 986-999. https://doi.org/10.3390/applmicrobiol4030067