Beneficial Plant–Microbe Interactions and Stress Tolerance in Maize
Abstract
:1. Introduction
2. Abiotic Stresses and Their Impact on Crop Productivity
3. Mechanism of Abiotic Stress Tolerance in Maize
3.1. Drought Stress
3.2. Salinity Stress
3.3. Heat Stress
4. Biotic Stress and Crop Production
5. Beneficial Plant–Microbe Interactions in Maize
5.1. Arbuscular Mycorrhizal Symbiosis
5.2. Nitrogen-Fixing Symbiosis with Rhizobia
5.3. Agricultural Application of Stress-Tolerant Microbes
5.4. Microbe-Mediated Induced Systemic Resistance (ISR) in Maize
Host Associated Microbial Strains | Effect/Mechanism of Stress Tolerance | References |
---|---|---|
Microbial-mediated beneficial drought stress tolerance | ||
Rhizobium R. etli bv. Phaseoli, R. leguminosarum bv. Trifolii, Sinorhizobium sp. | Enhanced growth, increased plant height, improved grain yield | [86] |
Herbaspirillum seopedicae Azospirillum sp. | Increased grain yield Higher N accumulation | [87] |
Piriformospora indica | Increased leaf area and SPAD value Increased root fresh and dry weight Decreased Malondialdehyde (MDA) accumulation Upregulation of antioxidants and drought-related genes | [89] |
Pseudomonas putida | Form viable biofilms around roots Increased soil holding capacity Improved soil structure | [95] |
Pseudomonas aeruginosa Alcaligenes faecalis Proteus peneri | Increased soil moisture content Enhanced plant growth traits such as leaf area, shoot length, and root length Downregulation of catalase, ascorbate peroxidase, and glutathione peroxidase | [96] |
Klebsiella variicola Pseudomonas fluorescens Raoultella planticola | Increased levels of betaine, glycine, and choline Improved plant growth | [97] |
Burkholderia sp. Mitsuaria sp. | Increased proline and phytohormone accumulation Higher antioxidant activity Decreased MDA content | [98] |
Megathyrsus maximus | Increased proline accumulation Decreased in MDA content Reduced glutathione reductase activity | [99] |
Azospirillum brasilense Pseudomonas putida Sphingomonas | Symcoms containing these microbes had increased shoot dry weight, root dry weight, and plant height | [100] |
Azospirillum lipoferum | Increased proline and soluble sugar and amino acid accumulation Enhanced shoot and root weight, root length | [101,102] |
Bacillus sp. | Increased proline accumulation Reduction in electrolyte leakage Decreased activity of antioxidants | [103] |
Burkholderia phytofirmans Strain PsJN Enterobacter sp. FD17 | Increased root and shoot biomass Higher chlorophyll content Increased leaf area and photosynthetic rate | [104] |
Rhizophagus irregularis | Increased hydraulic conductivity and the water permeability coefficient Increased phosphorylation of plasma membrane intrinsic proteins (PIPs) Increased photosynthetic activity | [105] |
B pumilus | Increased relative water content and osmotic potential Higher photosynthetic activity Increased ABA production | [106] |
Azospirillum brasilense SP-7 Herbaspirillum seropedicae Z-152 | Decreased expression of ZmVP14 | [107] |
Microbial-mediated beneficial saline stress tolerance | ||
Bacillus sp. PM31 | Improved maize growth under salinity stress | [90] |
Co-inoculation of Rhizophagus intraradices Massilia sp. RK4 | Increased nutrient uptake Increased AMF root colonization Decreased leaf proline levels | [108] |
Rhizobium sp. Pseudomonas sp. | Enhanced proline production Decreasd electrolyte leakage Reduced osmotic potential Selective K ion uptake | [109] |
Pseudomonas fluorescens, P. syringae, P. chlororaphis Enterobacter aerogenes | ACC-deaminase for increasing plant height, biomass, and cob yield Higher grain mass and straw yield Increased P and K uptake Higher K+/Na+ ratio | [110] |
Glomus mosseae | Enhanced soluble sugar accumulation Increased total organic acids, acetic acid, malic acid, oxalic acid, fumaric acid, and citric acid accumulation Increased upregulation of the osmoregulation process | [111] |
B. amyloliquefaciens SQR9 | Increased chlorophyll content Enhanced soluble sugar content Decreased level of Na+ Upregulation of RBCS, RBCL, H+-PPase, HKT1, NHX1, NHX2, and NHX3 | [112] |
Kocuria rhizophila Y1 | Increased photosynthetic capacity and relative water content Increased antioxidant levels Decreased level of Na+ | [113] |
Azotobacter chroococcum | Increased K+/Na+ ratio Higher chlorophyll content Increased proline concentration | [95] |
Microbial-mediated beneficial heat stress tolerance | ||
Bacillus sp. AH-08, AH-67, AH-16 Pseudomonas sp. SH-29 | Upregulation of heat shock proteins (HSPs) Increased total chlorophyll, catalase, and peroxidase Enhanced plant height, leaf area, and root and shoot fresh and dry weight Decreased concentration of MDA | [114] |
Rhizophagus intraradices Funneliformis mosseae F. geosporum | Increased quantum efficiency of PSII Higher photosynthetic rate Increased plant height, leaf width, and cob number | [115] |
Glomus etunicatum | Increased water content and leaf water potential Increased photosynthetic activity Higher stomatal conductance | [116] |
Glomus sp. | Regulation of electron transport through PSII Increased plant height and leaf width | [117] |
6. Challenges and Future Perspectives
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chávez-Arias, C.C.; Ligarreto-Moreno, G.A.; Ramírez-Godoy, A.; Restrepo-Díaz, H. Maize Responses Challenged by Drought, Elevated Daytime Temperature and Arthropod Herbivory Stresses: A Physiological, Biochemical and Molecular View. Front. Plant Sci. 2021, 12, 702841. [Google Scholar] [CrossRef] [PubMed]
- Nyirenda, H.; Mwangomba, W.; Nyirenda, E.M. Delving into Possible Missing Links for Attainment of Food Security in Central Malawi: Farmers’ Perceptions and Long Term Dynamics in Maize (Zea mays L.) Production. Heliyon 2021, 7, e07130. [Google Scholar] [CrossRef] [PubMed]
- Asibi, A.E.; Chai, Q.; A. Coulter, J. Mechanisms of Nitrogen Use in Maize. Agronomy 2019, 9, 775. [Google Scholar] [CrossRef]
- Gheith, E.M.S.; El-Badry, O.Z.; Lamlom, S.F.; Ali, H.M.; Siddiqui, M.H.; Ghareeb, R.Y.; El-Sheikh, M.H.; Jebril, J.; Abdelsalam, N.R.; Kandil, E.E. Maize (Zea mays L.) Productivity and Nitrogen Use Efficiency in Response to Nitrogen Application Levels and Time. Front. Plant Sci. 2022, 13, 941343. [Google Scholar] [CrossRef]
- Maitah, M.; Malec, K.; Maitah, K. Influence of Precipitation and Temperature on Maize Production in the Czech Republic from 2002 to 2019. Sci. Rep. 2021, 11, 10467. [Google Scholar] [CrossRef]
- AbdElgawad, H.; Zinta, G.; Hegab, M.M.; Pandey, R.; Asard, H.; Abuelsoud, W. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs. Front. Plant Sci. 2016, 7, 276. [Google Scholar] [CrossRef]
- Schachtman, D.; Liu, W. Molecular Pieces to the Puzzle of the Interaction between Potassium and Sodium Uptake in Plants. Trends Plant Sci. 1999, 4, 281–287. [Google Scholar] [CrossRef]
- Chawla, S.; Jain, S.; Jain, V. Salinity Induced Oxidative Stress and Antioxidant System in Salt-Tolerant and Salt-Sensitive Cultivars of Rice (Oryza sativa L.). J. Plant Biochem. Biotechnol. 2011, 22, 27–34. [Google Scholar] [CrossRef]
- Corona, A.O. Insect Pests of Maize: A Guide for Field Identification; CIMMYT: Mexico City, Mexico, 1987. [Google Scholar]
- Widstrom, N.W. The Role of Insects and Other Plant Pests in Aflatoxin Contamination of Corn, Cotton, and Peanuts—A Review. J. Environ. Qual. 1979, 8, 5–11. [Google Scholar] [CrossRef]
- Shelake, R.M.; Pramanik, D.; Kim, J.-Y. Exploration of Plant-Microbe Interactions for Sustainable Agriculture in CRISPR Era. Microorganisms 2019, 7, 269. [Google Scholar] [CrossRef]
- Rochefort, A.; Simonin, M.; Marais, C.; Guillerm-Erckelboudt, A.-Y.; Barret, M.; Sarniguet, A. Transmission of Seed and Soil Microbiota to Seedling. mSystems 2021, 6, e0044621. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.; Khadka, R.; Doni, F.; Uphoff, N. Benefits to Plant Health and Productivity from Enhancing Plant Microbial Symbionts. Front. Plant Sci. 2021, 11, 610065. [Google Scholar] [CrossRef] [PubMed]
- Vocciante, M.; Grifoni, M.; Fusini, D.; Petruzzelli, G.; Franchi, E. The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses. Appl. Sci. 2022, 12, 1231. [Google Scholar] [CrossRef]
- Zilber-Rosenberg, I.; Rosenberg, E. Role of Microorganisms in the Evolution of Animals and Plants: The Hologenome Theory of Evolution. FEMS Microbiol. Rev. 2008, 32, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, J.; Singh, V.; Hewitt, K.; Kaundal, A. Exploration of the Rhizosphere Microbiome of Native Plant Ceanothus velutinus—An Excellent Resource of Plant Growth-Promoting Bacteria. Front. Plant Sci. 2022, 13, 979069. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, J.; Hewitt, K.; Devkota, A.R.; Wilson, T.; Kaundal, A. IAA-Producing Plant Growth Promoting Rhizobacteria from Ceanothus velutinus Enhance Cutting Propagation Efficiency and Arabidopsis Biomass. Front. Plant Sci. 2024, 15, 1374877. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Lee, B.-M. Effects of Climate Change and Drought Tolerance on Maize Growth. Plants 2023, 12, 3548. [Google Scholar] [CrossRef]
- Ziyomo, C.; Bernardo, R. Drought Tolerance in Maize: Indirect Selection through Secondary Traits versus Genomewide Selection. Crop Sci. 2013, 53, 1269–1275. [Google Scholar] [CrossRef]
- Hussain, H.A.; Men, S.; Hussain, S.; Chen, Y.; Ali, S.; Zhang, S.; Zhang, K.; Li, Y.; Xu, Q.; Liao, C.; et al. Interactive Effects of Drought and Heat Stresses on Morpho-Physiological Attributes, Yield, Nutrient Uptake and Oxidative Status in Maize Hybrids. Sci. Rep. 2019, 9, 3890. [Google Scholar] [CrossRef] [PubMed]
- Siebers, M.H.; Slattery, R.A.; Yendrek, C.R.; Locke, A.M.; Drag, D.; Ainsworth, E.A.; Bernacchi, C.J.; Ort, D.R. Simulated Heat Waves during Maize Reproductive Stages Alter Reproductive Growth but Have No Lasting Effect When Applied during Vegetative Stages. Agric. Ecosyst. Environ. 2017, 240, 162–170. [Google Scholar] [CrossRef]
- Neiff, N.; Trachsel, S.; Valentinuz, O.R.; Balbi, C.N.; Andrade, F.H. High Temperatures around Flowering in Maize: Effects on Photosynthesis and Grain Yield in Three Genotypes. Crop Sci. 2016, 56, 2702–2712. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear Heat Effects on African Maize as Evidenced by Historical Yield Trials. Nat. Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Hatfield, J. Increased Temperatures Have Dramatic Effects on Growth and Grain Yield of Three Maize Hybrids. Agric. Environ. Lett. 2016, 1, 150006. [Google Scholar] [CrossRef]
- Boehlein, S.K.; Liu, P.; Webster, A.; Ribeiro, C.; Suzuki, M.; Wu, S.; Guan, J.-C.; Stewart, J.D.; Tracy, W.F.; Settles, A.M.; et al. Effects of Long-Term Exposure to Elevated Temperature on Zea mays Endosperm Development during Grain Fill. Plant J. 2019, 99, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Cakir, R. Effect of Water Stress at Different Development Stages on Vegetative and Reproductive Growth of Corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Hütsch, B.W.; Faust, F.; Jung, S.; Schubert, S. Drought Stress during Maize Flowering May Cause Kernel Abortion by Inhibition of Plasma Membrane H+-ATPase Activity. J. Plant Nutr. Soil Sci. 2024, 187, 321–332. [Google Scholar] [CrossRef]
- Aslam, M.; Maqbool, M.A.; Cengiz, R. Drought Stress in Maize (Zea mays L.): Effects, Resistance Mechanism, Global Achievements and Biological Strategies for Improvement; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-319-25442-5. [Google Scholar]
- Izaurralde, R.C.; Thomson, A.M.; Morgan, J.A.; Fay, P.A.; Polley, H.W.; Hatfield, J.L. Climate Impacts on Agriculture: Implications for Forage and Rangeland Production. Agron. J. 2011, 103, 371–381. [Google Scholar] [CrossRef]
- Gabaldón-Leal, C.; Webber, H.; Otegui, M.E.; Slafer, G.A.; Ordóñez, R.A.; Gaiser, T.; Lorite, I.J.; Ruiz-Ramos, M.; Ewert, F. Modelling the Impact of Heat Stress on Maize Yield Formation. Field Crops Res. 2016, 198, 226–237. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Ren, H.; Zhao, B.; Zhang, J.; Ren, B.; Liu, P. Maize (Zea mays L.) Responses to Heat Stress: Mechanisms That Disrupt the Development and Hormone Balance of Tassels and Pollen. J. Agron. Crop Sci. 2023, 209, 502–516. [Google Scholar] [CrossRef]
- Singh, V.; Krause, M.; Sandhu, D.; Sekhon, R.S.; Kaundal, A. Salinity Stress Tolerance Prediction for Biomass-Related Traits in Maize (Zea mays L.) Using Genome-Wide Markers. Plant Genome 2023, 16, e20385. [Google Scholar] [CrossRef]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt Stress in Maize: Effects, Resistance Mechanisms, and Management. A Review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef]
- Gong, X.; Chao, L.; Zhou, M.; Hong, M.; Luo, L.; Wang, L.; Ying, W.; Jingwei, C.; Songjie, G.; Fashui, H. Oxidative Damages of Maize Seedlings Caused by Exposure to a Combination of Potassium Deficiency and Salt Stress. Plant Soil 2011, 340, 443–452. [Google Scholar] [CrossRef]
- Kaya, C.; Ashraf, M.; Dikilitas, M.; Tuna, A.L. Alleviation of Salt Stress-Induced Adverse Effects on Maize Plants by Exogenous Application of Indoleacetic Acid (IAA) and Inorganic Nutrients—A Field Trial. Aust. J. Crop Sci. 2013, 7, 249–254. [Google Scholar]
- Katerji, N.; van Hoorn, J.W.; Hamdy, A.; Karam, F.; Mastrorilli, M. Effect of Salinity on Water Stress, Growth, and Yield of Maize and Sunflower. Agric. Water Manag. 1996, 30, 237–249. [Google Scholar] [CrossRef]
- Shahzad, M.; Witzel, K.; Zörb, C.; Mühling, K.H. Growth-Related Changes in Subcellular Ion Patterns in Maize Leaves (Zea mays L.) under Salt Stress. J. Agron. Crop Sci. 2012, 198, 46–56. [Google Scholar] [CrossRef]
- Arshad, M.; Ranamukhaarachchi, S.L.; Ahmad, S.; Nawaz, R.; Qayyum, M.M.N.; Razaq, A.; Faiz, F. Variability and Correlation of Selected Soil Attributes and Maize Yield Influenced by Tillage Systems in Mountainous Agroecosystem. J. Soil Water Conserv. 2022, 77, 466–481. [Google Scholar] [CrossRef]
- Kumar, J.; Abbo, S. Genetics of Flowering Time in Chickpea and Its Bearing on Productivity in Semiarid Environments. Adv. Agron. 2001, 72, 107–138. [Google Scholar] [CrossRef]
- Turner, N.; Wright, G.; Siddique, K. Adaptation of Grain Legumes (Pulses) to Water-Limited Environments. Adv. Agron. 2001, 71, 193–231. [Google Scholar] [CrossRef]
- Khan, S.; Anwar, S.; Ashraf, M.Y.; Khaliq, B.; Sun, M.; Hussain, S.; Gao, Z.; Noor, H.; Alam, S. Mechanisms and Adaptation Strategies to Improve Heat Tolerance in Rice. A Review. Plants 2019, 8, 508. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, P.; Zou, Y.-N.; Wu, Q.-S.; Kuča, K. Effects of Mycorrhizal Fungi on Root-Hair Growth and Hormone Levels of Taproot and Lateral Roots in Trifoliate Orange under Drought Stress. Arch. Agron. Soil Sci. 2019, 65, 1316–1330. [Google Scholar] [CrossRef]
- Blum, A. Osmotic Adjustment Is a Prime Drought Stress Adaptive Engine in Support of Plant Production. Plant Cell Environ. 2017, 40, 4–10. [Google Scholar] [CrossRef]
- Lamaoui, M.; Jemo, M.; Datla, R.; Bekkaoui, F. Heat and Drought Stresses in Crops and Approaches for Their Mitigation. Front. Chem. 2018, 6, 26. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef]
- Wang, C.; Yang, A.; Yin, H.; Zhang, J. Influence of Water Stress on Endogenous Hormone Contents and Cell Damage of Maize Seedlings. J. Integr. Plant Biol. 2008, 50, 427–434. [Google Scholar] [CrossRef]
- Jones, B.; Gunnerås, S.A.; Petersson, S.V.; Tarkowski, P.; Graham, N.; May, S.; Dolezal, K.; Sandberg, G.; Ljung, K. Cytokinin Regulation of Auxin Synthesis in Arabidopsis Involves a Homeostatic Feedback Loop Regulated via Auxin and Cytokinin Signal Transduction. Plant Cell 2010, 22, 2956–2969. [Google Scholar] [CrossRef]
- Weiss, D.; Ori, N. Mechanisms of Cross Talk between Gibberellin and Other Hormones. Plant Physiol. 2007, 144, 1240–1246. [Google Scholar] [CrossRef]
- Rao, S.R.; Qayyum, A.; Razzaq, A.; Ahmad, M.; Mahmood, I.; Sher, A. Role of Foliar Application of Salicylic Acid and L-Tryptophan in Drought Tolerance of Maize. J. Anim. Plant Sci. 2012, 22, 768–772. [Google Scholar]
- Shen, Y.-Y.; Wang, X.-F.; Wu, F.-Q.; Du, S.-Y.; Cao, Z.; Shang, Y.; Wang, X.-L.; Peng, C.-C.; Yu, X.-C.; Zhu, S.-Y.; et al. The Mg-Chelatase H Subunit Is an Abscisic Acid Receptor. Nature 2006, 443, 823–826. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Sandhu, D.; Kaundal, A. Dynamics of Salt Tolerance: Molecular Perspectives. In Biotechnologies of Crop Improvement, Volume 3: Genomic Approaches; Gosal, S.S., Wani, S.H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 25–40. ISBN 978-3-319-94746-4. [Google Scholar]
- Amin, I.; Rasool, S.; Mir, M.A.; Wani, W.; Masoodi, K.Z.; Ahmad, P. Ion Homeostasis for Salinity Tolerance in Plants: A Molecular Approach. Physiol. Plant 2021, 171, 578–594. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Kumar, A.; Benazir, I.; Kumar, G. Reassessing the Role of Ion Homeostasis for Improving Salinity Tolerance in Crop Plants. Physiol. Plant. 2021, 171, 502–519. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, J.; Wang, Y.; Liang, X.; Zhang, M.; Lu, M.; Guo, Y.; Qin, F.; Jiang, C. The Classical SOS Pathway Confers Natural Variation of Salt Tolerance in Maize. New Phytol. 2022, 236, 479–494. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Guo, Y. Elucidating the Molecular Mechanisms Mediating Plant Salt-Stress Responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Wang, Y.; Gui, C.; Nguvo, K.J.; Ma, L.; Wang, Q.; Shen, Q.; Zhang, R.; Gao, X. Beneficial Rhizobacterium Triggers Induced Systemic Resistance of Maize to Gibberella Stalk Rot via Calcium Signaling. Mol. Plant Microbe Interact. 2023, 36, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Horie, T.; Xue, S.; Leung, H.-Y.; Katsuhara, M.; Brodsky, D.E.; Wu, Y.; Schroeder, J.I. Differential Sodium and Potassium Transport Selectivities of the Rice OsHKT2;1 and OsHKT2;2 Transporters in Plant Cells. Plant Physiol. 2009, 152, 341–355. [Google Scholar] [CrossRef] [PubMed]
- Zivcak, M.; Brestic, M.; Sytar, O. Osmotic Adjustment and Plant Adaptation to Drought Stress. In Drought Stress Tolerance in Plants, Vol 1: Physiology and Biochemistry; Hossain, M.A., Wani, S.H., Bhattacharjee, S., Burritt, D.J., Tran, L.-S.P., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 105–143. ISBN 978-3-319-28899-4. [Google Scholar]
- Subbarao, G.V.; Nam, N.H.; Chauhan, Y.S.; Johansen, C. Osmotic Adjustment, Water Relations and Carbohydrate Remobilization in Pigeonpea under Water Deficits. J. Plant Physiol. 2000, 157, 651–659. [Google Scholar] [CrossRef]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Khan, M.A.R. Understanding the Roles of Osmolytes for Acclimatizing Plants to Changing Environment: A Review of Potential Mechanism. Plant Signal. Behav. 2021, 16, 1913306. [Google Scholar] [CrossRef] [PubMed]
- Yancey, P.H. Compatible and Counteracting Solutes: Protecting Cells from the Dead Sea to the Deep Sea. Sci. Prog. 2004, 87, 1–24. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of Glycine Betaine and Proline in Improving Plant Abiotic Stress Resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Yoshiba, Y.; Kiyosue, T.; Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Regulation of Levels of Proline as an Osmolyte in Plants under Water Stress. Plant Cell Physiol. 1997, 38, 1095–1102. [Google Scholar] [CrossRef]
- Rosa, M.; Prado, C.; Podazza, G.; Interdonato, R.; González, J.A.; Hilal, M.; Prado, F.E. Soluble Sugars—Metabolism, Sensing and Abiotic Stress. Plant Signal. Behav. 2009, 4, 388–393. [Google Scholar] [CrossRef]
- Liu, F.-F.; Ji, L.; Zhang, L.; Dong, X.-Y.; Sun, Y. Molecular Basis for Polyol-Induced Protein Stability Revealed by Molecular Dynamics Simulations. J. Chem. Phys. 2010, 132, 225103. [Google Scholar] [CrossRef]
- Njeru, F.; Wambua, A.; Muge, E.; Haesaert, G.; Gettemans, J.; Misinzo, G. Major Biotic Stresses Affecting Maize Production in Kenya and Their Implications for Food Security. PeerJ 2023, 11, e15685. [Google Scholar] [CrossRef]
- Lodha, T.D.; Hembram, P.; Nitile Tep, J.B. Proteomics: A Successful Approach to Understand the Molecular Mechanism of Plant-Pathogen Interaction. Am. J. Plant Sci. 2013, 2013, 32899. [Google Scholar] [CrossRef]
- Gong, F.; Yang, L.; Tai, F.; Hu, X.; Wang, W. “Omics” of Maize Stress Response for Sustainable Food Production: Opportunities and Challenges. Omics J. Integr. Biol. 2014, 18, 714–732. [Google Scholar] [CrossRef]
- Basu, S.K.; Dutta, M.; Goyal, A.; Bhowmik, P.K.; Kumar, J.; Nandy, S.; Scagliusi, S.M.; Prasad, R. Is Genetically Modified Crop the Answer for the next Green Revolution? GM Crops 2010, 1, 68–79. [Google Scholar] [CrossRef]
- Hung, H.-Y.; Shannon, L.M.; Tian, F.; Bradbury, P.J.; Chen, C.; Flint-Garcia, S.A.; McMullen, M.D.; Ware, D.; Buckler, E.S.; Doebley, J.F.; et al. ZmCCT and the Genetic Basis of Day-Length Adaptation Underlying the Postdomestication Spread of Maize. Proc. Natl. Acad. Sci. USA 2012, 109, E1913–E1921. [Google Scholar] [CrossRef]
- Jasso-Robles, F.I.; Jiménez-Bremont, J.F.; Becerra-Flora, A.; Juárez-Montiel, M.; Gonzalez, M.E.; Pieckenstain, F.L.; García De La Cruz, R.F.; Rodríguez-Kessler, M. Inhibition of Polyamine Oxidase Activity Affects Tumor Development during the Maize-Ustilago maydis Interaction. Plant Physiol. Biochem. 2016, 102, 115–124. [Google Scholar] [CrossRef]
- Takahashi, Y.; Berberich, T.; Miyazaki, A.; Seo, S.; Ohashi, Y.; Kusano, T. Spermine Signalling in Tobacco: Activation of Mitogen-Activated Protein Kinases by Spermine Is Mediated through Mitochondrial Dysfunction. Plant J. 2003, 36, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Herridge, D.F.; Peoples, M.B.; Boddey, R.M. Global Inputs of Biological Nitrogen Fixation in Agricultural Systems. Plant Soil 2008, 311, 1–18. [Google Scholar] [CrossRef]
- Peoples, M.B.; Brockwell, J.; Herridge, D.F.; Rochester, I.J.; Alves, B.J.R.; Urquiaga, S.; Boddey, R.M.; Dakora, F.D.; Bhattarai, S.; Maskey, S.L.; et al. The Contributions of Nitrogen-Fixing Crop Legumes to the Productivity of Agricultural Systems. Symbiosis 2009, 48, 1–17. [Google Scholar] [CrossRef]
- Akiyama, K.; Hayashi, H. Strigolactones: Chemical Signals for Fungal Symbionts and Parasitic Weeds in Plant Roots. Ann. Bot. 2006, 97, 925–931. [Google Scholar] [CrossRef]
- Lucido, A.; Andrade, F.; Basallo, O.; Eleiwa, A.; Marin-Sanguino, A.; Vilaprinyo, E.; Sorribas, A.; Alves, R. Modeling the Effects of Strigolactone Levels on Maize Root System Architecture. Front. Plant Sci. 2024, 14, 1329556. [Google Scholar] [CrossRef]
- Guan, J.C.; Koch, K.E.; Suzuki, M.; Wu, S.; Latshaw, S.; Petruff, T.; Goulet, C.; Klee, H.J.; McCarty, D.R. Diverse Roles of Strigolactone Signaling in Maize Architecture and the Uncoupling of a Branching-Specific Subnetwork. Plant Physiol. 2012, 160, 1303–1317. [Google Scholar] [CrossRef]
- Genre, A.; Chabaud, M.; Timmers, T.; Bonfante, P.; Barker, D.G. Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago Truncatula Root Epidermal Cells before Infection. Plant Cell 2005, 17, 3489–3499. [Google Scholar] [CrossRef]
- Mortier, E.; Mounier, A.; Kreplak, J.; Martin-Laurent, F.; Recorbet, G.; Lamotte, O. Evidence That a Common Arbuscular Mycorrhizal Network Alleviates Phosphate Shortage in Interconnected Walnut Sapling and Maize Plants. Front. Plant Sci. 2023, 14, 1206047. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, M.; Wang, Z.; Li, J.; Liu, K.; Huang, D. The Role of Arbuscular Mycorrhizal Symbiosis in Plant Abiotic Stress. Front. Microbiol. 2024, 14, 1323881. [Google Scholar] [CrossRef]
- Hui, J.; An, X.; Li, Z.; Neuhäuser, B.; Ludewig, U.; Wu, X.; Schulze, W.; Chen, F.; Feng, G.; Lambers, H.; et al. The Mycorrhiza-Specific Ammonium Transporter ZmAMT3;1 Mediates Mycorrhiza-Dependent Nitrogen Uptake in Maize Roots. Plant Cell 2022, 34, 4066–4087. [Google Scholar] [CrossRef]
- Cheng, Z.; Meng, L.; Yin, T.; Li, Y.; Zhang, Y.; Li, S. Changes in Soil Rhizobia Diversity and Their Effects on the Symbiotic Efficiency of Soybean Intercropped with Maize. Agronomy 2023, 13, 997. [Google Scholar] [CrossRef]
- Lucas, T.M.R.; Carlos, H.C.; Fabio, L.C.M.; Gustavo, V.M. Azospirillum spp. Potential for Maize Growth and Yield. Afr. J. Biotechnol. 2018, 17, 574–585. [Google Scholar] [CrossRef]
- Hayat, R.; Ahmed, I.; Sheirdil, R.A. An Overview of Plant Growth Promoting Rhizobacteria (PGPR) for Sustainable Agriculture. In Crop Production for Agricultural Improvement; Ashraf, M., Öztürk, M., Ahmad, M.S.A., Aksoy, A., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 557–579. ISBN 978-94-007-4115-7. [Google Scholar]
- Garcia de Salamone, I.E.; Döbereiner, J.; Urquiaga, S.; Boddey, R.M. Biological Nitrogen Fixation in Azospirillum Strain-Maize Genotype Associations as Evaluated by the 15N Isotope Dilution Technique. Biol. Fertil. Soils 1996, 23, 249–256. [Google Scholar] [CrossRef]
- Deynze, A.V.; Zamora, P.; Delaux, P.-M.; Heitmann, C.; Jayaraman, D.; Rajasekar, S.; Graham, D.; Maeda, J.; Gibson, D.; Schwartz, K.D.; et al. Nitrogen Fixation in a Landrace of Maize Is Supported by a Mucilage-Associated Diazotrophic Microbiota. PLoS Biol. 2018, 16, e2006352. [Google Scholar] [CrossRef]
- Xu, L.; Wang, A.; Wang, J.; Wei, Q.; Zhang, W. Piriformospora indica Confers Drought Tolerance on Zea mays L. through Enhancement of Antioxidant Activity and Expression of Drought-Related Genes. Crop J. 2017, 5, 251–258. [Google Scholar] [CrossRef]
- Ali, B.; Hafeez, A.; Afridi, M.S.; Javed, M.A.; Sumaira; Suleman, F.; Nadeem, M.; Ali, S.; Alwahibi, M.S.; Elshikh, M.S.; et al. Bacterial-Mediated Salinity Stress Tolerance in Maize (Zea mays L.): A Fortunate Way toward Sustainable Agriculture. ACS Omega 2023, 8, 20471–20487. [Google Scholar] [CrossRef] [PubMed]
- Ryals, J.; Neuenschwander, U.; Willits, M.; Molina, A.; Steiner, H.; Hunt, M. Systemic Acquired Resistance. Plant Cell 1996, 8, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Bakker, P.A.H.M.; Doornbos, R.F.; Zamioudis, C.; Berendsen, R.L.; Pieterse, C.M.J. Induced Systemic Resistance and the Rhizosphere Microbiome. Plant Pathol. J. 2013, 29, 136–143. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Fan, L.; Fu, K.; Yu, C.; Wang, M.; Xia, H.; Sun, J.; Li, Y.; Chen, J. Cellulase from Trichoderma harzianum Interacts with Roots and Triggers Induced Systemic Resistance to Foliar Disease in Maize. Sci. Rep. 2016, 6, 35543. [Google Scholar] [CrossRef]
- Rojas-Tapias, D.; Moreno-Galván, A.; Pardo-Díaz, S.; Obando, M.; Rivera, D.; Bonilla, R. Effect of Inoculation with Plant Growth-Promoting Bacteria (PGPB) on Amelioration of Saline Stress in Maize (Zea mays). Appl. Soil Ecol. 2012, 61, 264–272. [Google Scholar] [CrossRef]
- Naseem, H.; Bano, A. Role of Plant Growth-Promoting Rhizobacteria and Their Exopolysaccharide in Drought Tolerance of Maize. J. Plant Interact. 2014, 9, 689–701. [Google Scholar] [CrossRef]
- Gou, W.; Tian, L.; Ruan, Z.; Zheng, P.; Chen, F.; Zhang, L.; Cui, Z.; Zheng, P.; Li, Z.; Gao, M.; et al. Accumulation of Choline and Glycinebetaine and Drought Stress Tolerance Induced in Maize (Zea mays) by Three Plant Growth Promoting Rhizobacteria (PGPR) Strains. Pak. J. Bot. 2015, 47, 581–586. [Google Scholar]
- Huang, X.-F.; Zhou, D.; Lapsansky, E.; Reardon, K.; Guo, J.; Andales, M.; Vivanco, J.; Manter, D. Mitsuaria sp. and Burkholderia sp. from Arabidopsis Rhizosphere Enhance Drought Tolerance in Arabidopsis thaliana and Maize (Zea mays L.). Plant Soil 2017, 419, 523–539. [Google Scholar] [CrossRef]
- Moreno-Galván, A.; Cortés-Patiño, S.; Romero-Perdomo, F.; Uribe-Vélez, D.; Bashan, Y.; Bonilla, R. Proline Accumulation and Glutathione Reductase Activity Induced by Drought-Tolerant Rhizobacteria as Potential Mechanisms to Alleviate Drought Stress in Guinea Grass. Appl. Soil Ecol. 2020, 147, 103367. [Google Scholar] [CrossRef]
- Molina-Romero, D.; Baez, A.; Quintero-Hernández, V.; Castañeda-Lucio, M.; Fuentes-Ramírez, L.E.; Bustillos-Cristales, M.d.R.; Rodríguez-Andrade, O.; Morales-García, Y.E.; Munive, A.; Muñoz-Rojas, J. Compatible Bacterial Mixture, Tolerant to Desiccation, Improves Maize Plant Growth. PLoS ONE 2017, 12, e0187913. [Google Scholar] [CrossRef]
- Bano, Q.; Ilyas, N.; Bano, A.; Zafar, N.; Akram, A.; Hassan, F.U. Effect of Azospirillum Innoculation on Maize (Zea mays L.) Under Drought Stress. Pak. J. Bot. 2013, 45, 13–20. [Google Scholar]
- Cohen, A.; Travaglia, C.; Bottini, R.; Piccoli, P. Participation of Abscisic Acid and Gibberellins Produced by Endophytic Azospirillum in the Alleviation of Drought Effects in Maize. Botany 2009, 87, 455–462. [Google Scholar] [CrossRef]
- Vardharajula, S.; Shaik, Z.A.; Grover, M.; Reddy, G.; Venkateswarlu, B. Drought-Tolerant Plant Growth Promoting Bacillus spp.: Effect on Growth, Osmolytes, and Antioxidant Status of Maize under Drought Stress. J. Plant Interact. 2011, 6, 1–14. [Google Scholar] [CrossRef]
- Naveed, M.; Mitter, B.; Reichenauer, T.G.; Wieczorek, K.; Sessitsch, A. Increased Drought Stress Resilience of Maize through Endophytic Colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ. Exp. Bot. 2014, 97, 30–39. [Google Scholar] [CrossRef]
- Quiroga, G.; Erice, G.; Ding, L.; Chaumont, F.; Aroca, R.; Ruiz-Lozano, J.M. The Arbuscular Mycorrhizal Symbiosis Regulates Aquaporins Activity and Improves Root Cell Water Permeability in Maize Plants Subjected to Water Stress. Plant Cell Environ. 2019, 42, 2274–2290. [Google Scholar] [CrossRef]
- Yasmin, H.; Nosheen, A.; Naz, R.; Bano, A.; Keyani, R. L-Tryptophan-Assisted PGPR-Mediated Induction of Drought Tolerance in Maize (Zea mays L.). J. Plant Interact. 2017, 12, 567–578. [Google Scholar] [CrossRef]
- Curá, J.A.; Franz, D.R.; Filosofía, J.E.; Balestrasse, K.B.; Burgueño, L.E. Inoculation with Azospirillum sp. and Herbaspirillum sp. Bacteria Increases the Tolerance of Maize to Drought Stress. Microorganisms 2017, 5, 41. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Kim, K.; Subramanian, P.; Senthilkumar, M.; Anandham, R.; Sa, T. Arbuscular Mycorrhizal Fungi and Associated Bacteria Isolated from Salt-Affected Soil Enhances the Tolerance of Maize to Salinity in Coastal Reclamation Soil. Agric. Ecosyst. Environ. 2016, 231, 233–239. [Google Scholar] [CrossRef]
- Bano, A.; Fatima, M. Salt Tolerance in Zea mays (L). Following Inoculation with Rhizobium and Pseudomonas. Biol. Fertil. Soils 2009, 45, 405–413. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Zahir, Z.A.; Naveed, M.; Arshad, M. Rhizobacteria Containing ACC-Deaminase Confer Salt Tolerance in Maize Grown on Salt-Affected Fields. Can. J. Microbiol. 2009, 55, 1302–1309. [Google Scholar] [CrossRef]
- Sheng, M.; Tang, M.; Zhang, F.; Huang, Y. Influence of Arbuscular Mycorrhiza on Organic Solutes in Maize Leaves under Salt Stress. Mycorrhiza 2011, 21, 423–430. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.; Wu, G.; Kimani, V.; Shen, Q.; Zhang, N.; Zhang, R. Induced Maize Salt Tolerance by Rhizosphere Inoculation of Bacillus amyloliquefaciens SQR9. Physiol. Plant. 2016, 158, 34–44. [Google Scholar] [CrossRef]
- Li, X.; Sun, P.; Zhang, Y.; Jin, C.; Guan, C. A Novel PGPR Strain Kocuria rhizophila Y1 Enhances Salt Stress Tolerance in Maize by Regulating Phytohormone Levels, Nutrient Acquisition, Redox Potential, Ion Homeostasis, Photosynthetic Capacity and Stress-Responsive Genes Expression. Environ. Exp. Bot. 2020, 174, 104023. [Google Scholar] [CrossRef]
- Ahmad, M.; Imtiaz, M.; Nawaz, M.S.; Mubeen, F.; Sarwar, Y.; Hayat, M.; Asif, M.; Naqvi, R.Z.; Ahmad, M.; Imran, A. Thermotolerant PGPR Consortium B3P Modulates Physio-Biochemical and Molecular Machinery for Enhanced Heat Tolerance in Maize during Early Vegetative Growth. Ann. Microbiol. 2023, 73, 34. [Google Scholar] [CrossRef]
- Mathur, S.; Agnihotri, R.; Sharma, M.P.; Reddy, V.R.; Jajoo, A. Effect of High-Temperature Stress on Plant Physiological Traits and Mycorrhizal Symbiosis in Maize Plants. J. Fungi 2021, 7, 867. [Google Scholar] [CrossRef]
- Zhu, X.; Song, F.-B.; Xu, H.-W. Arbuscular Mycorrhizae Improves Low Temperature Stress in Maize via Alterations in Host Water Status and Photosynthesis. Plant Soil 2010, 331, 129–137. [Google Scholar] [CrossRef]
- Mathur, S.; Jajoo, A. Arbuscular Mycorrhizal Fungi Protects Maize Plants from High Temperature Stress by Regulating Photosystem II Heterogeneity. Ind. Crops Prod. 2020, 143, 111934. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burlakoti, S.; Devkota, A.R.; Poudyal, S.; Kaundal, A. Beneficial Plant–Microbe Interactions and Stress Tolerance in Maize. Appl. Microbiol. 2024, 4, 1000-1015. https://doi.org/10.3390/applmicrobiol4030068
Burlakoti S, Devkota AR, Poudyal S, Kaundal A. Beneficial Plant–Microbe Interactions and Stress Tolerance in Maize. Applied Microbiology. 2024; 4(3):1000-1015. https://doi.org/10.3390/applmicrobiol4030068
Chicago/Turabian StyleBurlakoti, Saroj, Ananta R. Devkota, Shital Poudyal, and Amita Kaundal. 2024. "Beneficial Plant–Microbe Interactions and Stress Tolerance in Maize" Applied Microbiology 4, no. 3: 1000-1015. https://doi.org/10.3390/applmicrobiol4030068
APA StyleBurlakoti, S., Devkota, A. R., Poudyal, S., & Kaundal, A. (2024). Beneficial Plant–Microbe Interactions and Stress Tolerance in Maize. Applied Microbiology, 4(3), 1000-1015. https://doi.org/10.3390/applmicrobiol4030068