Health Benefits of Kimchi, Sauerkraut, and Other Fermented Foods of the Genus Brassica
Abstract
:1. Introduction
2. Clinical Trials Investigating the Health Benefits of Consuming Kimchi, Microbes Isolated from Kimchi, Sauerkraut, or Other Fermented Foods Containing Vegetables of the Genus Brassica
3. Observational Studies on the Health Benefits of Consuming Fermented Foods Containing Vegetables of the Genus Brassica
4. Main Limitations of Analyzed Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D.; et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Sikic-Pogacar, M.; Turk, D.M.; Fijan, S. Knowledge of fermentation and health benefits among general population in north-eastern Slovenia. BMC Public Health 2022, 22, 1695. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Das, G.; Paramithiotis, S.; Patra, J.K.; Ray, R.C.; Paramithiotis, S.; de Carvalho Azevedo, V.A.; Montet, D. Chapter 3—Kimchi and sauerkraut lactic acid bacteria and human health. In Lactic Acid Bacteria in Food Biotechnology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 47–62. [Google Scholar]
- Marco, M.L.; Heeney, D.; Binda, S.; Cifelli, C.J.; Cotter, P.D.; Foligné, B.; Gänzle, M.; Kort, R.; Pasin, G.; Pihlanto, A.; et al. Health benefits of fermented foods: Microbiota and beyond. Curr. Opin. Biotechnol. 2017, 44, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Dimidi, E.; Cox, S.R.; Rossi, M.; Whelan, K. Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients 2019, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Cui, F.; Wang, D.; Lv, X.; Li, X.; Li, J. Fermented vegetables: Health benefits, defects, and current technological solutions. Foods 2023, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Synbiotics. Nat. Res. 2020, 17, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Batt, C.A. Microbiology of fermentations. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Šalić, A.; Šamec, D. Changes in the content of glucosinolates, polyphenols and carotenoids during lactic-acid fermentation of cruciferous vegetables: A mini review. Food Chem. X 2022, 16, 100457. [Google Scholar] [CrossRef]
- Uuh-Narvaez, J.J.; Segura-Campos, M.R. Cabbage (Brassica oleracea var. Capitata): A food with functional properties aimed to type 2 diabetes prevention and management. J. Food Sci. 2021, 86, 4775–4798. [Google Scholar] [CrossRef]
- Tanaka, S.; Yamamoto, K.; Yamada, K.; Furuya, K.; Uyeno, Y. Relationship of enhanced butyrate production by colonic butyrate-producing bacteria to immunomodulatory effects in normal mice fed an insoluble fraction of Brassica rapa L. Appl. Environ. Microbiol. 2016, 82, 2693–2699. [Google Scholar] [CrossRef]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Impact of fermented foods on human cognitive function-a review of outcome of clinical trials. Sci. Pharm. 2018, 86, 22. [Google Scholar] [CrossRef]
- Ağagündüz, D.; Şahin, T.; Yılmaz, B.; Ekenci, K.D.; Özer, Ş.D.; Capasso, R. Cruciferous vegetables and their bioactive metabolites: From prevention to novel therapies of colorectal cancer. Evid. Based Complement. Alternat. Med. 2022, 2022, 1534083. [Google Scholar] [CrossRef]
- Septembre-Malaterre, A.; Remize, F.; Poucheret, P. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Res. Int. 2018, 104, 86–99. [Google Scholar] [CrossRef]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; De la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef]
- Razis, A.; Noor, N. Cruciferous vegetables: Dietary phytochemicals for cancer prevention. Asian Pac. J. Cancer Prev. 2013, 14, 1565–1570. [Google Scholar] [CrossRef]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.y.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2019, 60, 2174–2211. [Google Scholar] [CrossRef]
- Miękus, N.; Marszałek, K.; Podlacha, M.; Iqbal, A.; Puchalski, C.; Świergiel, A.H. Health benefits of plant-derived sulfur compounds, glucosinolates, and organosulfur compounds. Molecules 2020, 25, 3804. [Google Scholar] [CrossRef]
- Amarakoon, D.; Lee, W.J.; Tamia, G.; Lee, S.H. Indole-3-carbinol: Occurrence, health-beneficial properties, and cellular/molecular mechanisms. Annu. Rev. Food Sci. Technol. 2023, 14, 347–366. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Zhao, Y.; Peng, R.; Zhang, Z.; Xu, Z.; Simal-Gandara, J.; Yang, H.; Deng, J. Bioactive sulforaphane from cruciferous vegetables: Advances in biosynthesis, metabolism, bioavailability, delivery, health benefits, and applications. Crit. Rev. Food Sci. Nutr. 2024, 1–21. [Google Scholar] [CrossRef]
- Wang, Z.; Shao, Y. Effects of microbial diversity on nitrite concentration in pao cai, a naturally fermented cabbage product from China. Food Microbiol. 2018, 72, 185–192. [Google Scholar] [CrossRef]
- Park, K.Y.; Kim, H.Y.; Jeong, J.K. Chapter 20—Kimchi and its health benefits. In Fermented Foods in Health and Disease Prevention; Frias, J., Martinez-Villaluenga, C., Peñas, E., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 477–502. [Google Scholar]
- Plengvidhya, V.; Breidt, F.; Fleming, H.P. Use of rapd-pcr as a method to follow the progress of starter cultures in sauerkraut fermentation. Int. J. Food Microbiol. 2004, 93, 287–296. [Google Scholar] [CrossRef]
- Raak, C.; Ostermann, T.; Boehm, K.; Molsberger, F. Regular consumption of sauerkraut and its effect on human health: A bibliometric analysis. Glob. Adv. Health Med. 2014, 3, 12–18. [Google Scholar] [CrossRef]
- Drašković Berger, M.; Vakula, A.; Horecki, A.T.; Rakić, D.; Pavlić, B.; Malbaša, R.; Vitas, J.; Jerković, J.; Šumić, Z. Cabbage (Brassica oleracea L. var. Capitata) fermentation: Variation of bioactive compounds, sum of ranking differences and cluster analysis. LWT 2020, 133, 110083. [Google Scholar] [CrossRef]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Sarengaowa; Ji, Y.; Guan, Y.; Feng, K. Microbial dynamics and volatilome profiles during the fermentation of Chinese northeast sauerkraut by Leuconostoc mesenteroides ORC 2 and Lactobacillus plantarum HBUAS 51041 under different salt concentrations. Food Res. Int. 2020, 130, 108926. [Google Scholar] [CrossRef]
- Viswanathan, V.K. Of cabbages and kings. Gut Microbes 2011, 2, 67–68. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, S.H.; Kang, K.H.; Lee, S.; Kim, S.J.; Kim, J.G.; Chung, M.J. Kimchi probiotic bacteria contribute to reduced amounts of N-nitrosodimethylamine in lactic acid bacteria-fortified kimchi. LWT 2017, 84, 196–203. [Google Scholar] [CrossRef]
- Yan, P.-M.; Xue, W.-T.; Tan, S.-S.; Zhang, H.; Chang, X.-H. Effect of inoculating lactic acid bacteria starter cultures on the nitrite concentration of fermenting Chinese paocai. Food Control 2008, 19, 50–55. [Google Scholar] [CrossRef]
- Wang, J.; Sui, Y.; Lu, J.; Dong, Z.; Liu, H.; Kong, B.; Chen, Q. Exploring potential correlations between bacterial communities, organic acids, and volatile metabolites of traditional fermented sauerkraut collected from different regions of Heilongjiang province in Northeast China. Food Chem. X 2023, 19, 100840. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Liu, D. Biochemical changes and microbial community dynamics during spontaneous fermentation of Zhacai, a traditional pickled mustard tuber from China. Int. J. Food Microbiol. 2021, 347, 109199. [Google Scholar] [CrossRef] [PubMed]
- Tomita, S.; Nakamura, T.; Okada, S. NMR- and GC/MS-based metabolomic characterization of sunki, an unsalted fermented pickle of turnip leaves. Food Chem. 2018, 258, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Tomita, S.; Watanabe, J.; Kuribayashi, T.; Tanaka, S.; Kawahara, T. Metabolomic evaluation of different starter culture effects on water-soluble and volatile compound profiles in nozawana pickle fermentation. Food Chem. Mol. Sci. 2021, 2, 100019. [Google Scholar] [CrossRef]
- Erdoğan, A.K.; Ertekin Filiz, B. Menaquinone content and antioxidant properties of fermented cabbage products: Effect of different fermentation techniques and microbial cultures. J. Funct. Foods 2023, 102, 105467. [Google Scholar] [CrossRef]
- Świder, O.; Roszko, M.Ł.; Wójcicki, M.; Szymczyk, K. Biogenic amines and free amino acids in traditional fermented vegetables—Dietary risk evaluation. J. Agric. Food Chem. 2020, 68, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Vogl-Lukasser, B.; Vogl, C.R.; Reiner, H. The Turnip (Brassica rapa L. subsp. rapa) in Eastern Tyrol (Lienz District; Austria). Ethnobot. Res. Appl. 2007, 5, 305–317. Available online: https://ethnobotanyjournal.org/index.php/era/article/view/138 (accessed on 5 June 2024). [CrossRef]
- Bousquet, J.; Anto, J.M.; Czarlewski, W.; Haahtela, T.; Fonseca, S.C.; Iaccarino, G.; Blain, H.; Vidal, A.; Sheikh, A.; Akdis, C.A.; et al. Cabbage and fermented vegetables: From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19. Allergy 2021, 76, 735–750. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Paramithiotis, S.; Shin, H.-S. Kimchi and other widely consumed traditional fermented foods of korea: A review. Front. Microbiol. 2016, 7, 1493. [Google Scholar] [CrossRef]
- Cho, J.; Lee, D.; Yang, C.; Jeon, J.; Kim, J.; Han, H. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 2006, 257, 262–267. [Google Scholar] [CrossRef]
- Hong, Y.; Yang, H.S.; Chang, H.C.; Kim, H.Y. Comparison of bacterial community changes in fermenting kimchi at two different temperatures using a denaturing gradient gel electrophoresis analysis. J. Microbiol. Biotechnol. 2013, 23, 76–84. [Google Scholar] [CrossRef]
- Jeong, S.H.; Jung, J.Y.; Lee, S.H.; Jin, H.M.; Jeon, C.O. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi. Int. J. Food Microbiol. 2013, 164, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Heo, G.Y.; Lee, J.W.; Oh, Y.J.; Park, J.A.; Park, Y.H.; Pyun, Y.R.; Ahn, J.S. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 2005, 102, 143–150. [Google Scholar] [CrossRef]
- Chang, H.-W.; Kim, K.-H.; Nam, Y.-D.; Roh, S.W.; Kim, M.-S.; Jeon, C.O.; Oh, H.-M.; Bae, J.-W. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 2008, 126, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Fougy, L.; Hezard, B.; Desmonts, M.-H. Cabbage to sauerkraut: Characterization of bacterial ecosystem during natural fermentation. Food Micro. 2018, 2018, hal-02506342. [Google Scholar]
- Plengvidhya, V.; Breidt, F.; Lu, Z.; Henry, P.F. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Appl. Environ. Microbiol. 2007, 73, 7697–7702. [Google Scholar] [CrossRef] [PubMed]
- Zabat, M.A.; Sano, W.H.; Wurster, J.I.; Cabral, D.J.; Belenky, P. Microbial community analysis of sauerkraut fermentation reveals a stable and rapidly established community. Foods 2018, 7, 77. [Google Scholar] [CrossRef]
- Zhou, Q.; Zang, S.; Zhao, Z.; Li, X. Dynamic changes of bacterial communities and nitrite character during northeastern Chinese sauerkraut fermentation. Food Sci. Biotechnol. 2018, 27, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hu, W.; Xiu, Z.; Jiang, A.; Yang, X.; Saren, G.; Ji, Y.; Guan, Y.; Feng, K. Effect of salt concentration on microbial communities, physicochemical properties and metabolite profile during spontaneous fermentation of Chinese northeast sauerkraut. J. Appl. Microbiol. 2020, 129, 1458–1471. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Xian, S.; Liu, X.; Shen, G.; Zhang, Z.; Hou, X.; Chen, A. Metagenomic study on Chinese homemade paocai: The effects of raw materials and fermentation periods on the microbial ecology and volatile components. Foods 2021, 11, 62. [Google Scholar] [CrossRef]
- Tomita, S.; Watanabe, J.; Nakamura, T.; Endo, A.; Okada, S. Characterisation of the bacterial community structures of sunki, a traditional unsalted pickle of fermented turnip leaves. J. Biosci. Bioeng. 2020, 129, 541–551. [Google Scholar] [CrossRef]
- Yu, Y.; Li, L.; Xu, Y.; Li, H.; Yu, Y.; Xu, Z. Metagenomics reveals the microbial community responsible for producing biogenic amines during mustard [Brassica juncea (L.)] fermentation. Front. Microbiol. 2022, 13, 824644. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Deng, X.J.; Liang, C.Y.; Cai, H.Y. Fermented broccoli residue reduced harmful bacterial loads and improved meat antioxidation of free-range broilers. J. Appl. Poult. Res. 2018, 27, 590–596. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, N.; Battista, N.; Prete, R.; Corsetti, A. Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms 2021, 9, 349. [Google Scholar] [CrossRef] [PubMed]
- Abdul Hakim, B.N.; Xuan, N.J.; Oslan, S.N.H. A comprehensive review of bioactive compounds from lactic acid bacteria: Potential functions as functional food in dietetics and the food industry. Foods 2023, 12, 2850. [Google Scholar] [CrossRef] [PubMed]
- Gaudioso, G.; Weil, T.; Marzorati, G.; Solovyev, P.; Bontempo, L.; Franciosi, E.; Bertoldi, L.; Pedrolli, C.; Tuohy, K.M.; Fava, F. Microbial and metabolic characterization of organic artisanal sauerkraut fermentation and study of gut health-promoting properties of sauerkraut brine. Front. Microbiol. 2022, 13, 929738. [Google Scholar] [CrossRef]
- Cui, M.; Kim, H.-Y.; Lee, K.H.; Jeong, J.-K.; Hwang, J.-H.; Yeo, K.-Y.; Ryu, B.-H.; Choi, J.-H.; Park, K.-Y. Antiobesity effects of kimchi in diet-induced obese mice. J. Ethn. Foods 2015, 2, 137–144. [Google Scholar] [CrossRef]
- Özer, C.; Yıldırım, H.K. Some special properties of fermented products with cabbage origin: Pickled cabbage, sauerkraut and kimchi. Turk. J. Agric. Food Sci. Technol. 2019, 7, 490–497. [Google Scholar] [CrossRef]
- Saloheimo, P. [Captain Cook used sauerkraut to prevent scurvy]. Duodecim 2005, 121, 1014–1015. (In Finnish) [Google Scholar]
- Mattosinhos, P.D.S.; Sarandy, M.M.; Novaes, R.D.; Esposito, D.; Gonçalves, R.V. Anti-inflammatory, antioxidant, and skin regenerative potential of secondary metabolites from plants of the Brassicaceae family: A systematic review of in vitro and in vivo preclinical evidence (biological activities Brassicaceae skin diseases). Antioxidants 2022, 11, 1346. [Google Scholar] [CrossRef]
- Ray, L.R.; Alam, M.S.; Junaid, M.; Ferdousy, S.; Akter, R.; Hosen, S.M.Z.; Mouri, N.J. Brassica oleracea var. Capitata f. Alba: A review on its botany, traditional uses, phytochemistry and pharmacological activities. Mini Rev. Med. Chem. 2021, 21, 2399–2417. [Google Scholar] [CrossRef]
- Garnås, E. Fermented vegetables as a potential treatment for irritable bowel syndrome. Curr. Dev. Nutr. 2023, 7, 100039. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Mun, E.-G.; Kim, D.; Kim, Y.; Park, Y.; Lee, H.-J.; Cha, Y.-S. A survey of research papers on the health benefits of kimchi and kimchi lactic acid bacteria. J. Nutr. Health 2018, 51, 1. [Google Scholar] [CrossRef]
- Kim, M.-S.; Yang, H.J.; Kim, S.-H.; Lee, H.W.; Lee, M.S. Effects of kimchi on human health: A protocol of systematic review of controlled clinical trials. Medicine 2018, 97, e0163. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Ang, L.; Lee, H.W.; Kim, M.-S.; Kim, Y.J.; Jang, D.; Lee, M.S. Effects of kimchi on human health: A scoping review of randomized controlled trials. J. Ethn. Foods 2023, 10, 7. [Google Scholar] [CrossRef]
- Jung, S.-J.; Chae, S.-W.; Shin, D.-H. Fermented foods of Korea and their functionalities. Fermentation 2022, 8, 645. [Google Scholar] [CrossRef]
- Park, K.-Y.; Hong, G.-H. Kimchi and its functionality. J. Korean Soc. Food Cult. 2019, 34, 142–158. [Google Scholar] [CrossRef]
- Kim, H.J.; Kwon, M.S.; Hwang, H.; Choi, H.-S.; Lee, W.; Choi, S.-P.; Jo, H.; Hong, S.W. A review of the health benefits of kimchi functional compounds and metabolites. Microbiol. Biotechnol. Lett. 2023, 51, 353–373. [Google Scholar] [CrossRef]
- Siddeeg, A.; Afzaal, M.; Saeed, F.; Ali, R.; Shah, Y.A.; Shehzadi, U.; Ateeq, H.; Waris, N.; Hussain, M.; Raza, M.A.; et al. Recent updates and perspectives of fermented healthy super food sauerkraut: A review. Int. J. Food Prop. 2022, 25, 2320–2331. [Google Scholar] [CrossRef]
- Lavefve, L.; Marasini, D.; Carbonero, F. Microbial ecology of fermented vegetables and non-alcoholic drinks and current knowledge on their impact on human health. Adv. Food Nutr. Res. 2019, 87, 147–185. [Google Scholar] [CrossRef]
- Eroğlu, F.E.; Sanlier, N. Effect of fermented foods on some neurological diseases, microbiota, behaviors: Mini review. Crit. Rev. Food Sci. Nutr. 2023, 63, 8066–8082. [Google Scholar] [CrossRef]
- Jung, H.; Yun, Y.-R.; Hong, S.W.; Shin, S. Association between kimchi consumption and obesity based on BMI and abdominal obesity in Korean adults: A cross-sectional analysis of the Health Examinees study. BMJ Open 2024, 14, e076650. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Park, E.S.; Choi, Y.S.; Park, S.J.; Kim, J.H.; Chang, H.K.; Park, K.Y. Kimchi improves irritable bowel syndrome: Results of a randomized, double-blind placebo-controlled study. Food Nutr. Res. 2022, 66. [Google Scholar] [CrossRef] [PubMed]
- Kraft, T.; Keith, J.S.; Bisha, B.; Larson-Meyer, E.; Griebel, A. The impact of daily kimchi consumption: A pilot study. Sch. J. Food Nutr. 2019. [Google Scholar]
- Kim, H.-Y.; Park, K.-Y. Clinical trials of kimchi intakes on the regulation of metabolic parameters and colon health in healthy Korean young adults. J. Funct. Foods 2018, 47, 325–333. [Google Scholar] [CrossRef]
- Kim, J.; Choi, E.; Hong, Y.; Song, Y.; Han, J.; Lee, S.; Han, E.; Kim, T.; Choi, I.; Cho, K. Changes in Korean adult females intestinal microbiota resulting from kimchi intake. J. Nutr. Food Sci. 2016, 6, 486. [Google Scholar]
- Han, K.; Bose, S.; Wang, J.H.; Kim, B.S.; Kim, M.J.; Kim, E.J.; Kim, H. Contrasting effects of fresh and fermented kimchi consumption on gut microbiota composition and gene expression related to metabolic syndrome in obese Korean women. Mol. Nutr. Food Res. 2015, 59, 1004–1008. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, D.Y.; Lee, M.A.; Jang, J.-Y.; Choue, R. Immunomodulatory effects of kimchi in Chinese healthy college students: A randomized controlled trial. Clin. Nutr. Res. 2014, 3, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.H.; Noh, J.S.; Han, J.S.; Kim, H.J.; Han, E.S.; Song, Y.O. Kimchi, a fermented vegetable, improves serum lipid profiles in healthy young adults: Randomized clinical trial. J. Med. Food 2013, 16, 223–229. [Google Scholar] [CrossRef] [PubMed]
- An, S.-Y.; Lee, M.S.; Jeon, J.Y.; Ha, E.S.; Kim, T.H.; Yoon, J.Y.; Ok, C.-O.; Lee, H.-K.; Hwang, W.-S.; Choe, S.J.; et al. Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann. Nutr. Metab. 2013, 63, 111–119. [Google Scholar] [CrossRef]
- Kim, E.K.; An, S.Y.; Lee, M.S.; Kim, T.H.; Lee, H.K.; Hwang, W.S.; Choe, S.J.; Kim, T.Y.; Han, S.J.; Kim, H.J.; et al. Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutr. Res. 2011, 31, 436–443. [Google Scholar] [CrossRef]
- Nielsen, E.S.; Garnås, E.; Jensen, K.J.; Hansen, L.H.; Olsen, P.S.; Ritz, C.; Krych, L.; Nielsen, D.S. Lacto-fermented sauerkraut improves symptoms in IBS patients independent of product pasteurisation—A pilot study. Food Funct. 2018, 9, 5323–5335. [Google Scholar] [CrossRef]
- Galena, A.E.; Chai, J.; Zhang, J.; Bednarzyk, M.; Perez, D.; Ochrietor, J.D.; Jahan-Mihan, A.; Arikawa, A.Y. The effects of fermented vegetable consumption on the composition of the intestinal microbiota and levels of inflammatory markers in women: A pilot and feasibility study. PLoS ONE 2022, 17, e0275275. [Google Scholar] [CrossRef]
- Tanaka, S.; Yamamoto, K.; Hamajima, C.; Takahashi, F.; Endo, K.; Uyeno, Y. Dietary supplementation with fermented Brassica rapa L. Stimulates defecation accompanying change in colonic bacterial community structure. Nutrients 2021, 13, 1847. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 2021, 71, 005056. [Google Scholar] [CrossRef]
- Yu, H.S.; Lee, N.K.; Choi, A.J.; Choe, J.S.; Bae, C.H.; Paik, H.D. Anti-inflammatory potential of probiotic strain Weissella cibaria JW15 isolated from kimchi through regulation of NF-κb and MAPKs pathways in LPS-induced RAW 264.7 cells. J. Microbiol. Biotechnol. 2019, 29, 1022–1032. [Google Scholar] [CrossRef]
- Lim, H.J.; Park, I.S.; Seo, J.W.; Ha, G.; Yang, H.J.; Jeong, D.Y.; Kim, S.Y.; Jung, C.H. Anti-inflammatory effect of Korean soybean sauce (Ganjang) in mice with induced colitis. J. Microbiol. Biotechnol. 2024, 34, 1501–1510. [Google Scholar] [CrossRef]
- Hao, H.; Nie, Z.; Wu, Y.; Liu, Z.; Luo, F.; Deng, F.; Zhao, L. Probiotic characteristics and anti-inflammatory effects of limosilactobacillus fermentum 664 isolated from chinese fermented pickles. Antioxidants 2024, 13, 703. [Google Scholar] [CrossRef]
- Baek, Y.-H.; Kwak, J.-R.; Kim, S.-J.; Han, S.-S.; Song, Y.-O. Effects of kimchi supplementation and/or exercise training on body composition and plasma lipids in obese middle school girls. J. Korean Soc. Food Sci. Nutr. 2001, 30, 906–912. Available online: https://e-jkfn.org/journal/view.html?doi= (accessed on 15 May 2024).
- Choi, S.-H.; Kim, H.-J.; Kwon, M.-J.; Baek, Y.-H.; Song, Y.-O. The effect of kimchi pill supplementation on plasma lipid concentration in healthy people. J. Korean Soc. Food Sci. Nutr. 2001, 30, 913–920. Available online: http://e-jkfn.org/journal/view.html?doi= (accessed on 15 May 2024).
- Han, S.; Shin, J.; Lim, S.; Ahn, H.Y.; Kim, B.; Cho, Y. Dietary effect of Lactobacillus plantarum CJLP55 isolated from kimchi on skin ph and its related biomarker levels in adult subjects. J. Nutr. Health 2019, 52, 149. [Google Scholar] [CrossRef]
- Lee, K.E.; Choi, U.H.; Ji, G.E. Effect of kimchi intake on the composition of human large intestinal bacteria. Korean J. Food Sci. Technol. 1996, 28, 981–986. [Google Scholar]
- Yoon, B.J.; Oh, H.K.; Lee, J.; Cho, J.R.; Kim, M.J.; Kim, D.W.; Kang, S.B. Effects of probiotics on bowel function restoration following ileostomy closure in rectal cancer patients: A randomized controlled trial. Colorectal Dis. 2021, 23, 901–910. [Google Scholar] [CrossRef]
- Oh, M.R.; Jang, H.Y.; Lee, S.Y.; Jung, S.J.; Chae, S.W.; Lee, S.O.; Park, B.H. Lactobacillus plantarum HAC01 supplementation improves glycemic control in prediabetic subjects: A randomized, double-blind, placebo-controlled trial. Nutrients 2021, 13, 2337. [Google Scholar] [CrossRef]
- Lim, S.; Moon, J.H.; Shin, C.M.; Jeong, D.; Kim, B. Effect of Lactobacillus sakei, a probiotic derived from kimchi, on body fat in Koreans with obesity: A randomized controlled study. Endocrinol. Metab. 2020, 35, 425–434. [Google Scholar] [CrossRef]
- Yang, J.; McDowell, A.; Kim, E.K.; Seo, H.; Yum, K.; Lee, W.H.; Jee, Y.K.; Kim, Y.K. Consumption of a Leuconostoc holzapfelii-enriched synbiotic beverage alters the composition of the microbiota and microbial extracellular vesicles. Exp. Mol. Med. 2019, 51, 1–11. [Google Scholar] [CrossRef]
- Lee, S.A.; Lee, D. The effect of dongchimi juice containing kimchi Lactobacillus on the oral health of patients at a long-term care hospital: Comparison with chlorhexidine solution. J. Korean Acad. Nurs. 2017, 47, 540–550. [Google Scholar] [CrossRef]
- Oh, Y.J.; Hwang, I.J. Effects of kimchi consumption on iron status in adult male volunteers. Korean J. Nutr. 1997, 30, 1188–1194. [Google Scholar]
- Ki, J.-H.; Jung, K.-O.; Lee, H.-S.; Hwang, I.-K.; Kim, Y.-J.; Park, K.-Y. Effects of Kimchi on stomach and colon health of helicobacter pylori—Infected volunteers. Prev. Nutr. Food Sci. 2004, 9, 161–166. Available online: https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE00637268 (accessed on 16 May 2024).
- Tan, L.-J.; Yun, Y.-R.; Hong, S.W.; Shin, S. Effect of kimchi intake on body weight of general community dwellers: A prospective cohort study. Food Funct. 2023, 14, 2162–2171. [Google Scholar] [CrossRef]
- Song, H.J.; Park, S.J.; Jang, D.J.; Kwon, D.Y.; Lee, H.J. High consumption of salt-fermented vegetables and hypertension risk in adults: A 12-year follow-up study. Asia Pac. J. Clin. Nutr. 2017, 26, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Song, H.J.; Lee, H.-J. Consumption of kimchi, a salt fermented vegetable, is not associated with hypertension prevalence. J. Ethn. Foods 2014, 1, 8–12. [Google Scholar] [CrossRef]
- Min, H.G.; Kim, Y.J.; Yang, A.J.; Kim, Y.J.; Choi, S.H.; Lee, S.Y. The effects of dietary kimchi intake on plasma lipid concentration in healthy adult. Korean J. Health Promot. Dis. Prev. 2004, 4, 249–255. [Google Scholar]
- Kim, H.J.; Ju, S.Y.; Park, Y.K. Kimchi intake and atopic dermatitis in Korean aged 19–49 years: The Korea national health and nutrition examination survey 2010–2012. Asia Pac. J. Clin. Nutr. 2017, 26, 914–922. [Google Scholar] [CrossRef]
- Kim, H.; Oh, S.Y.; Kang, M.H.; Kim, K.N.; Kim, Y.; Chang, N. Association between kimchi intake and asthma in Korean adults: The fourth and fifth Korea national health and nutrition examination survey (2007–2011). J. Med. Food 2014, 17, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Pathak, D.R.; Stein, A.D.; He, J.-P.; Noel, M.M.; Hembroff, L.; Nelson, D.A.; Vigneau, F.; Shen, T.; Scott, L.J.; Charzewska, J.; et al. Cabbage and sauerkraut consumption in adolescence and adulthood and breast cancer risk among us-resident polish migrant women. Int. J. Environ. Res. Public Health 2021, 18, 10795. [Google Scholar] [CrossRef] [PubMed]
- Venugopal, N.; Saberwal, G. A comparative analysis of important public clinical trial registries, and a proposal for an interim ideal one. PLoS ONE 2021, 16, e0251191. [Google Scholar] [CrossRef]
- WHO. International Standards for Clinical Trial Registries—Version 3.0.; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Mann, C.J. Observational research methods. Research design II: Cohort, cross sectional, and case-control studies. Emerg. Med. J. 2003, 20, 54–60. [Google Scholar] [CrossRef]
References and Country | Investigated Aim | Population that Completed the Trial | Intervention (Daily Regime, Duration, Other Information)/Control | Main Findings |
---|---|---|---|---|
Clinical trials investigating the influence of kimchi consumption | ||||
Kim et al., 2022 [75], Republic of Korea. | Effects of kimchi intake on symptoms of IBS and intestinal microbiota community. | 90 participants with IBS. 30 in group A. 30 in group B. 30 in group C. | Three types of kimchi: Group A: standard kimchi. Group B: standard kimchi with added L. plantarum nF1 *. Group C: functional kimchi (added mistletoe and other sub-ingredients). 210 g a day for 12 weeks. |
|
Kraft et al., 2019 [76], United States of America. | Effect of kimchi intake on GI symptoms, characteristics and consumer acceptability of kimchi. | 20 participants. One group. | Kimchi. 75 g twice daily for 14 days. |
|
Kim et al., 2018 [77], Republic of Korea. | Effect of kimchi intake on colon health and other health metabolic parameters. | 28 healthy young adults. 14 in group A. 14 in group B. | Group A: standardized kimchi. Group B: functional kimchi with added L. plantarum PNU *, derived from kimchi (1 × 106 cfu per serving). 210 g (3 times 70 g) daily for 28 days. |
|
Kim et al., 2016 [78], Republic of Korea. | Effect of kimchi intake on adult females’ intestinal microbiota. | 12 females. 6 in group A. 6 in group B. | Group A: high kimchi intake (150 g daily). Group B: low kimchi intake (15 g daily). For 7 days. |
|
Han et al., 2015 [79], Republic of Korea. | Effect of kimchi intake on the association between gut microbiota and anti-obesity. | 23 women with BMI ≥ 25 kg/m2. 11 in group A. 12 in group B. | Group A: fermented kimchi (60 g per serving). Group B: fresh kimchi (60 g per serving). 180 g daily for 8 weeks. |
|
Lee et al., 2014 [80], People’s Republic of China. | Effect of kimchi intake on immunomodulatory effects in healthy Chinese college students. | 39 students with BMI 18–23 kg/m2. 20 in group A. 19 in group B. | Group A: kimchi. Group B: control (radish). 100 g daily for 4 weeks. |
|
Choi et al., 2013 [81], Republic of Korea. | Effect of kimchi intake on serum lipid concentrations. | 100 volunteers. 50 in group A. 50 in group B. | Group A: high kimchi intake (210 g daily). Group B: low kimchi intake (15 g daily). For 7 days. |
|
An et al., 2013 [82], Republic of Korea. | Effect of kimchi intake on glucose metabolism in patients with prediabetes. | 21 participants with prediabetes. 8 in group A. 13 in group B. | Fresh or fermented kimchi for 8 weeks. 4-week washout period. Fermented or fresh kimchi for 8 weeks. |
|
Kim et al., 2011 [83], Republic of Korea. | Effect of kimchi intake on metabolic parameters in overweight and obese subjects. | 22 patients with BMI ≥ 25 kg/m2. 10 in group A. 12 in group B. | Fresh or fermented kimchi for 4 weeks. 2-week washout period. Fermented or fresh kimchi for 4 weeks. |
|
Clinical trial investigating the influence of sauerkraut consumption | ||||
Nielsen et al., 2018 [84], Kingdom of Norway. | Effect of sauerkraut intake on symptoms of IBS and intestinal microbiota community. | 58 IBS patients. 31 in group A. 27 in group B. | Group A: unpasteurized sauerkraut. Group B: pasteurized sauerkraut. 75 g daily for 6 weeks. |
|
Clinical trial investigating the influence of consumption of fermented cabbage or fermented cucumbers | ||||
Galena et al., 2022 [85], United States of America. | Effects of regular consumption of fermented cabbage and/or cucumbers. | 93 healthy women. 31 in group A. 31 in group B. 31 in group C. | Group A: fermented cabbage and/or cucumbers. Group B: pickled cabbage and/or cucumbers. 100 g a day for six weeks. Group C: control group (usual diet). |
|
Clinical trial investigating the influence of nozawana consumption | ||||
Tanaka et al., 2021 [86], Japan. | Effect of fermented Brassica rapa L. (Nozawana) intake on immune function and intestinal bacterial community. | 20 volunteers. One group. | 30 g of fermented Brassica rapa L. per day For 4 weeks |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fijan, S.; Fijan, P.; Wei, L.; Marco, M.L. Health Benefits of Kimchi, Sauerkraut, and Other Fermented Foods of the Genus Brassica. Appl. Microbiol. 2024, 4, 1165-1176. https://doi.org/10.3390/applmicrobiol4030079
Fijan S, Fijan P, Wei L, Marco ML. Health Benefits of Kimchi, Sauerkraut, and Other Fermented Foods of the Genus Brassica. Applied Microbiology. 2024; 4(3):1165-1176. https://doi.org/10.3390/applmicrobiol4030079
Chicago/Turabian StyleFijan, Sabina, Polona Fijan, Lei Wei, and Maria L. Marco. 2024. "Health Benefits of Kimchi, Sauerkraut, and Other Fermented Foods of the Genus Brassica" Applied Microbiology 4, no. 3: 1165-1176. https://doi.org/10.3390/applmicrobiol4030079
APA StyleFijan, S., Fijan, P., Wei, L., & Marco, M. L. (2024). Health Benefits of Kimchi, Sauerkraut, and Other Fermented Foods of the Genus Brassica. Applied Microbiology, 4(3), 1165-1176. https://doi.org/10.3390/applmicrobiol4030079