Microbial Fermentation and Shelf Life of Potential Biotechnological Products Capable of Pesticide Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Fermentation and Sampling for pH Value, Viability, qPCR Analysis, and Organic Acid Measurements
Shelf Life of Potential Biotechnological Products and Sampling
2.2. Quantitative PCR: qPCR Development and Assay Validation
2.3. DNA Extraction
2.4. qPCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Validation of qPCR Assays for Bacillus subtilis Strain MK101 and Rhodococcus fascians Strain MK144
3.2. Microbial Behaviour during Fermentation and Storage
3.3. Monitoring Parameters during Fermentation and Storage
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Code | Name | Sequence (5′-3′) | Validation Efficiency (E) [%] | Validation R2 |
---|---|---|---|---|
Bacillus subtilis strain MK101 | ||||
91 | 101F_91 | AAACGAGGCAGCATCCAg | 95.7 | 0.997 |
101R_91 | ACATTGCTTATCGGATGTATGGTAAT | 107.1 | 0.997 | |
101P_91 | ATGCTTTAGCTGAATCAATTCCGCTat | 100.8 | 0.997 | |
104.4 | 0.993 | |||
35 | 101F_35 | TCTGAACTCATAGGCTTTGG | 103.5 | 0.997 |
101R_35_mod | CAGTAAAAGCATTTGTGGTG | 101.5 | 0.997 | |
101P_35 | TGTCTAGTGCTTCTGCATCGGCTT | 116.5 | 0.996 | |
98.7 | 0.999 | |||
Rhodococcus fascians strain MK144 | ||||
25 | 144F_25_mod | GGGACCGGTGCTGCA | 91.9 | 0.998 |
144R_25_mod | CACAGCCGAGATCAGATCT | 89.3 | 0.994 | |
144P_25_mod | TGCGCGCCACGATCTGACCGT | 86.7 | 0.999 | |
86.1 | 0.993 | |||
36 | 144F_36 | CACGTGAGCTGACGATCGAG | 91.8 | 0.997 |
144R_36_mod | CTTGTCCACGGCCACG | 83.2 | 0.997 | |
144P_36_mod | tggaAGGGATGGAGATTCTGTACGC | 87.4 | 0.999 | |
90.3 | 0.999 |
Bacillus subtilis Strain MK101 Reference Strains | Rhodococcus fascians Strain MK144 Reference Strains | ||
---|---|---|---|
Species | Number | Species | Number |
Bacillus amyloliquefaciens FZB42 (Bacillus velezensis FZB42) | DSM 23117 | Rhodococcus ruber | DSM 43338 |
Bacillus subtilis subsp. subtilis | DSM 1091 | Rhodococcus pyridinivorens | DSM 44555 |
Bacillus turingiensis | DSM 5724 | Rhodococcus fascians | DSM 20669 |
Bacillus turingiensis | DSM 2046 | Rhodococcus fascians | DSM 43586 |
Bacillus altitudinis | DSM 21631 | Rhodococcus fascians | DSM 45106 |
Bacillus amyloliquefaciens | DSM 7 | Rhodococcus sp. | TA-R37 |
Bacillus atophaeus | DSM 7264 | Rhodococcus sp. | TB-U1a |
Bacillus firmus | DSM 12 | Rhodococcus sp. | TB-U5 |
Bacillus flexus | DSM 1320 | Rhodococcus sp. | TP-O25 |
Bacillus halotolerans | DSM 8802 | Rhodococcus sp. | T2_12 |
Bacillus licheniformis | DSM 13 | Rhodococcus sp. | H39_1 |
Bacillus mojavensis | DSM 9205 | Rhodococcus sp. | Aga47_7 |
Bacillus pumilus | DSM 27 | Rhodococcus sp. | LC1_14 |
Bacillus safensis | DSM 19292 | Rhodococcus sp. | LC31_2 |
Bacillus sonorensis | DSM 13779 | Rhodococcus sp. | F23_3 |
Bacillus subtilis subsp. inaquosorum | DSM 22148 | Rhodococcus sp. | 46 |
Bacillus subtilis subsp. spizizenii | DSM 15029 | Rhodococcus sp. | Bpgp30 |
Bacillus subtilis subsp. subtilis | DSM 10 | Rhodococcus sp. | IG-R-39 |
Bacillus vallismortis | DSM 11031 | Rhodococcus sp. | IG-S-34 |
Bacillus xiamenensis | DSM 29883 | Rhodococcus sp. | IG-S-76_3 |
Bacillus sp. | 1190 | ||
Bacillus sp. | 1160 | Environmental samples (three biological replicates) | |
Bacillus sp. | 1282 | Lettuce leaf untreated; B. subtilis strain MK101 trial | |
Bacillus sp. | 1291 | Soil untreated; B. subtilis strain MK101 trial | |
Bacillus sp. | 1116 | Lettuce leaf treated with B. subtilis strain MK101 | |
Bacillus sp. | 1359 | Soil treated with B. subtilis strain MK101 | |
Bacillus sp. | 1494 | Lettuce leaf untreated; R. fascians strain MK144 trial | |
Bacillus sp. | 1513 | Soil untreated; R. fascians strain MK144 trial | |
Bacillus subtilis EKB010BA16 | n.d. | Lettuce leaf treated with R. fascians strain MK144 | |
Bacillus thuringiensis | DSM 6018 | Soil treated with R. fascians strain MK144 | |
Bacillus siamensis | DSM 25261 | Sugar cane molasses: three different batch numbers | |
Bacillus thuringiensis Berliner 1915 | DSM 2046 | Microbial product: three different batch numbers | |
Bacillus simplex | DSM 1321 | ||
Bacillus amyloliquefaciens strain AT-332 | n.d. | ||
Bacillus velezensis GB03 | n.d. | ||
Bacillus subtilis | DSM 1970 | ||
Bacillus nakamurai | CCUG 68786 | ||
Bacillus licheniformis | FMCH001 | ||
Bacillus amyloliquefaciens strain 19b HAMBI | n.d. | ||
Bacillus velenzensis | RTI0301 |
References
- Nofiani, R.; de Mattos-Shipley, K.; Lebe, K.E.; Han, L.C.; Iqbal, Z.; Bailey, A.M.; Willis, C.L.; Simpson, T.J.; Cox, R.J. Strobilurin biosynthesis in Basidiomycete fungi. Nat. Commun. 2018, 9, 3940. [Google Scholar] [CrossRef]
- Medina-Pastor, P.; Triacchini, G. The 2018 European Union report on pesticide residues in food. EFSA J. 2020, 18, e06057. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Lueckl, J. Ergebnisse des nationalen Kontrollprogramms Pestizide 2018. In Pestizid-Rückstände in Pflanzlichen und Tierischen Lebensmitteln; AGES Österreichische Agentur für Gesundheit und Ernährungssicherheit: Wien, Austria, 2018. [Google Scholar]
- WHO. Azoxystrobin: Evaluation of data for acceptable daily intake and acute dietary intake for humans, maximum residue levels and supervised trial median residue values. In JMPR 2008 Report; WHO: Geneva, Switzerland, 2008; pp. 55–95. [Google Scholar]
- National Center for Biology Information. PubChem Compound Summary for CID 3034285, Azoxystrobin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Azoxystrobin (accessed on 18 July 2022).
- Feng, Y.; Zhang, W.; Pang, S.; Lin, Z.; Zhang, Y.; Huang, Y.; Bhatt, P.; Chen, S. Kinetics and New Mechanism of Azoxystrobin Biodegradation by an Ochrobactrum anthropi Strain SH14. Microorganisms 2020, 8, 625. [Google Scholar] [CrossRef] [PubMed]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. Bioaugmentation of Soil Contaminated with Azoxystrobin. Water Air Soil Pollut. 2017, 228, 19. [Google Scholar] [CrossRef] [PubMed]
- Howell, C.C.; Semple, K.T.; Bending, G.D. Isolation and characterisation of azoxystrobin degrading bacteria from soi. Chemosphere 2014, 95, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, Z.; Yan, H.; Zhang, H.; Li, Q.X.; Liu, X. Carboxylesterases from bacterial enrichment culture degrade strobilurin fungicides. Sci. Total Environ. 2022, 814, 152751. [Google Scholar] [CrossRef]
- Mpofu, E.; Alias, A.; Tomita, K.; Suzuki-Minakuchi, C.; Tomita, K.; Chakraborty, J.; Malon, M.; Ogura, Y.; Takikawa, H.; Okada, K.; et al. Azoxystrobin amine: A novel azoxystrobin degradation product from Bacillus licheniformis strain TAB7. Chemosphere 2021, 273, 129663. [Google Scholar] [CrossRef]
- Kraxberger, K.; Antonielli, L.; Kostić, T.; Reichenauer, T.; Sessitsch, A. Diverse bacteria colonizing leaves and the rhizosphere of lettuce degrade azoxystrobin. Sci. Total Environ. 2023, 891, 164375. [Google Scholar] [CrossRef]
- DiGiovanni, G.D.; Neilson, J.W.; Pepper, I.L.; Sinclair, N.A. Gene Transfer of Alcaligenes eutrophus JMP134 Plasmid pJP4 to Indigenous Soil Recipients. Appl. Environ. Microbiol. 1996, 62, 2521–2526. [Google Scholar] [CrossRef]
- EBolotin; Hershberg, R. Bacterial intra-species gene loss occurs in a largely clocklike manner mostly within a pool of less conserved and constrained genes. Sci. Rep. 2016, 6, 35168. [Google Scholar] [CrossRef]
- Widada, J.; Nojiri, H.; Omori, T. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl. Microbiol. Biotechnol. 2002, 60, 45–59. [Google Scholar] [CrossRef] [PubMed]
- EN ISO/IEC 17025; General Requirements for the Competence of Testing and Calibration Laboratories. Deutsche Institut für Normung: Berlin, Germany, 2018.
- Caraguel, C.G.B.; Stryhn, H.; Gagné, N.; Dohoo, I.R.; Hammell, K.L. Selection of a cutoff value for real-time polymerase chain reaction results to fit a diagnostic purpose: Analytical and epidemiologic approaches. J. Vet. Diagn. Investig. 2011, 23, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Garrido, A.; Chapela, M.J.; Román, B.; Fajardo, P.; Vieites, J.M.; Cabado, A.G. In-house validation of a multiplex real-time PCR method for simultaneous detection of Salmonella spp., Escherichia coli O157 and Listeria monocytogenes. Int. J. Food Microbiol. 2013, 164, 92–98. [Google Scholar] [CrossRef]
- CStaley; Gordon, K.V.; Schoen, M.E.; Harwood, V.J. Performance of two quantitative PCR methods for microbial source tracking of human sewage and implications for microbial risk assessment in recreational waters. Appl. Environ. Microbiol. 2012, 78, 7317–7326. [Google Scholar] [CrossRef] [PubMed]
- Gensberger, E.T.; Polt, M.; Konrad-Köszler, M.; Kinner, P.; Sessitsch, A.; Kostić, T. Evaluation of quantitative PCR combined with PMA treatment for molecular assessment of microbial water quality. Water Res. 2014, 67, 367–376. [Google Scholar] [CrossRef]
- Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.8.2. 2022. Available online: https://cran.r-project.org/package=emmeans (accessed on 7 March 2024).
- Revelle, W. Package ‘psych’ Title Procedures for Psychological, Psychometric, and Personality Research. 2024. Available online: https://personality-project.org/r/psych/ (accessed on 28 June 2024).
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H.; et al. Package ‘vegan’. Community Ecology Package. 2024. Available online: https://github.com/vegandevs/vegan (accessed on 23 March 2024).
- Kreitmann, L.; Miglietta, L.; Xu, K.; Malpartida-Cardenas, K.; D’Souza, G.; Kaforou, M.; Brengel-Pesce, K.; Drazek, L.; Holmes, A.; Rodriguez-Manzano, J. Next-generation molecular diagnostics: Leveraging digital technologies to enhance multiplexing in real-time PCR. TrAC Trends Anal. Chem. 2023, 160, 116963. [Google Scholar] [CrossRef]
- Kang, S.J.; Jang, C.S.; Son, J.M.; Hong, K.W. Comparison of seven commercial taqman master mixes and two real-time PCR platforms regarding the rapid detection of porcine DNA. Food Sci. Anim. Resour. 2021, 41, 85–94. [Google Scholar] [CrossRef]
- Spigno, G.; Fumi, M.D.; De Faveri, D.M. Glucose syrup and corn steep liquor as alternative to molasses substrates for production of baking-quality yeast. In Chemical Engineering Transactions; Italian Association of Chemical Engineering—AIDIC: Milano, Italy, 2009; pp. 843–848. [Google Scholar] [CrossRef]
- Wahjudi, S.M.W.; Petrzik, T.; Oudenne, F.; Calvo, C.L.; Büchs, J. Unraveling the potential and constraints associated with corn steep liquor as a nutrient source for industrial fermentations. Biotechnol. Prog. 2023, 39, e3386. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.E.R.; Joseph, S.J.; Janssen, P.H. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 2005, 71, 826–834. [Google Scholar] [CrossRef]
- Kragh, K.N.; Alhede, M.; Rybtke, M.; Stavnsberg, C.; Jensen, P.Ø.; Tolker-Nielsen, T.; Marvin, W.; Thomas, B. The Inoculation Method Could Impact the Outcome of Microbiological Experiments. Appl. Environ. Microbiol. 2018, 84, e02264-17. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Y.; Gao, T.; Wu, Y.; Sun, H.; Zhu, Q.; Liu, C.; Zhou, C.; Han, Y.; Tao, Y. Fermentation and Storage Characteristics of ‘Fuji’ Apple Juice Using Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum: Microbial Growth, Metabolism of Bioactives and in vitro Bioactivities. Front. Nutr. 2022, 9, 833906. [Google Scholar] [CrossRef] [PubMed]
- Zong, L.; Lu, M.; Wang, W.; Wa, Y.; Qu, H.; Chen, D.; Liu, Y.; Qian, Y.; Ji, Q.; Gu, R. The Quality and Flavor Changes of Different Soymilk and Milk Mixtures Fermented Products during Storage. Fermentation 2022, 8, 668. [Google Scholar] [CrossRef]
- Pongsetkul, J.; Benjakul, S.; Boonchuen, P. Bacillus subtilis K-C3 as Potential Starter to Improve Nutritional Components and Quality of Shrimp Paste and Corresponding Changes during Storage at Two Alternative Temperatures. Fermentation 2023, 9, 107. [Google Scholar] [CrossRef]
- Ulrich, N.; Nagler, K.; Laue, M.; Cockell, C.S.; Setlow, P.; Moeller, R. Experimental studies addressing the longevity of Bacillus subtilis spores—The first data from a 500-year experiment. PLoS ONE 2018, 13, e0208425. [Google Scholar] [CrossRef]
- Trinh, K.T.L.; Lee, N.Y. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022, 11, 1057. [Google Scholar] [CrossRef]
- Singh, V.; Haque, S.; Niwas, R.; Srivastava, A.; Pasupuleti, M.; Tripathi, C.K.M. Strategies for fermentation medium optimization: An in-depth review. Front. Res. Found. 2017, 7, 2087. [Google Scholar] [CrossRef]
- Scoma, A.; Coma, M.; Kerckhof, F.M.; Boon, N.; Rabaey, K. Efficient molasses fermentation under high salinity by inocula of marine and terrestrial origin. Biotechnol. Biofuels 2017, 10, 23. [Google Scholar] [CrossRef]
- Zuluaga, M.Y.A.; de Oliveira, A.L.M.; Valentinuzzi, F.; Jayme, N.S.; Monterisi, S.; Fattorini, R.; Cesco, S.; Pii, Y. An insight into the role of the organic acids produced by Enterobacter sp. strain 15S in solubilizing tricalcium phosphate: In situ study on cucumber. BMC Microbiol. 2023, 23, 184. [Google Scholar] [CrossRef]
- Voelker, A.L.; Taylor, L.S.; Mauer, L.J. Effect of pH and concentration on the chemical stability and reaction kinetics of thiamine mononitrate and thiamine chloride hydrochloride in solution. BMC Chem. 2021, 15, 47. [Google Scholar] [CrossRef]
- Vignesh Kumar, B.; Muthumari, B.; Kavitha, M.; John Praveen Kumar, J.K.; Thavamurugan, S.; Arun, A.; Jothi Basu, M. Studies on Optimization of Sustainable Lactic Acid Production by Bacillus amyloliquefaciens from Sugarcane Molasses through Microbial Fermentation. Sustainability 2022, 14, 7400. [Google Scholar] [CrossRef]
- Huffer, S.; Roche, C.M.; Blanch, H.W.; Clark, D.S. Escherichia coli for biofuel production: Bridging the gap from promise to practice. Trends Biotechnol. 2012, 30, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Carthew, R.W. Gene Regulation and Cellular Metabolism: An Essential Partnership. Trends Genet. 2021, 37, 389–400. [Google Scholar] [CrossRef] [PubMed]
Variant Number | Inoculated Strain and Growth Media | Media for Fermentation Trial |
---|---|---|
Cfu 1: 105 cfu/mL (3% of microbial suspension was added) | ||
01 | Bacillus subtilis strain MK101 1 | 5% sugar cane molasses |
02 | Rhodococcus fascians strain MK144 1 | 5% sugar cane molasses |
03 | Bacillus subtilis strain MK101 1 and Rhodococcus fascians strain MK144 1 | 5% sugar cane molasses |
04 | Bacillus subtilis strain MK101 2 | 5% glucose syrup agenabon |
05 | Rhodococcus fascians strain MK144 2 | 5% glucose syrup agenabon |
06 | Bacillus subtilis strain MK101 2 and Rhodococcus fascians strain MK144 2 | 5% glucose syrup agenabon |
Cfu 2: 103 cfu/mL (3% of microbial suspension was added) | ||
07 | Bacillus subtilis strain MK101 1 | 5% sugar cane molasses |
08 | Rhodococcus fascians strain MK144 1 | 5% sugar cane molasses |
09 | Bacillus subtilis strain MK101 1 and Rhodococcus fascians strain MK144 1 | 5% sugar cane molasses |
10 | Bacillus subtilis strain MK101 2 | 5% glucose syrup agenabon |
11 | Rhodococcus fascians strain MK144 2 | 5% glucose syrup agenabon |
12 | Bacillus subtilis strain MK101 2 and Rhodococcus fascians strain MK144 2 | 5% glucose syrup agenabon |
Uninoculated | ||
13 | Uninoculated 1 | 5% sugar cane molasses |
14 | Uninoculated 2 | 5% glucose syrup agenabon |
pH Values at Different Time Points (n = 5) | |||||
---|---|---|---|---|---|
Variant Number | 0 d (T0) | 7 d (T1) | 14 d (T2) | 35 d (T3) | 56 d (T4) |
1 | 5.85 ± 0.07 | 4.04 ± 0.07 | 3.59 ± 0.09 | 3.61 ± 0.08 | 3.61 ± 0.08 |
2 | 5.84 ± 0.07 | 4.06 ± 0.09 | 3.78 ± 0.24 | 3.64 ± 0.06 | 3.62 ± 0.10 |
3 | 5.82 ± 0.05 | 4.03 ± 0.05 | 3.50 ± 0.03 | 3.53 ± 0.03 | 3.53 ± 0.03 |
4 | 7.13 ± 0.09 | 4.11 ± 0.10 | 3.69 ± 0.19 | 3.70 ± 0.15 | 3.68 ± 0.14 |
5 | 7.10 ± 0.01 | 4.14 ± 0.10 | 3.76 ± 0.13 | 3.78 ± 0.11 | 3.78 ± 0.10 |
6 | 7.07 ± 0.07 | 4.16 ± 0.05 | 3.76 ± 0.20 | 3.72 ± 0.15 | 3.65 ± 0.09 |
7 | 5.82 ± 0.04 | 3.99 ± 0.05 | 3.45 ± 0.03 | 3.45 ± 0.04 | 3.45 ± 0.05 |
8 | 5.87 ± 0.07 | 3.97 ± 0.04 | 3.46 ± 0.01 | 3.45 ± 0.01 | 3.48 ± 0.01 |
9 | 5.8 ± 0-048 | 4.06 ± 0.04 | 3.51 ± 0.07 | 3.53 ± 0.08 | 3.56 ± 0.08 |
10 | 7.23 ± 0.32 | 4.18 ± 0.06 | 3.76 ± 0.10 | 3.79 ± 0.11 | 3.78 ± 0.09 |
11 | 7.04 ± 0.05 | 4.13 ± 0.08 | 3.59 ± 0.09 | 3.62 ± 0.08 | 3.63 ± 0.07 |
12 | 7.05 ± 0.03 | 4.15 ± 0.05 | 3.77 ± 0.15 | 3.83 ± 0.16 | 3.78 ± 0.13 |
13 | 5.86 ± 0.05 | 4.01 ± 0.04 | 3.51 ± 0.12 | 3.53 ± 0.12 | 3.54 ± 0.11 |
14 | 7.05 ± 0.03 | 4.16 ± 0.04 | 3,78 ± 0.11 | 3.82 ± 0.09 | 3.79 ± 0.08 |
organic acids [mg/kg] at 14 d (T2) (n = 5) | |||||
Variant number | Lactic acid | Acetic acid | n-butyric acid * | ||
1 | 8.52 ± 0.90 | 0.46 ± 0.18 | 1.48 ± 1.34 | ||
2 | 6.59 ± 1.91 | 0.39 ± 0.10 | 2.00 ± 0.57 | ||
3 | 9.39 ± 0.44 | 0.51 ± 0.03 | 2.09 ± 0.31 | ||
4 | 1.37 ± 0.29 | 0.24 ± 0.07 | 0.22 ± 0.09 | ||
5 | 1.24 ± 0.15 | 0.26 ± 0.05 | 0.05 ± 0.01 | ||
6 | 1.30 ± 0.31 | 0.24 ± 0.09 | 0.05 ± 0.01 | ||
7 | 10.41 ± 0.77 | 0.62 ± 0.13 | 2.75 ± 0.40 | ||
8 | 10.00 ± 0.27 | 0.50 ± 0.07 | 2.37 ± 0.20 | ||
9 | 9.11 ± 1.12 | 0.46 ± 0.11 | 1.88 ± 0.74 | ||
10 | 1.19 ± 0.16 | 0.25 ± 0.03 | <0.016 | ||
11 | 1.50 ± 0.258 | 0.24 ± 0.06 | 0.13 ± 0.11 | ||
12 | 1.21 ± 0.30 | 0.21 ± 0.06 | <0.016 | ||
13 | 9.35 ± 1.63 | 0.49 ± 0.12 | 1.87 ± 0.94 | ||
14 | 1.10 ± 0.18 | 0.21 ± 0.04 | <0.016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraxberger, K.; Kostić, T.; Antonielli, L.; Sessitsch, A. Microbial Fermentation and Shelf Life of Potential Biotechnological Products Capable of Pesticide Degradation. Appl. Microbiol. 2024, 4, 1294-1308. https://doi.org/10.3390/applmicrobiol4030089
Kraxberger K, Kostić T, Antonielli L, Sessitsch A. Microbial Fermentation and Shelf Life of Potential Biotechnological Products Capable of Pesticide Degradation. Applied Microbiology. 2024; 4(3):1294-1308. https://doi.org/10.3390/applmicrobiol4030089
Chicago/Turabian StyleKraxberger, Katharina, Tanja Kostić, Livio Antonielli, and Angela Sessitsch. 2024. "Microbial Fermentation and Shelf Life of Potential Biotechnological Products Capable of Pesticide Degradation" Applied Microbiology 4, no. 3: 1294-1308. https://doi.org/10.3390/applmicrobiol4030089
APA StyleKraxberger, K., Kostić, T., Antonielli, L., & Sessitsch, A. (2024). Microbial Fermentation and Shelf Life of Potential Biotechnological Products Capable of Pesticide Degradation. Applied Microbiology, 4(3), 1294-1308. https://doi.org/10.3390/applmicrobiol4030089