Kuratsuki Bacteria Interactions with Sake Yeast and Effect on Taste
Abstract
:1. Introduction
2. Detection of Bacteria during Sake Making Based on Their DNA Sequences
3. Kuratsuki Microorganisms
4. Kuratsuki Bacteria Affect Sake Taste
Funding
Conflicts of Interest
References
- Sakaguchi, K. Japanese Sake (Nihon No Sake); Iwanami Shoten: Tokyo, Japan, 2007; pp. 1–260. (In Japanese) [Google Scholar]
- Akiyama, Y. Pasteurization device for sake is Takamine’s invention. J. Brew. Soc. Jpn. 2004, 99, 857–863. (In Japanese) [Google Scholar] [CrossRef]
- Yoshizawa, K. Sake: Production and flavor. Food Rev. Int. 1999, 15, 83–107. [Google Scholar] [CrossRef]
- Horie, S. History of Sake (Nihonshu No Kita Michi); Imai Publishing: Yonago, Japan, 2014; pp. 1–356. (In Japanese) [Google Scholar]
- Suzuki, K.; Asano, S.; Iijima, K.; Kitamoto, K. Sake and beer spoilage lactic acid bacteria—A review. J. Inst. Brew. 2008, 114, 209–223. [Google Scholar] [CrossRef]
- Zhao, W.; Gu, C.T. Lactobacillus homohiochii is a later heterotypic synonym of Lactobacillus fructivorans. Int. J. Syst. Evol. Microbiol. 2019, 69, 1720–1723. [Google Scholar] [CrossRef] [PubMed]
- Ashida, S.; Ichikawa, E.; Suginami, K.; Imayasu, S. Isolation and application of mutants producing sufficient isoamyl acetate, a sake flavor component. Agric. Biol. Chem. 1987, 51, 2061–2065. [Google Scholar]
- Ichikawa, E.; Hosokawa, N.; Hata, Y.; Abe, Y.; Suginami, K.; Imayasu, S. Breeding of a sake yeast with improved ethyl caproate productivity. Agric. Biol. Chem. 1991, 55, 2153–2154. [Google Scholar]
- Kitagaki, H.; Kitamoto, K. Breeding research on sake yeasts in Japan: History, recent technological advances, and future perspectives. Ann. Rev. Food Sci. Technol. 2013, 4, 215–235. [Google Scholar] [CrossRef]
- Ohya, Y.; Kashima, M. History, lineage and phenotypic differentiation of sake yeast. Biosci. Botechnol. Biochem. 2019, 83, 1442–1448. [Google Scholar] [CrossRef]
- Negoro, H.; Matsumura, K.; Matsuda, F.; Shimizu, H.; Hara, Y.; Ishida, H. Effects of mutations of GID protein-coding genes on malate production and enzyme expression profiles in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2020, 104, 4971–4983. [Google Scholar] [CrossRef]
- Negoro, H.; Kotaka, A.; Ishida, H. Mutation in gene coding for glucose-induced degradation-deficient protein contributes to high malate production in yeast strain No. 28 and No. 77 used for industrial brewing of sake. Biosci. Biotechnol. Biochem. 2021, 85, 1283–1289. [Google Scholar] [CrossRef]
- Maruyama, H.; Yamamiya, T.; Ozawa, A.; Yamazaki, E.; Suzuki, N. Beer brewed with sake yeast strain has unique sake-like flavors. J. Am. Sci. Brew. Chem. 2023, 82, 150–159. [Google Scholar] [CrossRef]
- Yoshimoto, H.; Bogaki, T. Mechanisms of production and control of acetate esters in yeasts. J. Biosci. Bioeng. 2023, 136, 261–269. [Google Scholar] [CrossRef]
- Yoda, T.; Saito, T. Size of cells and physicochemical properties of membranes are related to flavor production during sake brewing in the yeast Saccharomyces cerevisiae. Membranes 2020, 10, 440. [Google Scholar] [CrossRef] [PubMed]
- Yoda, T. Phase-separated structures of sake flavors-containing cell model membranes. Chem. Biol. 2023, 20, e202200750. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M. The community of lactic acid bacteria during kimoto-style seed mash making process and its control. Biosci. Biotechnol. Biochem. 2024, 88, 242–248. [Google Scholar] [CrossRef]
- Taniguchi, M.; Takao, Y.; Kawasaki, H.; Yamada, T.; Fukusaki, E. Profiling of taste-related compounds during the fermentation of Japanese sake brewed with or without a traditional seed mash (kimoto). J. Biosci. Bioeng. 2020, 130, 63–70. [Google Scholar] [CrossRef]
- Takahashi, M.; Morikawa, K.; Kita, Y.; Shimoda, T.; Akao, T.; Goto-Yamamoto, N. Changes in bacterial and chemical components and growth prediction for Lactobacillus sakei during kimoto-style fermentation starter preparation in sake brewing: A comprehensive analysis. Appl. Environ. Microbiol. 2021, 87, e02546-20. [Google Scholar] [CrossRef]
- Obayashi, A.; Kitahara, K. On the factor determining the flora of lactic acid bacteria in the starter of saké. J. Agric. Chem. Soc. Jpn. 1959, 33, 839–843. (In Japanese) [Google Scholar]
- Ito, K.; Niwa, R.; Yamagishi, Y.; Kobayashi, K.; Tuchida, Y.; Hoshino, G.; Nakagawa, T.; Watanabe, T. A unique case in which Kimoto-style fermentation was completed with Leuconostoc as the dominant genus without transitioning to Lactobacillus. J. Biosci. Bioeng. 2023, 135, 451–457. [Google Scholar] [CrossRef]
- Virdis, C.; Sumby, K.; Bartowsky, E.; Jiranek, V. Lactic acid bacteria in wine: Technological advances and evaluation of their functional role. Front. Microbiol. 2021, 11, 612118. [Google Scholar] [CrossRef]
- Dysvik, A.; La Rosa, S.L.; Liland, K.H.; Myhrer, K.S.; Østlie, H.M.; De Rouck, G.; Rukke, E.O.; Westereng, B.; Wicklund, T. Co-fermentation involving Saccharomyces cerevisiae and Lactobacillus species tolerant to brewing-related stress factors for controlled and rapid production of sour beer. Front. Microbiol. 2020, 11, 279. [Google Scholar] [CrossRef] [PubMed]
- Ponomarova, O.; Gabrielli, N.; Sévin, D.C.; Mülleder, M.; Zirngibl, K.; Bulyha, K.; Andrejev, S.; Kafkia, E.; Typas, A.; Sauer, U.; et al. Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Syst. 2017, 5, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Senne de Oliveira Lino, F.; Bajic, D.; Vila, J.C.C.; Sánchez, A.; Sommer, M.O.A. Complex yeast-bacteria interactions affect the yield of industrial ethanol fermentation. Nat. Commun. 2021, 12, 1498. [Google Scholar] [CrossRef] [PubMed]
- Větrovský, T.; Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 2013, 8, e57923. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, X.; Shi, H.; Li, J.; Zhang, M.; Zhao, J.; Su, X. Comprehensive assessment of 16S rRNA gene amplicon sequencing for microbiome profiling across multiple habitats. Microbiol. Spectr. 2023, 11, e0056323. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Bamforth, C.W.; Mills, D.A. A review of molecular methods for microbial community profiling of beer and wine. J. Am. Soc. Brew. Chem. 2012, 70, 150–162. [Google Scholar] [CrossRef]
- Koyanagi, T.; Nakagawa, A.; Kiyohara, M.; Matsui, H.; Tsuji, A.; Barla, F.; Take, H.; Katsuyama, Y.; Tokuda, K.; Nakamura, S.; et al. Tracing microbiota changes in yamahai-moto, the traditional Japanese sake starter. Biosci. Biotechnol. Biochem. 2016, 80, 399–406. [Google Scholar] [CrossRef]
- Terasaki, M.; Miyagawa, S.; Yamada, M.; Nishida, H. Detection of bacterial DNA during the process of sake production using sokujo-moto. Curr. Microbiol. 2018, 75, 874–879. [Google Scholar] [CrossRef]
- Terasaki, M.; Nishida, H. Bacterial DNA diversity among clear and cloudy sakes, and sake-kasu. Open Bioinform. J. 2020, 13, 74–82. [Google Scholar] [CrossRef]
- Tsuji, A.; Kozawa, M.; Tokuda, K.; Enomoto, T.; Koyanagi, T. Robust domination of Lactobacillus sakei in microbiota during traditional Japanese sake starter yamahai-moto fermentation and the accompanying changes in metabolites. Curr. Microbiol. 2018, 75, 1498–1505. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Niwa, R.; Kobayashi, K.; Nakagawa, T.; Hoshino, G.; Tsuchida, Y. A dark matter in sake brewing: Origin of microbes producing a Kimoto-style fermentation starter. Front. Microbiol. 2023, 14, 1112638. [Google Scholar] [CrossRef] [PubMed]
- Naganuma, K.; Nakagawa, Y.; Kokubo, S.; Hashimoto, T.; Higuchi, K.; Ariizumi, N.; Hayakawa, M.; Yamamura, H. Traditional microbial control methods used in sake brewing effectively suppress predominant bacteria emerging during production of rice koji. Biotechnol. Biotechnol. Equip. 2023, 37, 2271566. [Google Scholar] [CrossRef]
- Nguyen, N.T.H.; Wang, W.-Y.; Huang, W.-Y.; Huang, C.-L.; Chiang, T.-Y. Metagenomics analyses of microbial dynamics associated with putative flavor development in mash fermentation of sake. LWT 2022, 163, 113570. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Ikeda, T.; Hara, S. Differences in the intracellular lipids of sake yeast in main mash seeded respectively with two kinds of seed mash: Kimoto and sokujo-moto. J. Ferment. Bioeng. 1995, 80, 586–591. [Google Scholar] [CrossRef]
- Fujiwara, H.; Watanabe, K.; Wakai, Y. Combination of four bacterial strains isolated from Yamahai-shubo in traditional Japanese sake brewing. Food Sci. Nutr. 2023, 11, 2990–3001. [Google Scholar] [CrossRef]
- Watanabe, D.; Kumano, M.; Sugimoto, Y.; Ito, M.; Ohashi, M.; Sunada, K.; Takahashi, T.; Yamada, T.; Takagi, H. Metabolic switching of sake yeast by kimoto lactic acid bacteria through the [GAR+] non-genetic element. J. Biosci. Bioeng. 2018, 126, 624–629. [Google Scholar] [CrossRef]
- Watanabe, D. Sake yeast symbiosis with lactic acid bacteria and alcoholic fermentation. Biosci. Biotechnol. Biochem. 2024, 88, 237–241. [Google Scholar] [CrossRef]
- Nishida, H. Sake brewing and bacteria inhabiting sake breweries. Front. Microbiol. 2021, 12, 602380. [Google Scholar] [CrossRef]
- Nishida, H. Kuratsuki bacteria and sake making. Biosci. Biotechnol. Biochem. 2024, 88, 249–253. [Google Scholar] [CrossRef]
- Hatakeyama, A.; Watanabe, Y.; Arimoto, K.; Kuribayashi, T.; Hara, T.; Joh, T. Screening and characterization of a house yeast strain for sake brewing using the loop-mediated isothermal amplification method. J. Brew. Soc. Jpn. 2020, 115, 537–544. (In Japanese) [Google Scholar] [CrossRef]
- Gonçalves, M.; Pontes, A.; Almeida, P.; Barbosa, R.; Serra, M.; Libkind, D.; Hutzler, M.; Gonçalves, P.; Sampaio, J.P. Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Curr. Biol. 2016, 26, 2750–2761. [Google Scholar] [CrossRef] [PubMed]
- Mizoguchi, H. Quality of sake characterized by lactic acid bacterial flora in traditional yeast starter (kimoto). J. Brew. Soc. Jpn. 2013, 108, 382–388. (In Japanese) [Google Scholar] [CrossRef]
- Terasaki, M.; Kimura, Y.; Yamada, M.; Nishida, H. Genomic information of Kocuria isolates from sake brewing process. AIMS Microbiol. 2021, 7, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Kanamoto, E.; Terashima, K.; Shiraki, Y.; Nishida, H. Diversity of Bacillus isolates from the sake brewing process at a sake brewery. Microorganisms 2021, 9, 1760. [Google Scholar] [CrossRef] [PubMed]
- Stackebrandt, E.; Koch, C.; Gvozdiak, O.; Schumann, P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int. J. Syst. Evol. Microbiol. 1995, 45, 682–692. [Google Scholar] [CrossRef]
- Gupta, R.S.; Patel, S.; Saini, N.; Chen, S. Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by phylogenomics and comparative genomic analyses: Description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int. J. Syst. Evol. Microbiol. 2020, 70, 5753–5798. [Google Scholar]
- Ito, T.; Konno, M.; Shimura, Y.; Watanabe, S.; Takahashi, H.; Hashizume, K. Formation of guaiacol by spoilage bacteria from vanillic acid, a product of rice koji cultivation, in Japanese sake brewing. J. Agric. Food Chem. 2016, 64, 4599–4605. [Google Scholar] [CrossRef]
- Terasaki, M.; Inoue, A.; Kanamoto, E.; Yoshida, S.; Yamada, M.; Toda, H.; Nishida, H. Co-cultivation of sake yeast and Kocuria isolates from the sake brewing process. FEMS Microbiol. Lett. 2021, 368, fnab053. [Google Scholar] [CrossRef]
- Yazaki, A.; Nishida, H. Effect of kuratsuki Kocuria on sake brewing in different koji conditions. FEMS Microbiol. Lett. 2023, 370, fnad020. [Google Scholar] [CrossRef]
- De Koning-Ward, T.F.; Robins-Browne, R.M. Contribution of urease to acid tolerance in Yersinia enterocolitica. Infect. Immun. 1995, 63, 3790–3795. [Google Scholar] [CrossRef] [PubMed]
- Maroncle, N.; Rich, C.; Forestier, C. The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Res. Microbiol. 2006, 157, 184–193. [Google Scholar] [CrossRef]
- Sangari, F.J.; Seoane, A.; Rodríguez, M.C.; Agüero, J.; García Lobo, J.M. Characterization of the urease operon of Brucella abortus and assessment of its role in virulence of the bacterium. Infect. Immun. 2007, 75, 774–780. [Google Scholar] [CrossRef] [PubMed]
- Weeks, D.L.; Eskandari, S.; Scott, D.R.; Sachs, G. A H+-gated urea channel: The link between Helicobacter pylori urease and gastric colonization. Science 2000, 287, 482–485. [Google Scholar] [CrossRef] [PubMed]
- Kitamoto, K.; Oda, K.; Gomi, K.; Takahashi, K. Genetic engineering of a sake yeast producing no urea by successive disruption of arginase gene. Appl. Environ. Microbiol. 1991, 57, 301–306. [Google Scholar] [CrossRef]
- Dahabieh, M.S.; Husnik, J.I.; Van Vuuren, H.J. Functional enhancement of Sake yeast strains to minimize the production of ethyl carbamate in Sake wine. J. Appl. Microbiol. 2010, 109, 963–973. [Google Scholar] [CrossRef]
- Yoshizawa, K.; Takahashi, K. Utilization of urease for decomposition of urea in sake. J. Brew. Soc. Jpn. 1988, 83, 142–144. (In Japanese) [Google Scholar] [CrossRef]
- Burdette, D.S.; Jung, S.H.; Shen, G.J.; Hollingsworth, R.I.; Zeikus, J.G. Physiological function of alcohol dehydrogenases and long-chain (C30) fatty acids in alcohol tolerance of Thermoanaerobacter ethanolicus. Appl. Environ. Microbiol. 2002, 68, 1914–1918. [Google Scholar] [CrossRef]
- Pech-Canul, A.; Hammer, S.K.; Ziegler, S.J.; Richardson, I.D.; Sharma, B.D.; Maloney, M.I.; Bomble, Y.J.; Lynd, L.R.; Olson, D.G. The role of AdhE on ethanol tolerance and production in Clostridium thermocellum. J. Biol. Chem. 2024, 11, 107559. [Google Scholar] [CrossRef]
- Brown, S.D.; Guss, A.M.; Karpinets, T.V.; Parks, J.M.; Smolin, N.; Yang, S.; Land, M.L.; Klingeman, D.M.; Bhandiwad, A.; Rodriguez, M., Jr.; et al. Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc. Natl. Acad. Sci. USA 2011, 108, 13752–13757. [Google Scholar] [CrossRef]
- Vidal, R. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803. Appl. Microbiol. Biotechnol. 2017, 101, 3473–3482. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Nishida, H. Effect of kuratsuki Bacillus and Priestia on taste of sake. Appl. Microbiol. 2024, 4, 147–161. [Google Scholar] [CrossRef]
- Song, H.; Hwang, J.; Yi, H.; Ulrich, R.L.; Yu, Y.; Nierman, W.C.; Kim, H.S. The early stage of bacterial genome-reductive evolution in the host. PLoS Pathog. 2010, 6, e1000922. [Google Scholar] [CrossRef] [PubMed]
- Arikawa, Y.; Yamada, M.; Shimosaka, M.; Okazaki, M.; Fukuzawa, M. Isolation of sake yeast mutants producing a high level of ethyl caproate and/or isoamyl acetate. J. Biosci. Bioeng. 2000, 90, 675–677. [Google Scholar] [CrossRef]
- Takahashi, T.; Ohara, Y.; Sueno, K. Breeding of a sake yeast mutant with enhanced ethyl caproate productivity in sake brewing using rice milled at a high polishing ratio. J. Biosci. Bioeng. 2017, 123, 707–713. [Google Scholar] [CrossRef]
- Shimazu, Y.; Fujikawa, M.; Watanabe, M.; Ota, Y. Effect of drinking temperature on the acidity of organic acids in “sake”. J. Brew. Soc. Jpn. 2011, 106, 747–755. (In Japanese) [Google Scholar] [CrossRef]
- Yazaki, A.; Nishida, H. Effect of kuratsuki Kocuria on sake’s taste varies depending on the sake yeast strain used in sake brewing. Arch. Microbiol. 2023, 205, 290. [Google Scholar] [CrossRef]
- Toko, K. Taste sensor. Sens. Actuators B Chem. 2000, 64, 205–215. [Google Scholar] [CrossRef]
- Toko, K. Research and development of taste sensors as a novel analytical tool. Proc. Jpn. Acad. Ser. B 2023, 99, 173–189. [Google Scholar] [CrossRef]
- Wu, H.; Zheng, X.; Araki, Y.; Sahara, H.; Takagi, H.; Shimoi, H. Global gene expression analysis of yeast cells during sake brewing. Appl. Environ. Microbiol. 2006, 72, 7353–7358. [Google Scholar] [CrossRef]
- Akao, T. Progress in the genomics and genome-wide study of sake yeast. Biosci. Biotechnol. Biochem. 2019, 83, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Nishida, H. Transcriptome analysis of sake yeast in co-culture with kuratsuki Kocuria. Fermentation 2024, 10, 249. [Google Scholar] [CrossRef]
- Mendes, F.; Sieuwerts, S.; de Hulster, E.; Almering, M.J.H.; Luttik, M.A.H.; Pronk, J.T.; Smid, E.J.; Bron, P.A.; Daran-Lapujade, P. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures. Appl. Environ. Microbiol. 2013, 79, 5949–5961. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, T.-Y.; Liu, G.; Ye, Y.; Soteyome, T.; Seneviratne, G.; Xiao, G.; Xu, Z.; Kjellerup, B.V. Microbial interaction between Lactiplantibacillus plantarum and Saccharomyces cerevisiae: Transcriptome level mechanism of cell-cell antagonism. Microbiol. Spectr. 2022, 10, e0143322. [Google Scholar] [CrossRef]
- Tondini, F.; Lang, T.; Chen, L.; Herderich, M.; Jiranek, V. Linking gene expression and oenological traits: Comparison between Torulaspora delbrueckii and Saccharomyces cerevisiae strains. Int. J. Food Microbiol. 2019, 294, 42–49. [Google Scholar] [CrossRef]
- Valera, M.J.; Boido, E.; Dellacassa, E.; Carrau, F. Comparison of the glycolytic and alcoholic fermentation pathways of Hanseniaspora vineae with Saccharomyces cerevisiae wine yeasts. Fermentation 2020, 6, 78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishida, H. Kuratsuki Bacteria Interactions with Sake Yeast and Effect on Taste. Appl. Microbiol. 2024, 4, 1309-1319. https://doi.org/10.3390/applmicrobiol4030090
Nishida H. Kuratsuki Bacteria Interactions with Sake Yeast and Effect on Taste. Applied Microbiology. 2024; 4(3):1309-1319. https://doi.org/10.3390/applmicrobiol4030090
Chicago/Turabian StyleNishida, Hiromi. 2024. "Kuratsuki Bacteria Interactions with Sake Yeast and Effect on Taste" Applied Microbiology 4, no. 3: 1309-1319. https://doi.org/10.3390/applmicrobiol4030090
APA StyleNishida, H. (2024). Kuratsuki Bacteria Interactions with Sake Yeast and Effect on Taste. Applied Microbiology, 4(3), 1309-1319. https://doi.org/10.3390/applmicrobiol4030090