Abraham Solvation Parameter Model: Calculation of L Solute Descriptors for Large C11 to C42 Methylated Alkanes from Measured Gas–Liquid Chromatographic Retention Data
Abstract
:1. Introduction
2. Calculation of Abraham Model Solute Descriptors for Methylated Alkanes
(N = 63, SD = 0.034, R2 = 1.000 and F = 942,023)
3. Calculation of Thermodynamic Properties of Large Methylated Alkanes Using Abraham Model Solute Descriptors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ruddigkeit, L.; van Deursen, R.; Blum, L.C.; Reymond, J.-L. Enumeration of 166 billion organic small molecules in the Chemical Universe Database GDB-17. J. Chem. Inf. Model. 2012, 52, 2864–2875. [Google Scholar] [CrossRef] [PubMed]
- Toots, K.M.; Sild, S.; Leis, J.; Acree, W.E., Jr.; Maran, U. The quantitative structure-property relationships for the gas-ionic liquid partition coefficient of a large variety of organic compounds in three ionic liquids. J. Mol. Liq. 2021, 343, 117573. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Oliferenko, A.A.; Oliferenko, P.V.; Petrukhin, R.; Tatham, D.B.; Maran, U.; Lomaka, A.; Acree, W.E., Jr. A general treatment of solubility. 1. The QSPR correlation of solvation free energies of single solutes in series of solvents. J. Chem. Inf. Comp. Sci. 2003, 43, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Katritzky, A.R.; Oliferenko, A.A.; Oliferenko, P.V.; Petrukhin, R.; Tatham, D.B.; Maran, U.; Lomaka, A.; Acree, W.E., Jr. A general treatment of solubility. 2. QSPR prediction of free energies of solvation of specified solutes in ranges of solvents. J. Chem. Inf. Comp. Sci. 2003, 43, 1806–1814. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.C.; Zou, J.W.; Huang, M.L.; Yu, Q.S. QSPR studies on solubilities of some given solutes in pure solvents using frontier orbital energies and theoretical descriptors derived from electrostatic potentials on molecular surface. Acta Chim. Sin. 2002, 60, 647–652. [Google Scholar]
- Golmohammadi, H.; Dashtbozorgi, Z.; Gholam Samani, M.; Acree, W.E., Jr. QSPR prediction of gas-to-methanol solvation enthalpy of organic compounds using replacement method and support vector machine. Phys. Chem. Liq. 2015, 53, 46–66. [Google Scholar] [CrossRef]
- Sola, D.; Ferri, A.; Banchero, M.; Manna, L.; Sicardi, S. QSPR prediction of N-boiling point and critical properties of organic compounds and comparison with a group-contribution method. Fluid Phase Equilib. 2008, 263, 33–42. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, B.; Jiang, J.; Pan, Y.; Wang, Q. Quantitative structure-property relationship (QSPR) study for predicting gas-liquid critical temperatures of organic compounds. Thermochim. Acta 2017, 655, 112–116. [Google Scholar] [CrossRef]
- Naef, R.; Acree, W.E., Jr. Revision and extension of a generally applicable group-additivity method for the calculation of the standard heat of combustion and formation of organic molecules. Molecules 2021, 26, 6101. [Google Scholar] [CrossRef]
- Naef, R.; Acree, W.E., Jr. Calculation of the surface tension of ordinary organic and ionic liquids by means of a generally applicable computer algorithm based on the group-additivity method. Molecules 2018, 23, 1224. [Google Scholar] [CrossRef] [Green Version]
- Naef, R.; Acree, W.E., Jr. Application of a general computer algorithm based on the group-additivity method for the calculation of two molecular descriptors at both ends of dilution: Liquid viscosity and activity coefficient in water at infinite dilution. Molecules 2018, 23, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naef, R.; Acree, W.E., Jr. Calculation of the vapour pressure of organic molecules by means of a group-additivity method and their resultant Gibbs free energy and entropy of vaporization at 298.15 K. Molecules 2021, 26, 1045. [Google Scholar] [CrossRef]
- Naef, R. A generally applicable computer algorithm based on the group additivity method for the calculation of seven molecular descriptors: Heat of combustion, Log PO/W, Log S, refractivity, polarizability, toxicity and Log BB of organic compounds; scope and limits of applicability. Molecules 2015, 20, 18279–18351. [Google Scholar] [PubMed] [Green Version]
- Naef, R.; Acree, W.E., Jr. Calculation of five thermodynamic molecular descriptors by means of a general computer algorithm based on the group-additivity method: Standard enthalpies of vaporization, sublimation and solvation, and entropy of fusion of ordinary organic molecules and total phase-change entropy of liquid crystals. Molecules 2017, 22, 1059. [Google Scholar]
- Gharagheizi, F.; Ilani-Kashkouli, P.; Acree, W.E., Jr.; Mohammadi, A.H.; Ramjugernath, D. A group contribution model for determining the sublimation enthalpy of organic compounds at the standard reference temperature of 298 K. Fluid Phase Equilib. 2013, 354, 265–285. [Google Scholar] [CrossRef] [Green Version]
- Gharagheizi, F.; Ilani-Kashkouli, P.; Acree, W.E., Jr.; Mohammadi, A.H.; Ramjugernath, D. A group contribution model for determining the vaporization enthalpy of organic compounds at the standard reference temperature of 298 K. Fluid Phase Equilib. 2013, 360, 279–292. [Google Scholar] [CrossRef]
- Abraham, M.H. Scales of solute hydrogen-bonding: Their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 1993, 22, 73–83. [Google Scholar] [CrossRef]
- Abraham, M.H.; Ibrahim, A.; Zissimos, A.M. Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 2004, 1037, 29–47. [Google Scholar] [CrossRef]
- Abraham, M.H.; Smith, R.E.; Luchtefeld, R.; Boorem, A.J.; Luo, R.; Acree, W.E., Jr. Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 2010, 99, 1500–1515. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. Descriptors for the prediction of partition coefficients of 8-hydroxyquinoline and its derivatives. Sep. Sci. Technol. 2014, 49, 2135–2141. [Google Scholar] [CrossRef]
- Smart, K.; Connolly, E.; Ocon, L.; Golden, T.; Acree, W.E.; Abraham, M.H. Abraham model correlations for describing the partition of organic compounds from water into the methyl ethyl ketone extraction solvent. Phys. Chem. Liq. 2022, 60, 47–58. [Google Scholar] [CrossRef]
- Smart, K.; Garcia, E.; Oloyede, B.; Fischer, R.; Golden, T.D.; Acree, W.E., Jr.; Abraham, M.H. The partition of organic compounds from water into the methyl isobutyl ketone extraction solvent with updated Abraham model equation. Phys. Chem. Liq. 2021, 59, 431–441. [Google Scholar] [CrossRef]
- Liu, X.; Acree, W.E., Jr.; Abraham, M.H. Descriptors for some compounds with pharmacological activity; calculation of properties. Int. J. Pharm. 2022, 617, 121597. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Acree, W.E., Jr.; Brumfield, M.; Hart, E.; Pipersburgh, L.; Mateja, K.; Dai, C.; Grover, D.; Zhang, S. Deduction of physicochemical properties from solubilities: 2,4-Dihydroxybenzophenone, biotin, and caprolactam as examples. J. Chem. Eng. Data 2015, 60, 1440–1446. [Google Scholar] [CrossRef]
- Hoover, K.R.; Acree, W.E., Jr.; Abraham, M.H. Chemical toxicity correlations for several fish species based on the Abraham solvation parameter model. Chem. Res. Toxicol. 2005, 18, 1497–1505. [Google Scholar] [CrossRef] [Green Version]
- Bowen, K.R.; Flanagan, K.B.; Acree, W.E., Jr.; Abraham, M.H.; Rafols, C. Correlation of the toxicity of organic compounds to tadpoles using the Abraham model. Sci. Total Environ. 2006, 371, 99–109. [Google Scholar] [CrossRef]
- Hoover, K.R.; Flanagan, K.B.; Acree, W.E., Jr.; Abraham, M.H. Chemical toxicity correlations for several protozoas, bacteria, and water fleas based on the Abraham solvation parameter model. J. Environ. Eng. Sci. 2007, 6, 165–174. [Google Scholar] [CrossRef]
- Abraham, M.H.; Kumarsingh, R.; Cometto-Muniz, J.E.; Cain, W.S. An algorithm for nasal pungency thresholds in man. Arch. Toxicol. 1998, 72, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Poole, C.F.; Atapattu, S.N. Determination of physicochemical properties of ionic liquids by gas chromatography. J. Chromatogr. A 2021, 1644, 461964. [Google Scholar] [CrossRef]
- Poole, C.F. Gas chromatography system constant database for 52 wall-coated, open-tubular columns covering the temperature range 60–140 °C. J. Chromatogr. A 2019, 1604, 460482. [Google Scholar] [CrossRef]
- Poole, C.F. Evaluation of the solvation parameter model as a quantitative structure-retention relationship model for gas and liquid chromatography. J. Chromatogr. A 2020, 1626, 461308. [Google Scholar] [CrossRef]
- Poole, C.F. Reversed-phase liquid chromatography system constant database over an extended mobile phase composition range for 25 siloxane-bonded silica-based columns. J. Chromatogr. A 2019, 1600, 112–126. [Google Scholar] [CrossRef] [PubMed]
- Poole, C.F.; Lenca, N. Applications of solvation parameter model in reversed-phase liquid chromatography. J. Chromatogr. A 2017, 1486, 2–19. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; Kumarsingh, R.; Cometto-Muniz, J.E.; Cain, W.S. A quantitative structure-activity relationship (QSAR) for a Draize eye irritation database. Toxicol. In Vitro 1998, 12, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Abraham, M.H.; Hassanisadi, M.; Jalali-Heravi, M.; Ghafourian, T.; Cain, W.S.; Cometto-Muniz, J.E. Draize rabbit eye test compatibility with eye irritation thresholds in humans: A quantitative structure-activity relationship analysis. Toxicol. Sci. 2003, 76, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.H.; Le, J.; Abraham, M.H.; Hersey, A.; Eddershaw, P.J.; Luscombe, C.N.; Boutina, D.; Beck, G.; Sherborne, B.; Cooper, I.; et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure-activity relationship (QSAR) with the Abraham descriptors. J. Pharm. Sci. 2001, 90, 749–784. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.H.; Abraham, M.H.; Hersey, A.; Luscombe, C.N. Quantitative relationship between rat intestinal absorption and Abraham descriptors. Eur. J. Med. Chem. 2003, 38, 939–947. [Google Scholar] [CrossRef]
- Abraham, M.H.; Martins, F. Human skin permeation and partition: General linear free-energy relationship analyses. J. Pharm. Sci. 2004, 93, 1508–1523. [Google Scholar] [CrossRef]
- Zhang, K.; Abraham, M.H.; Liu, X. An equation for the prediction of human skin permeability of neutral molecules, ions and ionic species. Int. J. Pharm. 2017, 521, 259–266. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. The correlation and prediction of the temperature variation of infinite dilution activity coefficients of compounds in water. Fluid Phase Equilib. 2018, 455, 1–5. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr.; Zissimos, A.M. The correlation and prediction of infinite dilution activity coefficients of compounds in water at 298.15 K. Fluid Phase Equilib. 2017, 449, 117–129. [Google Scholar] [CrossRef]
- Mintz, C.; Clark, M.; Acree, W.E., Jr.; Abraham, M.H. Enthalpy of solvation correlations for gaseous solutes dissolved in water and in 1-octanol based on the Abraham model. J. Chem. Inf. Model. 2007, 47, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Stephens, T.W.; De La Rosa, N.E.; Saifullah, M.; Ye, S.; Chou, V.; Quay, A.N.; Acree, W.E., Jr.; Abraham, M.H. Enthalpy of solvation correlations for organic solutes and gases dissolved in 2-propanol, 2-butanol, 2-Methyl-1-propanol and ethanol. Thermochim. Acta 2011, 523, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.Z.; Acree, W.E., Jr.; Abraham, M.H. Abraham model correlations for enthalpies of solvation of organic solutes dissolved in N,N-dimethylacetamide, 2-butanone and tetrahydrofuran (UPATED) at 298.15 K. Phys. Chem. Liq. 2020, 58, 675–692. [Google Scholar] [CrossRef]
- Churchill, B.; Acree, W.E., Jr.; Abraham, M.H. Development of Abraham model expressions for predicting the standard molar enthalpies of vaporization of organic compounds at 298.15 K. Thermochim. Acta 2019, 681, 178372. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. Estimation of enthalpies of sublimation of organic, organometallic and inorganic compounds. Fluid Phase Equilib. 2020, 515, 112575. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. Estimation of vapor pressures of liquid and solid organic and organometallic compounds at 298.15 K. Fluid Phase Equilib. 2020, 519, 112595. [Google Scholar] [CrossRef]
- Abraham, M.H.; Acree, W.E., Jr. Limiting diffusion coefficients for ions and nonelectrolytes in solvents water, methanol, ethanol, propan-1-ol, butan-1-ol, octan-1-ol, propanone and acetonitrile at 298 K, analyzed using Abraham descriptors. J. Solut. Chem. 2019, 48, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Hills, E.E.; Abraham, M.H.; Hersey, A.; Bevan, C.D. Diffusion coefficients in ethanol and in water at 298 K: Linear free energy relationships. Fluid Phase Equilib. 2011, 303, 45–55. [Google Scholar] [CrossRef]
- Endo, S.; Goss, K.-U. Applications of polyparameter linear free energy relationships in environmental chemistry. Environ. Sci. Technol. 2014, 48, 12477–12491. [Google Scholar] [CrossRef]
- Poole, C.F.; Ariyasena, T.C.; Lenca, N. Estimation of the environmental properties of compounds from chromatographic measurements and the solvation parameter model. J. Chromatogr. A 2013, 1317, 85–104. [Google Scholar] [CrossRef] [PubMed]
- Jalan, A.; Ashcraft, R.W.; West, R.H.; Green, W.H. Predicting solvation energies for kinetic modeling. Ann. Rep. Prog. Chem. Sect. C Phys. Chem. 2010, 106, 211–258. [Google Scholar] [CrossRef]
- He, J.; Abraham, M.H.; Acree, W.E., Jr.; Zhao, Y.H. A linear free energy analysis of PAMPA models for biological systems. Int. J. Pharm. 2015, 496, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Platts, J.A.; Butina, D.; Abraham, M.H.; Hersey, A. Estimation of molecular linear free energy relation descriptors using a group contribution approach. J. Chem. Inf. Comp. Sci. 1999, 39, 835–845. [Google Scholar] [CrossRef]
- Platts, J.A.; Abraham, M.H.; Butina, D.; Hersey, A. Estimation of molecular linear free energy relationship descriptors by a group contribution approach. 2. Prediction of partition coefficients. J. Chem. Inf. Comp. Sci. 2000, 40, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.; Vermeire, F.H.; Wu, H.; Walker, P.J.; Abraham, M.H.; Green, W.H. Group contribution and machine learning approaches to predict Abraham solute parameters, solvation free energy, and solvation enthalpy. J. Chem. Inf. Model. 2022, 62, 433–446. [Google Scholar] [CrossRef]
- Ulrich, N.; Ebert, A. Can deep learning algorithms enhance the prediction of solute descriptors for linear solvation energy relationship approaches? Fluid Phase Equilib. 2022, 555, 113349. [Google Scholar] [CrossRef]
- Ulrich, N.; Endo, S.; Brown, T.N.; Watanabe, N.; Bronner, G.; Abraham, M.H.; Goss, K.-U. UFZ-LSER Database v 3.2.1 [Internet]; Helmholtz Centre for Environmental Research-UFZ: Leipzig, Germany, 2017; Available online: http://www.ufz.de/lserd (accessed on 17 May 2022).
- Grubbs, L.M.; Saifullah, M.; De La Rosa, N.E.; Ye, S.; Achi, S.S.; Acree, W.E., Jr.; Abraham, M.H. Mathematical correlations for describing solute transfer into functionalized alkane solvents containing hydroxyl, ether, ester or ketone solvents. Fluid Phase Equilib. 2010, 298, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Bradley, J.-C.; Abraham, M.H.; Acree, W.E., Jr.; Lang, A.S.I.D. Predicting Abraham model solvent coefficients. Chem. Cent. J. 2015, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Brown, T.N. Empirical regressions between system parameters and solute descriptors of polyparameter linear free energy relationships (PPLFERs) for predicting solvent-air partitioning. Fluid Phase Equilib. 2021, 540, 113035. [Google Scholar] [CrossRef]
- Brown, T.N. QSPRs for predicting equilibrium partitioning in solvent–air systems from the chemical structures of solutes and solvents. J. Solut. Chem. 2022, in press. [Google Scholar] [CrossRef]
- Liu, G.; Eddula, S.; Jiang, C.; Huang, J.; Tirumala, P.; Xu, A.; Acree, W.E., Jr.; Abraham, M.H. Abraham solvation parameter model: Prediction of enthalpies of vaporization and sublimation of mono-methyl branched alkanes using measured gas chromatographic data. Eur. Chem. Bull. 2020, 9, 273–284. [Google Scholar] [CrossRef]
- Tirumala, P.; Huang, J.; Eddula, S.; Jiang, C.; Xu, A.; Liu, G.; Acree, W.E., Jr.; Abraham, M.H. Calculation of Abraham model L-Descriptor and standard molar enthalpies of vaporization and sublimation for C9–C26 mono-alkyl alkanes and polymethyl alkanes. Eur. Chem. Bull. 2020, 9, 317–328. [Google Scholar] [CrossRef]
- Shanmugam, N.; Eddula, S.; Acree, W.E., Jr.; Abraham, M.H. Calculation of Abraham model L-descriptor and standard molar enthalpies of vaporization for linear C7-C14 alkynes from gas chromatographic retention index data. Eur. Chem. Bull. 2021, 10, 46–57. [Google Scholar] [CrossRef]
- Sinha, S.; Varadharajan, A.; Xu, A.; Wu, E.; Acree, W.E., Jr. Determination of Abraham model solute descriptors for hippuric acid from measured molar solubilities in several organic mono-solvents of varying polarity and hydrogen-bonding ability. Phys. Chem. Liq. 2022, 60, 563–571. [Google Scholar] [CrossRef]
- Liu, X.; Aghamohammadi, A.; Afarinkia, K.; Abraham, R.J.; Acree, W.E., Jr.; Abraham, M.H. Descriptors for edaravone; studies on its structure, and prediction of properties. J. Mol. Liq. 2021, 332, 115821. [Google Scholar] [CrossRef]
- Liu, X.; Abraham, M.H.; Acree, W.E., Jr. Descriptors for vitamin K3 (menadione); calculation of biological and physicochemical properties. J. Mol. Liq. 2021, 330, 115707. [Google Scholar] [CrossRef]
- Xu, A.; Varadharajan, A.; Shanmugam, N.; Kim, K.; Huang, E.; Cai, S.K.; Acree, W.E., Jr. Abraham model description of the solubilising properties of the isopropyl acetate organic mono-solvent. Phys. Chem. Liq. 2022, 60, 312–324. [Google Scholar] [CrossRef]
- Kim, K.; Shanmugam, N.; Xu, A.; Varadharajan, A.; Cai, S.K.; Huang, E.; Acree, W.E., Jr. Abraham model correlations for describing solute transfer into anisole based on measured activity coefficients and molar solubilities. Phys. Chem. Liq. 2022, 60, 452–462. [Google Scholar] [CrossRef]
- Cai, S.K.; Huang, E.; Kim, K.; Shanmugam, N.; Varadharajan, A.; Xu, A.; Acree, W.E., Jr. Development of Abraham model correlations for solute transfer into cyclopentanol from both water and the gas phase based on measured solubility ratios. Phys. Chem. Liq. 2022, 60, 287–296. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Chen, K.; Maran, U.; Carlson, D.A. QSPR correlation and predictions of gc retention indexes for methyl-branched hydrocarbons produced by insects. Anal. Chem. 2000, 72, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.H.; McGowan, J.C. The use of characteristic volumes to measure cavity terms in reversed phase liquid chromatography. Chromatographia 1987, 23, 243–246. [Google Scholar] [CrossRef]
- Chickos, J.S.; Hosseini, S.; Hesse, D.G. Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times. Thermochim. Acta 1995, 249, 41–61. [Google Scholar] [CrossRef]
- Chickos, J.S.; Wilson, J.A. Vaporization enthalpies at 298.15 K of the n-alkanes from C21 to C28 and C30. J. Chem. Eng. Data 1997, 42, 190–197. [Google Scholar] [CrossRef]
- Chickos, J.S.; Hanshaw, W. Vapor Pressures and vaporization enthalpies of the n-alkanes from C31 to C38 at T = 298.15 K by correlation gas chromatography. J. Chem. Eng. Data 2004, 49, 620–630. [Google Scholar] [CrossRef]
- Nagrimanov, R.N.; Samatov, A.A.; Buzyurov, A.V.; Kurshev, A.G.; Ziganshin, M.A.; Zaitsau, D.H.; Solomonov, B.N. Thermochemical properties of mono- and di-cyano-aromatic compounds at 298.15 K. Thermochim. Acta 2018, 668, 152–158. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Varfolomeev, M.A.; Nagrimanov, R.N.; Novikov, V.B.; Buzyurov, A.V.; Fedorova, Y.V.; Mukhametzyanov, T.A. New method for determination of vaporization and sublimation enthalpy of aromatic compounds at 298.15K using solution calorimetry technique and group-additivity scheme. Thermochim. Acta 2015, 622, 88–96. [Google Scholar]
- Solomonov, B.N.; Varfolomeev, M.A.; Nagrimanov, R.N.; Novikov, V.B.; Zaitsau, D.H.; Verevkin, S.P. Solution calorimetry as a complementary tool for the determination of enthalpies of vaporization and sublimation of low volatile compounds at 298.15 K. Thermochim. Acta 2014, 589, 164–173. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Nagrimanov, R.N.; Varfolomeev, M.A.; Buzyurov, A.V.; Mukhametzyanov, T.A. Enthalpies of fusion and enthalpies of solvation of aromatic hydrocarbons derivatives: Estimation of sublimation enthalpies at 298.15 K. Thermochim. Acta 2016, 627–629, 77–82. [Google Scholar] [CrossRef]
- Solomonov, B.N.; Varfolomeev, M.A.; Nagrimanov, R.N.; Mukhametzyanov, T.A.; Novikov, V.B. Enthalpies of solution, enthalpies of fusion and enthalpies of solvation of polyaromatic hydrocarbons: Instruments for determination of sublimation enthalpy at 298.15 K. Thermochim. Acta 2015, 622, 107–112. [Google Scholar] [CrossRef]
- Lu, J.Z.; Acree, W.E., Jr.; Abraham, M.L. Updated Abraham model correlations for enthalpies of solvation of organic solutes dissolved in benzene and acetonitrile. Phys. Chem. Liq. 2019, 57, 84–99. [Google Scholar] [CrossRef]
Compound Name | KRI/100 | L Value Database | L Value Calculated |
---|---|---|---|
Linear Alkanes | |||
Heptane | 7.000 | 3.173 | 3.172 |
Octane | 8.000 | 3.677 | 3.676 |
Nonane | 9.000 | 4.182 | 4.180 |
Decane | 10.000 | 4.686 | 4.684 |
Undecane | 11.000 | 5.191 | 5.188 |
Dodecane | 12.000 | 5.696 | 5.692 |
Tridecane | 13.000 | 6.200 | 6.196 |
Tetradecane | 14.000 | 6.705 | 6.700 |
Pentadecane | 15.000 | 7.209 | 7.204 |
Hexadecane | 16.000 | 7.714 | 7.708 |
Heptadecane | 17.000 | 8.218 | 8.212 |
Octadecane | 18.000 | 8.722 | 8.716 |
Nonadecane | 19.000 | 9.226 | 9.220 |
Eicosane | 20.000 | 9.731 | 9.724 |
Heneicosane | 21.000 | 10.236 | 10.228 |
Docosane | 22.000 | 10.740 | 10.732 |
Tricosane | 23.000 | 11.252 | 11.236 |
Tetracosane | 24.000 | 11.758 | 11.740 |
Pentacosane | 25.000 | 12.264 | 12.244 |
Hexacosane | 26.000 | 12.770 | 12.748 |
Heptacosane | 27.000 | 13.276 | 13.252 |
Octacosane | 28.000 | 13.780 | 13.756 |
Nonacosane | 29.000 | 14.291 | 14.260 |
Triacontane | 30.000 | 14.794 | 14.764 |
Hentriacontane | 31.000 | 15.321 | 15.268 |
Dotriacontane | 32.000 | 15.787 | 15.772 |
Tritriacontane | 33.000 | 16.303 | 16.276 |
Tetratriacontane | 34.000 | 16.818 | 16.780 |
Pentatriacontane | 35.000 | 17.223 | 17.284 |
Hexatriacontane | 36.000 | 17.736 | 17.788 |
Heptatriacontane | 37.000 | 18.211 | 18.292 |
Octatriacontane | 38.000 | 18.686 | 18.796 |
Nonatriacontane | 39.000 | 19.270 | 19.300 |
Tetracontane | 40.000 | 19.853 | 19.804 |
Monomethylalkanes | |||
2-Methylnonane | 9.665 | 4.453 | 4.515 |
3-Methylnonane | 9.730 | 4.486 | 4.548 |
2-Methylundecane | 11.665 | 5.516 | 5.523 |
3-Methylundecane | 11.725 | 5.550 | 5.553 |
2-Methyltridecane | 13.665 | 6.528 | 6.531 |
3-Methyltridecane | 13.730 | 6.563 | 6.564 |
2-Methylpentadecane | 15.665 | 7.539 | 7.539 |
3-Methylpentadecane | 15.737 | 7.577 | 7.575 |
2-Methylheptadecane | 17.658 | 8.551 | 8.544 |
3-Methylheptadecane | 17.740 | 8.591 | 8.585 |
2-Methylnonadecane | 19.660 | 9.563 | 9.553 |
3-Methylnonadecane | 19.743 | 9.607 | 9.594 |
10-Methylnonadecane | 19.430 | 9.449 | 9.437 |
2-Methylheneicosane | 21.660 | 10.571 | 10.561 |
3-Methylheneicosane | 21.745 | 10.621 | 10.603 |
11-Methylheneicosane | 21.410 | 10.449 | 10.435 |
2-Methyltricosane | 23.640 | 11.586 | 11.559 |
3-Methyltricosane | 23.745 | 11.635 | 11.611 |
8-Methyltricosane | 23.670 | 11.468 | 11.574 |
12-Methyltricosane | 23.370 | 11.449 | 11.422 |
2-Methylpentacosane | 25.630 | 12.599 | 12.562 |
3-Methylpentacosane | 25.744 | 12.651 | 12.619 |
13-Methylpentacosane | 25.345 | 12.454 | 12.418 |
2-Methylheptacosane | 27.630 | 13.611 | 13.570 |
3-Methylheptacosane | 27.744 | 13.666 | 13.627 |
14-Methylheptacosane | 27.330 | 13.458 | 13.418 |
2-Methylnonacosane | 29.622 | 14.626 | 14.573 |
3-Methylnonacosane | 29.740 | 14.680 | 14.633 |
15-Methylnonacosane | 29.315 | 14.464 | 14.419 |
2-Methylhentriacontane | 31.615 | 15.578 | |
3-Methylhentriacontane | 31.741 | 15.641 | |
4-Methylhentriacontane | 31.575 | 15.558 | |
5-Methylhentriacontane | 31.500 | 15.520 | |
6-Methylhentriacontane | 31.432 | 15.486 | |
7-Methylhentriacontane | 31.400 | 15.470 | |
13-Methylhentriacontane | 31.308 | 15.423 | |
16-Methylhentriacontane | 31.298 | 15.418 | |
2-Methyltritriacontane | 33.620 | 16.588 | |
3-Methyltritriacontane | 33.745 | 16.651 | |
4-Methyltritriacontane | 33.575 | 16.566 | |
5-Methyltritriacontane | 33.500 | 16.528 | |
6-Methyltritriacontane | 33.437 | 16.496 | |
13-Methyltritriacontane | 33.285 | 16.420 | |
17-Methyltritriacontane | 33.285 | 16.420 | |
2-Methylpentatriacontane | 35.620 | 17.596 | |
3-Methylpentatriacontane | 35.743 | 17.658 | |
18-Methylpentatriacontane | 35.273 | 17.422 | |
Dimethylalkanes | |||
3,9-Dimethyltricosane | 24.100 | 11.790 | |
5,9-Dimethyltetracosane | 24.850 | 12.168 | |
3,11-Dimethylpentacosane | 26.090 | 12.793 | |
3,15-Dimethylpentacosane | 26.050 | 12.773 | |
5,11-Dimethylpentacosane | 25.820 | 12.657 | |
5,17-Dimethylpentacosane | 25.850 | 12.672 | |
7,11-Dimethylpentacosane | 25.770 | 12.632 | |
2,6-Dimethylhexacosane | 27.040 | 13.272 | |
4,8-Dimethylhexacosane | 26.950 | 13.227 | |
5,11-Dimethylhexacosane | 26.820 | 13.161 | |
6,10-Dimethylhexacosane | 26.780 | 13.141 | |
7,11-Dimethylhexacosane | 26.750 | 13.126 | |
3,7-Dimethylheptacosane | 28.090 | 13.801 | |
3,15-Dimethylheptacosane | 28.050 | 13.781 | |
5,11-Dimethylheptacosane | 27.820 | 13.665 | |
5,17-Dimethylheptacosane | 27.860 | 13.685 | |
7,13-Dimethylheptacosane | 27.740 | 13.625 | |
9,19-Dimethylheptacosane | 27.650 | 13.580 | |
2,6-Dimethyloctacosane | 29.050 | 14.285 | |
2,10-Dimethyloctacosane | 28.990 | 14.255 | |
4,10-Dimethyloctacosane | 28.950 | 14.235 | |
5,15-Dimethyloctacosane | 28.820 | 14.169 | |
7,13-Dimethyloctacosane | 28.730 | 14.124 | |
3,7-Dimethylnonacosane | 30.080 | 14.804 | |
3,13-Dimethylnonacosane | 30.040 | 14.784 | |
5,13-Dimethylnonacosane | 29.820 | 14.673 | |
5,19-Dimethylnonacosane | 29.830 | 14.678 | |
7,17-Dimethylnonacosane | 29.730 | 14.628 | |
2,6-Dimethyltriacontane | 31.050 | 15.293 | |
2,10-Dimethyltriacontane | 30.990 | 15.263 | |
2,12-Dimethyltriacontane | 30.950 | 15.243 | |
3,7-Dimethyltriacontane | 31.080 | 15.308 | |
4,10-Dimethyltriacontane | 30.940 | 15.238 | |
6,10-Dimethyltriacontane | 30.750 | 15.142 | |
3,7-Dimethylhentriacontane | 32.090 | 15.817 | |
3,13-Dimethylhentriacontane | 32.030 | 15.787 | |
3,15-Dimethylhentriacontane | 32.090 | 15.817 | |
5,13-Dimethylhentriacontane | 31.805 | 15.674 | |
5,17-Dimethylhentriacontane | 31.820 | 15.681 | |
7,11-Dimethylhentriacontane | 31.702 | 15.622 | |
11,21-Dimethylhentriacontane | 31.629 | 15.585 | |
2,8-Dimethyldotriacontane | 32.970 | 16.261 | |
4,8-Dimethyldotriacontane | 32.920 | 16.236 | |
6,10-Dimethyldotriacontane | 32.730 | 16.140 | |
8,12-Dimethyldotriacontane | 32.660 | 16.105 | |
9,21-Dimethyldotriacontane | 32.620 | 16.084 | |
14,18-Dimethyldotriacontane | 32.575 | 16.062 | |
3,9-Dimethyltritriacontane | 34.030 | 16.795 | |
3,15-Dimethyltritriacontane | 34.090 | 16.825 | |
5,16-Dimethyltritriacontane | 33.800 | 16.679 | |
5,19-Dimethyltritriacontane | 33.820 | 16.689 | |
7,17-Dimethyltritriacontane | 33.700 | 16.629 | |
11,23-Dimethyltritriacontane | 33.624 | 16.590 | |
2,10-Dimethyltetratriacontane | 34.940 | 17.254 | |
4,16-Dimethyltetratriacontane | 34.890 | 17.229 | |
6,10-Dimethyltetratriacontane | 34.738 | 17.152 | |
8,12-Dimethyltetratriacontane | 34.650 | 17.108 | |
12,22-Dimethyltetratriacontane | 34.614 | 17.089 | |
13,17-Dimethyltetratriacontane | 34.550 | 17.057 | |
3,7-Dimethylpentatriacontane | 36.095 | 17.836 | |
3,15-Dimethylpentatriacontane | 36.010 | 17.793 | |
5,9-Dimethylpentatriacontane | 35.800 | 17.687 | |
5,19-Dimethylpentatriacontane | 35.805 | 17.690 | |
7,17-Dimethylpentatriacontane | 35.697 | 17.635 | |
9,21-Dimethylpentatriacontane | 35.610 | 17.591 | |
2,12-Dimethylhexatriacontane | 36.950 | 18.267 | |
5,17-Dimethylhexatriacontane | 36.800 | 18.191 | |
13,23-Dimethylhexatriacontane | 36.610 | 18.095 | |
3,15-Dimethylheptatriacontane | 38.010 | 18.801 | |
5,19-Dimethylheptatriacontane | 37.790 | 18.690 | |
5,17-Dimethylheptatriacontane | 37.800 | 18.695 | |
13,23-Dimethylheptatriacontane | 37.590 | 18.589 | |
5,17-Dimethyloctatriacontane | 38.780 | 19.189 | |
Trimethylalkanes | |||
4,8,12-Trimethyltetracosane | 25.200 | 12.345 | |
5,9,13-Trimethylpentacosane | 26.100 | 12.798 | |
4,8,12-Trimethylhexacosane | 27.190 | 13.348 | |
3,7,11-Trimethylheptacosane | 28.380 | 13.948 | |
4,8,12-Trimethyloctacosane | 29.180 | 14.351 | |
3,7,11-Trimethylnonacosane | 30.370 | 14.950 | |
5,13,17-Trimethylnonacosane | 30.070 | 14.799 | |
6,14,18-Trimethyltriacontane | 31.000 | 15.268 | |
3,7,11-Trimethylhentriacontane | 32.365 | 15.956 | |
5,13,17-Trimethylhentriacontane | 32.054 | 15.799 | |
7,13,17-Trimethylhentriacontane | 31.913 | 15.728 | |
11,15,19-Trimethylhentriacontane | 31.810 | 15.676 | |
2,10,16-Trimethyldotriacontane | 33.240 | 16.397 | |
4,12,16-Trimethyldotriacontane | 33.160 | 16.357 | |
6,14,18-Trimethyldotriacontane | 32.990 | 16.271 | |
12,16,20-Trimethyldotriacontane | 32.810 | 16.180 | |
3,7,15-Trimethyltritriacontane | 34.365 | 16.964 | |
5,13,17-Trimethyltritriacontane | 34.050 | 16.805 | |
7,11,15-Trimethyltritriacontane | 33.890 | 16.725 | |
11,15,19-Trimethyltritriacontane | 33.796 | 16.677 | |
2,10,16-Trimethyltetratriacontane | 35.240 | 17.405 | |
4,8,12-Trimethyltetratriacontane | 35.155 | 17.362 | |
6,14,18-Trimethyltetratriacontane | 34.970 | 17.269 | |
8,12,16-Trimethyltetratriacontane | 34.864 | 17.215 | |
12,16,20-Trimethyltetratriacontane | 34.780 | 17.173 | |
3,7,15-Trimethylpentatriacontane | 36.363 | 17.971 | |
5,9,13-Trimethylpentatriacontane | 36.050 | 17.813 | |
7,11,15-Trimethylpentatriacontane | 35.883 | 17.729 | |
13,17,21-Trimethylpentatriacontane | 35.770 | 17.672 | |
13,17,23-Trimethylpentatriacontane | 35.830 | 17.702 | |
4,8,16-Trimethylhexatriacontane | 37.150 | 18.368 | |
8,12,16-Trimethylhexatriacontane | 36.850 | 18.216 | |
14,18,22-Trimethylhexatriacontane | 36.760 | 18.171 | |
3,7,15-Trimethylheptatriacontane | 38.350 | 18.972 | |
5,13,17-Trimethylheptatriacontane | 38.030 | 18.811 | |
7,13,19-Trimethylheptatriacontane | 37.840 | 18.715 | |
15,19,23-Trimethylheptatriacontane | 37.750 | 18.670 | |
15,19,23-Trimethyloctatriacontane | 38.735 | 19.166 | |
5,13,17-Trimethylnonatriacontane | 40.010 | 19.809 | |
15,19,23-Trimethylnonatriacontane | 39.724 | 19.665 | |
14,18,22-Trimethyltetracontane | 40.710 | 20.162 | |
Tetramethylalkanes | |||
3,7,11,15-Tetramethylnonacosane | 30.620 | 15.076 | |
3,7,11,15-Tetramethylhentriacontane | 32.610 | 16.079 | |
4,8,12,16-Tetramethylhentriacontane | 32.490 | 16.019 | |
3,7,11,15-Tetramethyltritriacontane | 34.590 | 17.077 | |
4,8,12,16-Tetramethyltritriacontane | 34.480 | 17.022 | |
3,7,11,15-Tetramethylpentatriacontane | 36.580 | 18.080 | |
7,11,15,19-Tetramethylpentatriacontane | 36.280 | 17.929 | |
9,13,17,21-Tetramethylpentatriacontane | 36.170 | 17.874 | |
11,15,19,24-Tetramethylpentatriacontane | 36.050 | 17.813 | |
6,10,12,16-Tetramethylhexatriacontane | 37.230 | 18.408 | |
8,12,16,20-Tetramethylhexatriacontane | 37.130 | 18.358 | |
10,14,18,22-Tetramethylhexatriacontane | 37.035 | 18.310 | |
3,7,11,15-Tetramethylheptatriacontane | 38.550 | 19.073 | |
7,11,15,19-Tetramethylheptatriacontane | 38.230 | 18.912 | |
9,13,17,21-Tetramethylheptatriacontane | 38.130 | 18.862 | |
11,15,19,24-Tetramethylheptatriacontane | 38.030 | 18.811 | |
10,14,18,22-Tetramethyloctatriacontane | 39.000 | 19.300 |
Compound Name | ΔHsub,298K Equation (6) | ΔHsub,298K Equation (8) |
---|---|---|
Monomethylalkanes | ||
2-Methylnonane | 73.4 | 77.3 |
3-Methylnonane | 73.8 | 77.3 |
2-Methylundecane | 87.3 | 90.0 |
3-Methylundecane | 87.7 | 90.0 |
2-Methyltridecane | 100.4 | 102.7 |
3-Methyltridecane | 100.8 | 102.7 |
2-Methylpentadecane | 113.4 | 115.4 |
3-Methylpentadecane | 113.9 | 115.4 |
2-Methylheptadecane | 126.3 | 128.1 |
3-Methylheptadecane | 126.8 | 128.1 |
2-Methylnonadecane | 139.1 | 140.8 |
3-Methylnonadecane | 139.7 | 140.8 |
10-Methylnonadecane | 137.7 | 140.8 |
2-Methylheneicosane | 151.8 | 153.5 |
3-Methylheneicosane | 152.4 | 153.5 |
11-Methylheneicosane | 150.3 | 153.5 |
2-Methyltricosane | 164.4 | 166.2 |
3-Methyltricosane | 165.1 | 166.2 |
8-Methyltricosane | 163.0 | 166.2 |
12-Methyltricosane | 162.7 | 166.2 |
2-Methylpentacosane | 177.0 | 178.9 |
3-Methylpentacosane | 177.6 | 178.9 |
13-Methylpentacosane | 175.2 | 178.9 |
2-Methylheptacosane | 189.4 | 191.6 |
3-Methylheptacosane | 190.0 | 191.6 |
14-Methylheptacosane | 187.5 | 191.6 |
2-Methylnonacosane | 201.7 | 204.3 |
3-Methylnonacosane | 202.4 | 204.3 |
15-Methylnonacosane | 199.8 | 204.3 |
2-Methylhentriacontane | 213.2 | 217.0 |
3-Methylhentriacontane | 214.0 | 217.0 |
4-Methylhentriacontane | 213.0 | 217.0 |
5-Methylhentriacontane | 212.5 | 217.0 |
6-Methylhentriacontane | 212.1 | 217.0 |
7-Methylhentriacontane | 211.9 | 217.0 |
13-Methylhentriacontane | 211.3 | 217.0 |
16-Methylhentriacontane | 211.3 | 217.0 |
2-Methyltritriacontane | 225.3 | 229.7 |
3-Methyltritriacontane | 226.0 | 229.7 |
4-Methyltritriacontane | 225.0 | 229.7 |
5-Methyltritriacontane | 224.6 | 229.7 |
6-Methyltritriacontane | 224.2 | 229.7 |
13-Methyltritriacontane | 223.3 | 229.7 |
17-Methyltritriacontane | 223.3 | 229.7 |
2-Methylpentatriacontane | 237.2 | 242.4 |
3-Methylpentatriacontane | 238.0 | 242.4 |
18-Methylpentatriacontane | 235.2 | 242.4 |
Dimethylalkanes | ||
3,9-Dimethyltricosane | 167.0 | 167.0 |
5,9-Dimethyltetracosane | 171.7 | 173.4 |
3,11-Dimethylpentacosane | 179.4 | 179.7 |
3,15-Dimethylpentacosane | 179.1 | 179.7 |
5,11-Dimethylpentacosane | 177.7 | 179.7 |
5,17-Dimethylpentacosane | 177.9 | 179.7 |
7,11-Dimethylpentacosane | 177.4 | 179.7 |
2,6-Dimethylhexacosane | 185.2 | 186.1 |
4,8-Dimethylhexacosane | 184.7 | 186.1 |
5,11-Dimethylhexacosane | 183.9 | 186.1 |
6,10-Dimethylhexacosane | 183.6 | 186.1 |
7,11-Dimethylhexacosane | 183.4 | 186.1 |
3,7-Dimethylheptacosane | 191.7 | 192.4 |
3,15-Dimethylheptacosane | 191.4 | 192.4 |
5,11-Dimethylheptacosane | 190.0 | 192.4 |
5,17-Dimethylheptacosane | 190.3 | 192.4 |
7,13-Dimethylheptacosane | 189.5 | 192.4 |
9,19-Dimethylheptacosane | 189.0 | 192.4 |
2,6-Dimethyloctacosane | 197.6 | 198.8 |
2,10-Dimethyloctacosane | 197.2 | 198.8 |
4,10-Dimethyloctacosane | 197.0 | 198.8 |
5,15-Dimethyloctacosane | 196.2 | 198.8 |
7,13-Dimethyloctacosane | 195.6 | 198.8 |
3,7-Dimethylnonacosane | 203.9 | 205.1 |
3,13-Dimethylnonacosane | 203.6 | 205.1 |
5,13-Dimethylnonacosane | 202.3 | 205.1 |
5,19-Dimethylnonacosane | 202.3 | 205.1 |
7,17-Dimethylnonacosane | 201.7 | 205.1 |
2,6-Dimethyltriacontane | 209.8 | 211.5 |
2,10-Dimethyltriacontane | 209.4 | 211.5 |
2,12-Dimethyltriacontane | 209.2 | 211.5 |
3,7-Dimethyltriacontane | 210.0 | 211.5 |
4,10-Dimethyltriacontane | 209.1 | 211.5 |
6,10-Dimethyltriacontane | 207.9 | 211.5 |
3,7-Dimethylhentriacontane | 216.1 | 217.8 |
3,13-Dimethylhentriacontane | 215.7 | 217.8 |
3,15-Dimethylhentriacontane | 216.1 | 217.8 |
5,13-Dimethylhentriacontane | 214.3 | 217.8 |
5,17-Dimethylhentriacontane | 214.4 | 217.8 |
7,11-Dimethylhentriacontane | 213.7 | 217.8 |
11,21-Dimethylhentriacontane | 213.3 | 217.8 |
2,8-Dimethyldotriacontane | 221.4 | 224.2 |
4,8-Dimethyldotriacontane | 221.1 | 224.2 |
6,10-Dimethyldotriacontane | 219.9 | 224.2 |
8,12-Dimethyldotriacontane | 219.5 | 224.2 |
9,21-Dimethyldotriacontane | 219.3 | 224.2 |
14,18-Dimethyldotriacontane | 219.0 | 224.2 |
3,9-Dimethyltritriacontane | 227.7 | 230.5 |
3,15-Dimethyltritriacontane | 228.1 | 230.5 |
5,16-Dimethyltritriacontane | 226.4 | 230.5 |
5,19-Dimethyltritriacontane | 226.5 | 230.5 |
7,17-Dimethyltritriacontane | 225.8 | 230.5 |
11,23-Dimethyltritriacontane | 225.3 | 230.5 |
2,10-Dimethyltetratriacontane | 233.2 | 236.9 |
4,16-Dimethyltetratriacontane | 232.9 | 236.9 |
6,10-Dimethyltetratriacontane | 232.0 | 236.9 |
8,12-Dimethyltetratriacontane | 231.5 | 236.9 |
12,22-Dimethyltetratriacontane | 231.2 | 236.9 |
13,17-Dimethyltetratriacontane | 230.9 | 236.9 |
3,7-Dimethylpentatriacontane | 240.1 | 243.2 |
3,15-Dimethylpentatriacontane | 239.6 | 243.2 |
5,9-Dimethylpentatriacontane | 238.3 | 243.2 |
5,19-Dimethylpentatriacontane | 238.3 | 243.2 |
7,17-Dimethylpentatriacontane | 237.7 | 243.2 |
9,21-Dimethylpentatriacontane | 237.2 | 243.2 |
2,12-Dimethylhexatriacontane | 245.1 | 249.6 |
5,17-Dimethylhexatriacontane | 244.2 | 249.6 |
13,23-Dimethylhexatriacontane | 243.1 | 249.6 |
3,15-Dimethylheptatriacontane | 251.4 | 255.9 |
5,19-Dimethylheptatriacontane | 250.1 | 255.9 |
5,17-Dimethylheptatriacontane | 250.2 | 255.9 |
13,23-Dimethylheptatriacontane | 248.9 | 255.9 |
5,17-Dimethyloctatriacontane | 255.9 | 262.3 |
Trimethylalkanes | ||
4,8,12-Trimethyltetracosane | 173.8 | 174.2 |
5,9,13-Trimethylpentacosane | 179.4 | 180.6 |
4,8,12-Trimethylhexacosane | 186.2 | 186.9 |
3,7,11-Trimethylheptacosane | 193.5 | 193.3 |
4,8,12-Trimethyloctacosane | 198.4 | 199.6 |
3,7,11-Trimethylnonacosane | 205.6 | 206.0 |
5,13,17-Trimethylnonacosane | 203.8 | 206.0 |
6,14,18-Trimethyltriacontane | 209.5 | 212.3 |
3,7,11-Trimethylhentriacontane | 217.7 | 218.7 |
5,13,17-Trimethylhentriacontane | 215.8 | 218.7 |
7,13,17-Trimethylhentriacontane | 215.0 | 218.7 |
11,15,19-Trimethylhentriacontane | 214.4 | 218.7 |
2,10,16-Trimethyldotriacontane | 223.0 | 225.0 |
4,12,16-Trimethyldotriacontane | 222.5 | 225.0 |
6,14,18-Trimethyldotriacontane | 221.5 | 225.0 |
12,16,20-Trimethyldotriacontane | 220.4 | 225.0 |
3,7,15-Trimethyltritriacontane | 229.7 | 231.4 |
5,13,17-Trimethyltritriacontane | 227.9 | 231.4 |
7,11,15-Trimethyltritriacontane | 226.9 | 231.4 |
11,15,19-Trimethyltritriacontane | 226.3 | 231.4 |
2,10,16-Trimethyltetratriacontane | 235.0 | 237.7 |
4,8,12-Trimethyltetratriacontane | 234.5 | 237.7 |
6,14,18-Trimethyltetratriacontane | 233.4 | 237.7 |
8,12,16-Trimethyltetratriacontane | 232.7 | 237.7 |
12,16,20-Trimethyltetratriacontane | 232.2 | 237.7 |
3,7,15-Trimethylpentatriacontane | 241.7 | 244.1 |
5,9,13-Trimethylpentatriacontane | 239.8 | 244.1 |
7,11,15-Trimethylpentatriacontane | 238.8 | 244.1 |
13,17,21-Trimethylpentatriacontane | 238.1 | 244.1 |
13,17,23-Trimethylpentatriacontane | 238.5 | 244.1 |
4,8,16-Trimethylhexatriacontane | 246.3 | 250.4 |
8,12,16-Trimethylhexatriacontane | 244.5 | 250.4 |
14,18,22-Trimethylhexatriacontane | 244.0 | 250.4 |
3,7,15-Trimethylheptatriacontane | 253.4 | 256.8 |
5,13,17-Trimethylheptatriacontane | 251.5 | 256.8 |
7,13,19-Trimethylheptatriacontane | 250.4 | 256.8 |
15,19,23-Trimethylheptatriacontane | 249.9 | 256.8 |
15,19,23-Trimethyloctatriacontane | 255.7 | 263.1 |
5,13,17-Trimethylnonatriacontane | 263.1 | 269.5 |
15,19,23-Trimethylnonatriacontane | 261.5 | 269.5 |
14,18,22-Trimethyltetracontane | 267.2 | 275.8 |
Tetramethylalkanes | ||
3,7,11,15-Tetramethylnonacosane | 207.2 | 206.8 |
3,7,11,15-Tetramethylhentriacontane | 219.2 | 219.5 |
4,8,12,16-Tetramethylhentriacontane | 218.5 | 219.5 |
3,7,11,15-Tetramethyltritriacontane | 231.1 | 232.2 |
4,8,12,16-Tetramethyltritriacontane | 230.4 | 232.2 |
3,7,11,15-Tetramethylpentatriacontane | 242.9 | 244.9 |
7,11,15,19-Tetramethylpentatriacontane | 241.2 | 244.9 |
9,13,17,21-Tetramethylpentatriacontane | 240.5 | 244.9 |
11,15,19,24-Tetramethylpentatriacontane | 239.8 | 244.9 |
6,10,12,16-Tetramethylhexatriacontane | 246.8 | 251.3 |
8,12,16,20-Tetramethylhexatriacontane | 246.2 | 251.3 |
10,14,18,22-Tetramethylhexatriacontane | 245.6 | 251.3 |
3,7,11,15-Tetramethylheptatriacontane | 254.6 | 257.6 |
7,11,15,19-Tetramethylheptatriacontane | 252.7 | 257.6 |
9,13,17,21-Tetramethylheptatriacontane | 252.1 | 257.6 |
11,15,19,24-Tetramethylheptatriacontane | 251.5 | 257.6 |
10,14,18,22-Tetramethyloctatriacontane | 257.2 | 264.0 |
Compound Name | ΔHsolv,298K (kJ mol−1) | Compound Name | ΔHsolv,298K (kJ mol−1) |
---|---|---|---|
Monomethylalkanes | Dimethylalkanes | ||
2-Methylnonane | −42.6 | 3,9-Dimethyltricosane | −104.1 |
3-Methylnonane | −42.8 | 5,9-Dimethyltetracosane | −107.3 |
2-Methylundecane | −51.5 | 3,11-Dimethylpentacosane | −112.6 |
3-Methylundecane | −51.8 | 3,15-Dimethylpentacosane | −112.4 |
2-Methyltridecane | −60.0 | 5,11-Dimethylpentacosane | −111.4 |
3-Methyltridecane | −60.3 | 5,17-Dimethylpentacosane | −111.5 |
2-Methylpentadecane | −68.5 | 7,11-Dimethylpentacosane | −111.2 |
3-Methylpentadecane | −68.8 | 2,6-Dimethylhexacosane | −116.6 |
2-Methylheptadecane | −76.9 | 4,8-Dimethylhexacosane | −116.2 |
3-Methylheptadecane | −77.3 | 5,11-Dimethylhexacosane | −115.6 |
2-Methylnonadecane | −85.4 | 6,10-Dimethylhexacosane | −115.5 |
3-Methylnonadecane | −85.8 | 7,11-Dimethylhexacosane | −115.3 |
10-Methylnonadecane | −84.5 | 3,7-Dimethylheptacosane | −121.0 |
2-Methylheneicosane | −93.9 | 3,15-Dimethylheptacosane | −120.8 |
3-Methylheneicosane | −94.3 | 5,11-Dimethylheptacosane | −119.9 |
11-Methylheneicosane | −92.9 | 5,17-Dimethylheptacosane | −120.0 |
2-Methyltricosane | −102.4 | 7,13-Dimethylheptacosane | −119.5 |
3-Methyltricosane | −102.8 | 9,19-Dimethylheptacosane | −119.2 |
8-Methyltricosane | −101.4 | 2,6-Dimethyloctacosane | −125.1 |
12-Methyltricosane | −101.3 | 2,10-Dimethyloctacosane | −124.8 |
2-Methylpentacosane | −110.9 | 4,10-Dimethyloctacosane | −124.7 |
3-Methylpentacosane | −111.4 | 5,15-Dimethyloctacosane | −124.1 |
13-Methylpentacosane | −109.7 | 7,13-Dimethyloctacosane | −123.7 |
2-Methylheptacosane | −119.4 | 3,7-Dimethylnonacosane | −129.4 |
3-Methylheptacosane | −119.9 | 3,13-Dimethylnonacosane | −129.3 |
14-Methylheptacosane | −118.1 | 5,13-Dimethylnonacosane | −128.3 |
2-Methylnonacosane | −127.9 | 5,19-Dimethylnonacosane | −128.4 |
3-Methylnonacosane | −128.4 | 7,17-Dimethylnonacosane | −128.0 |
15-Methylnonacosane | −126.6 | 2,6-Dimethyltriacontane | −133.5 |
2-Methylhentriacontane | −135.9 | 2,10-Dimethyltriacontane | −133.3 |
3-Methylhentriacontane | −136.5 | 2,12-Dimethyltriacontane | −133.1 |
4-Methylhentriacontane | −135.8 | 3,7-Dimethyltriacontane | −133.7 |
5-Methylhentriacontane | −135.4 | 4,10-Dimethyltriacontane | −133.1 |
6-Methylhentriacontane | −135.2 | 6,10-Dimethyltriacontane | −132.3 |
7-Methylhentriacontane | −135.0 | 3,7-Dimethylhentriacontane | −137.9 |
13-Methylhentriacontane | −134.6 | 3,13-Dimethylhentriacontane | −137.7 |
16-Methylhentriacontane | −134.6 | 3,15-Dimethylhentriacontane | −137.9 |
2-Methyltritriacontane | −144.4 | 5,13-Dimethylhentriacontane | −136.7 |
3-Methyltritriacontane | −144.9 | 5,17-Dimethylhentriacontane | −136.8 |
4-Methyltritriacontane | −144.2 | 7,11-Dimethylhentriacontane | −136.3 |
5-Methyltritriacontane | −143.9 | 11,21-Dimethylhentriacontane | −136.0 |
6-Methyltritriacontane | −143.6 | 2,8-Dimethyldotriacontane | −141.7 |
13-Methyltritriacontane | −143.0 | 4,8-Dimethyldotriacontane | −141.4 |
17-Methyltritriacontane | −143.0 | 6,10-Dimethyldotriacontane | −140.6 |
2-Methylpentatriacontane | −152.9 | 8,12-Dimethyldotriacontane | −140.3 |
3-Methylpentatriacontane | −153.4 | 9,21-Dimethyldotriacontane | −140.2 |
18-Methylpentatriacontane | −151.4 | 14,18-Dimethyldotriacontane | −140.0 |
Trimethylalkane | 3,9-Dimethyltritriacontane | −146.1 | |
4,8,12-Trimethyltetracosane | −108.8 | 3,15-Dimethyltritriacontane | −146.4 |
5,9,13-Trimethylpentacosane | −112.6 | 5,16-Dimethyltritriacontane | −145.2 |
4,8,12-Trimethylhexacosane | −117.2 | 5,19-Dimethyltritriacontane | −145.3 |
3,7,11-Trimethylheptacosane | −122.2 | 7,17-Dimethyltritriacontane | −144.7 |
4,8,12-Trimethyloctacosane | −125.6 | 11,23-Dimethyltritriacontane | −144.4 |
3,7,11-Trimethylnonacosane | −130.7 | 2,10-Dimethyltetratriacontane | −150.0 |
5,13,17-Trimethylnonacosane | −129.4 | 4,16-Dimethyltetratriacontane | −149.8 |
6,14,18-Trimethyltriacontane | −133.3 | 6,10-Dimethyltetratriacontane | −149.1 |
3,7,11-Trimethylhentriacontane | −139.1 | 8,12-Dimethyltetratriacontane | −148.8 |
5,13,17-Trimethylhentriacontane | −137.8 | 12,22-Dimethyltetratriacontane | −148.6 |
7,13,17-Trimethylhentriacontane | −137.2 | 13,17-Dimethyltetratriacontane | −148.3 |
11,15,19-Trimethylhentriacontane | −136.8 | 3,7-Dimethylpentatriacontane | −154.9 |
2,10,16-Trimethyldotriacontane | −142.8 | 3,15-Dimethylpentatriacontane | −154.5 |
4,12,16-Trimethyldotriacontane | −142.5 | 5,9-Dimethylpentatriacontane | −153.6 |
6,14,18-Trimethyldotriacontane | −141.7 | 5,19-Dimethylpentatriacontane | −153.6 |
12,16,20-Trimethyldotriacontane | −141.0 | 7,17-Dimethylpentatriacontane | −153.2 |
3,7,15-Trimethyltritriacontane | −147.6 | 9,21-Dimethylpentatriacontane | −152.8 |
5,13,17-Trimethyltritriacontane | −146.2 | 2,12-Dimethylhexatriacontane | −158.5 |
7,11,15-Trimethyltritriacontane | −145.5 | 5,17-Dimethylhexatriacontane | −157.9 |
11,15,19-Trimethyltritriacontane | −145.2 | 13,23-Dimethylhexatriacontane | −157.1 |
2,10,16-Trimethyltetratricontane | −151.3 | 3,15-Dimethylheptatriacontane | −163.0 |
4,8,12-Trimethyltetratriacontane | −150.9 | 5,19-Dimethylheptatriacontane | −162.0 |
6,14,18-Trimethyltetratriacontane | −150.1 | 5,17-Dimethylheptatriacontane | −162.1 |
8,12,16-Trimethyltetratriacontane | −149.7 | 13,23-Dimethylheptatriacontane | −161.2 |
12,16,20-Trimethyltetratriacontane | −149.3 | 5,17-Dimethyloctatriacontane | −166.2 |
3,7,15-Trimethylpentatriacontane | −156.0 | Tetramethylalkane | |
5,9,13-Trimethylpentatriacontane | −154.7 | 3,7,11,15-Tetramethylnonacosane | −131.7 |
7,11,15-Trimethylpentatriacontane | −154.0 | 3,7,11,15-Tetramethylhentriacontane | −140.1 |
13,17,21-Trimethylpentatriacontane | −153.5 | 4,8,12,16-Tetramethylhentriacontane | −139.6 |
13,17,23-Trimethylpentatriacontane | −153.8 | 3,7,11,15-Tetramethyltritriacontane | −148.5 |
4,8,16-Trimethylhexatriacontane | −159.3 | 4,8,12,16-Tetramethyltritriacontane | −148.0 |
8,12,16-Trimethylhexatriacontane | −158.1 | 3,7,11,15-Tetramethylpentatriacontane | −156.9 |
14,18,22-Trimethylhexatriacontane | −157.7 | 7,11,15,19-Tetramethylpentatriacontane | −155.7 |
3,7,15-Trimethylheptatriacontane | −164.4 | 9,13,17,21-Tetramethylpentatriacontane | −155.2 |
5,13,17-Trimethylheptatriacontane | −163.1 | 11,15,19,24-Tetramethylpentatriacontane | −154.7 |
7,13,19-Trimethylheptatriacontane | −162.3 | 6,10,12,16-Tetramethylhexatriacontane | −159.8 |
15,19,23-Trimethylheptatriacontane | −161.9 | 8,12,16,20-Tetramethylhexatriacontane | −159.3 |
15,19,23-Trimethyloctatriacontane | −166.0 | 10,14,18,22-Tetramethylhexatriacontane | −158.9 |
5,13,17-Trimethylnonatriacontane | −171.4 | 3,7,11,15-Tetramethylheptatriacontane | −165.3 |
15,19,23-Trimethylnonatriacontane | −170.2 | 7,11,15,19-Tetramethylheptatriacontane | −163.9 |
14,18,22-Trimethyltetracontane | −174.4 | 9,13,17,21-Tetramethylheptatriacontane | −163.5 |
11,15,19,24-Tetramethylheptatriacontane | −163.1 | ||
10,14,18,22-Tetramethyloctatriacontane | −167.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, E.; Sinha, S.; Yang, C.; Zhang, M.; Acree, W.E., Jr. Abraham Solvation Parameter Model: Calculation of L Solute Descriptors for Large C11 to C42 Methylated Alkanes from Measured Gas–Liquid Chromatographic Retention Data. Liquids 2022, 2, 85-105. https://doi.org/10.3390/liquids2030007
Wu E, Sinha S, Yang C, Zhang M, Acree WE Jr. Abraham Solvation Parameter Model: Calculation of L Solute Descriptors for Large C11 to C42 Methylated Alkanes from Measured Gas–Liquid Chromatographic Retention Data. Liquids. 2022; 2(3):85-105. https://doi.org/10.3390/liquids2030007
Chicago/Turabian StyleWu, Emily, Sneha Sinha, Chelsea Yang, Miles Zhang, and William E. Acree, Jr. 2022. "Abraham Solvation Parameter Model: Calculation of L Solute Descriptors for Large C11 to C42 Methylated Alkanes from Measured Gas–Liquid Chromatographic Retention Data" Liquids 2, no. 3: 85-105. https://doi.org/10.3390/liquids2030007
APA StyleWu, E., Sinha, S., Yang, C., Zhang, M., & Acree, W. E., Jr. (2022). Abraham Solvation Parameter Model: Calculation of L Solute Descriptors for Large C11 to C42 Methylated Alkanes from Measured Gas–Liquid Chromatographic Retention Data. Liquids, 2(3), 85-105. https://doi.org/10.3390/liquids2030007