The Design, Simulation, and Parametric Optimization of an RF MEMS Variable Capacitor with an S-Shaped Beam
Abstract
:1. Introduction
2. Design Methodology
3. Simulation Results with Planar Electrostatic Actuator
3.1. Mechanical Analysis of RF MEMS Variable Capacitor
3.2. Electrical Analysis of Proposed RF MEMS Variable Capacitor
3.3. Parametric Optimization of Proposed RF MEMS Variable Capacitor
3.3.1. Optimizing the Contact Area
3.3.2. Electrode Length Optimization
3.3.3. S-Shaped Beam Length Optimization
3.3.4. Torsion Spring Length Optimization
3.3.5. Varying the Gap between Plates in Capacitor Section
3.3.6. Environmental Effects on the Performance of RF MEMS Variable Capacitor
4. Simulation Results with Non-Planar Electrostatic Actuator
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rebeiz, W.G.M. RF MEMS, Theory, Design and Technology, 1st ed.; Wiley Interscience: Chichester, UK, 2003; ISBN 978-0-471-20169-4. [Google Scholar]
- Rebeiz, G.M.; Entesari, K.; Reines, I.C.; Park, S.J.; El-Tanani, M.A.; Grichener, A.; Brown, A.R. Tuning into RF MEMS. IEEE Microw. Mag. 2009, 10, 55–72. [Google Scholar] [CrossRef]
- De Luis, J.R.; Morris, A.S.; Gu, Q.; De Flaviis, F. A tunable asymmetric notch filter using RFMEMS. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010. [Google Scholar]
- Abbaspour-Tamijani, A.; Laurent, D.; Gabriel, M.R. Miniature and tunable filters using MEMS capacitors. IEEE Trans. Microw. Theory Tech. 2003, 51, 1878–1885. [Google Scholar] [CrossRef]
- Yellepeddi, M.; Mayaram, K. Issues in the design and simulation of a MEMS VCO based phase-locked loop. In Proceedings of the 2007 IEEE International Symposium on Circuits and Systems, New Orleans, LA, USA, 27–30 May 2007. [Google Scholar]
- Dec, A.; Suyama, K. Microwave MEMS-Based Voltage-Controlled Oscillators. IEEE Trans. Microw. Theory Tech. 2000, 48, 1943–1949. [Google Scholar]
- Khan, F.; Younis, M.I. RF MEMS electrostatically actuated tunable capacitors and their applications: A review. J. Micromech. Microeng. 2022, 32, 19. [Google Scholar] [CrossRef]
- Rebeiz, G.M.; Dussopt, L. RF MEMS: Theory, Design, and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Elshurafa, A.; Ho, P.; Salama, K.N. Low voltage RF MEMS variable capacitor with linear C-V response. Electron. Lett. 2012, 48, 392–393. [Google Scholar] [CrossRef]
- Chen, K.; Kovacs, A.; Peroulis, D. Anti-biased RF MEMS varactor topology for 20–25 dB linearity enhancement. In Proceedings of the 2010 IEEE MTT-S International Microwave Symposium, Anaheim, CA, USA, 23–28 May 2010. [Google Scholar]
- Han, C.H.; Choi, D.H.; Yoon, J.B. Parallel-Plate MEMS Variable Capacitor With Superior Linearity and Large Tuning Ratio Using a Levering Structure. J. Microelectromech. Syst. 2011, 20, 1345–1354. [Google Scholar] [CrossRef]
- Han, C.H.; Choi, D.H.; Choi, S.J.; Yoon, J.B. MEMS variable capacitor with superior linearity and large tuning ratio by moving the plate to the increasing-gap direction. In Proceedings of the IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, Mexico, 23–27 January 2011. [Google Scholar]
- Barrière, F.; Passerieux, D.; Mardivirin, D.; Pothier, A.; Blondy, P. An inverted-gap analog tuning RF-MEMS capacitor with 250 milliwatts power handling capability. In Proceedings of the International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012. [Google Scholar]
- Shavezipur, M.; Khajepour, A.; Hashemi, S.M. Development of novel segmented-plate linearly tunable MEMS capacitors. J. Micromech. Microeng. 2008, 18, 035035. [Google Scholar] [CrossRef]
- Shavezipur, M.; Khajepour, A.; Hashemi, S.M. A novel linearly tunable butterfly-shape MEMS capacitor. Microelectron. J. 2008, 39, 756–762. [Google Scholar] [CrossRef]
- Shavezipur, M.; Hashemi, S.M.; Khajepour, A.; Nieva, P. Development of a linearly tunable modified butterfly-shape. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Boston, MA, USA, 31 October–6 November 2008; Volume 2008, pp. 495–500. [Google Scholar]
- Shavezipur, M.; Nieva, P.; Khajepour, A.; Hashemi, S.M. Development of parallel-plate-based MEMS tunable capacitors withlinearized capacitance–voltage response and extended tuning range. J. Micromech. Microeng. 2009, 20, 025009. [Google Scholar] [CrossRef]
- Shavezipur, M.; Hashemi, S.M.; Nieva, P.; Khajepour, A. Development of a triangular-plate MEMS tunable capacitor with linear capacitance–voltage response. Microelectron. Eng. 2010, 87, 1721–1727. [Google Scholar] [CrossRef]
- Seok, S.; Choi, W.; Chun, K. A novel linearly tunable MEMS variable capacitor. J. Micromech. Microeng. 2001, 12, 82–86. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, H.; Guo, X.; Liu, Z. Optimization of a MEMS variable capacitor with high linearity and large tuning ratio. Microsyst. Technol. 2018, 24, 3169–3178. [Google Scholar] [CrossRef]
- Roy, A.L.; Bhattacharya, A.; Chaudhuri, R.R.; Bhattacharyya, T.K. Analysis of the Pull-In Phenomenon in Microelectromechanical Varactors. In Proceedings of the 25th International Conference on VLSI Design, Hyderabad, India, 7–11 January 2012.23. [Google Scholar]
- Shaheen, S.; Saleem, M.M.; Zaidi, S.M.T. Design and FEM Modeling of an Electrostatic RFMEMS Varactor. In Proceedings of the International Conference on Computing, Electronic and Electrical Engineering, Quetta, Pakistan, 12–13 November 2018. [Google Scholar]
- Bensalem, R.; Elsayed, M.Y.; Tawfik, H.H.; Nabki, F.; El-Gamal, M.N. Enhancing Linearity in Parallel-Plate MEMS Varactors through Repulsive Actuation. Micro 2023, 3, 811–821. [Google Scholar] [CrossRef]
- Degani, O.; Socher, E.; Lipson, A.; Leitner, T.; Setter, D.J.; Kaldor, S.; Nemirovsky, Y. Pull-in study of an electrostatic torsion microactuator. J. Microelectromech. Syst. 1998, 7, 373–379. [Google Scholar] [CrossRef]
- Rebeiz, G.M. RF Mems-Theory, Design and Technology; Wiley: New York, NY, USA, 2003; Volume 53. [Google Scholar] [CrossRef]
- Weisstein, E.W. Math World, Correlation Coefficient. 2006. A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/CorrelationCoefficient.html (accessed on 27 June 2024).
Parameter | Values (um) |
---|---|
Air gap | 3 |
Length of electrode | 150 |
Substrate thickness | 525 |
Transmission line dimensions | 75/90/75 |
S-shaped beam length/width/thickness | 290/90/1.8 |
Area of the central plate | 90 × 90 |
Design | 1 | 2 | 3 |
---|---|---|---|
Area (um) | 90 × 90 | 90 × 120 | 90 × 160 |
Cdown (fF) | 23.906 | 31.874 | 42.5 |
Cup (fF) | 17.3 | 23.4 | 31.2 |
Tuning ratio (%) | 138 | 136 | 136 |
Reference | Tuning Rang | Pull-In Limitation | Pull-In Voltage | Linearity Factor | Movement of the Bridge Direction |
---|---|---|---|---|---|
[13] | 134% | Yes | 10–45 V | 99.5% | Upward direction |
[15] | 309% | yes | 28.24 V | 99.92% | Upward direction |
[17] | 160% | yes | 15.2 V | 96% | Upward direction |
[18] | 11× | No | 1–100 | 99.70% | Upward direction |
Proposed work | 167% | No | 47.2 | 99% | Upward direction |
RF MEMS Varactor with Different Actuator Layouts | Length of the Bottom Electrode | Length of the Top Electrode | Pull-In Voltage | Tuning Ratio |
---|---|---|---|---|
Planar electrostatic actuator | 150 um | 150 um | 15.2 V | 138% |
Non-planar electrostatic actuator | 66 um | 150 um | 47.2 V | 167% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaheen, S.; Arslan, T.; Lomax, P. The Design, Simulation, and Parametric Optimization of an RF MEMS Variable Capacitor with an S-Shaped Beam. Micro 2024, 4, 474-489. https://doi.org/10.3390/micro4030030
Shaheen S, Arslan T, Lomax P. The Design, Simulation, and Parametric Optimization of an RF MEMS Variable Capacitor with an S-Shaped Beam. Micro. 2024; 4(3):474-489. https://doi.org/10.3390/micro4030030
Chicago/Turabian StyleShaheen, Shakila, Tughrul Arslan, and Peter Lomax. 2024. "The Design, Simulation, and Parametric Optimization of an RF MEMS Variable Capacitor with an S-Shaped Beam" Micro 4, no. 3: 474-489. https://doi.org/10.3390/micro4030030
APA StyleShaheen, S., Arslan, T., & Lomax, P. (2024). The Design, Simulation, and Parametric Optimization of an RF MEMS Variable Capacitor with an S-Shaped Beam. Micro, 4(3), 474-489. https://doi.org/10.3390/micro4030030