Advances in 3D Bioprinting for Neuroregeneration: A Literature Review of Methods, Bioinks, and Applications
Abstract
:1. Introduction
2. Background
3. Classification in 3D Bioprinting of Neural Tissue
3.1. Types of Modalities of 3D Bioprinting
3.1.1. Extrusion-Based Bioprinting
3.1.2. Inkjet-Based Bioprinting
3.1.3. Laser-Based Bioprinting
3.1.4. Stereolithography
3.2. Extrusion-Based 3D-Bioprinting Method Classification
3.2.1. Microfluidic Extrusion Bioprinting
3.2.2. Hand-Held Extrusion Bioprinting
3.2.3. Multimaterial Extrusion Bioprinting
3.3. Biolinks
3.3.1. Classification of Bioinks
3.3.2. Fibrin-Based Bioink
3.3.3. Collagen-Based Bioink
3.3.4. Gelatin-Based Bioink
3.3.5. Alginate-Based Bioink
3.3.6. Decellularized ECM-Based Bioink
3.4. Physicochemical Properties of Bioinks for Neural Tissue Engineering
Bioink Type | Gelation | Rheology | Stiffness | Degradation | Biocompatibility | Suitable Applications |
---|---|---|---|---|---|---|
Fibrin-based [1,2,3] | Fast gelation via enzymatic crosslinking | Shear-thinning | Tunable (0.2–50 kPa) | Controllable | Excellent cell adhesion | Brain, spinal cord |
Collagen-based [5] | Temperature-sensitive gelation | Moderate shear-thinning | Tunable (0.1–10 kPa) | Slow | Natural ECM mimicry | Brain, peripheral nerves |
Alginate-based [11,21] | Rapid ionic crosslinking | Good printability | Tunable (10–50 kPa) | Slow in physiological conditions | Good cell encapsulation | Spinal cord, drug delivery systems |
GelMA [22] | UV crosslinking | Excellent shear-thinning | Highly tunable (0.5–100 kPa) | Controllable | Good cell adhesion | Versatile, suitable for all neural tissues |
4. The Key Parameters
4.1. The Key Parameters of 3D Bioprinting
4.1.1. Bioink Formulation
4.1.2. Cell Source and Type
4.1.3. Cell Density and Distribution
4.1.4. Bioprinting Technique
4.1.5. Crosslinking Method
4.1.6. Neurotrophic Factors and Growth Cues
4.2. The Key Properties of 3D Bioprinting
4.2.1. Biocompatibility–Bioactivity
4.2.2. Mechanical Properties
4.2.3. Biodegradability
4.2.4. Bioink Rheological Properties
4.2.5. Electrical Conductivity
5. Brain Repairment
5.1. Methods of Brain Repair Using 3D Printing
5.1.1. Neurovascular 3D Printing
5.1.2. Bioscaffold 3D Printing
5.2. Steps for Brain Development
5.2.1. Direct Cell Integration in 3D-Bioprinted Scaffolds
5.2.2. Bioprinting for Cerebral Cortex Modeling
5.2.3. Three-Dimensional Bioprinting for Cancer Modeling
6. Limitations and Future Directions
6.1. Limitations of the Literature
6.2. Limitations of This Review
6.3. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- de Melo, B.A.G.; Jodat, Y.A.; Cruz, E.M.; Benincasa, J.C.; Shin, S.R.; Porcionatto, M.A. Strategies to use fibrinogen as bioink for 3D bioprinting fibrin-based soft and hard tissues. Acta Biomater. 2020, 117, 60–76. [Google Scholar] [CrossRef]
- Restan Perez, M.; Sharma, R.; Masri, N.Z.; Willerth, S.M. 3D Bioprinting Mesenchymal Stem Cell-Derived Neural Tissues Using a Fibrin-Based Bioink. Biomolecules 2021, 11, 1250. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.R.; Masri, N.Z.; Walters-Shumka, J.; Kahale, S.; Willerth, S.M. Protocol for 3D Bioprinting Mesenchymal Stem Cell-derived Neural Tissues Using a Fibrin-based Bioink. Bio-Protocol 2023, 13, e4663. [Google Scholar]
- Koffler, J.; Zhu, W.; Qu, X.; Platoshyn, O.; Dulin, J.N.; Brock, J.; Graham, L.; Lu, P.; Sakamoto, J.; Marsala, M.; et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nat. Med. 2019, 25, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Suen, S.K.Q.; Ng, W.L.; Ma, W.C.; Yeong, W.Y. Bioprinting of collagen: Considerations, potentials, and applications. Macromol. Biosci. 2021, 21, 2000280. [Google Scholar] [CrossRef]
- Derakhshanfar, S.; Mbeleck, R.; Xu, K.; Zhang, X.; Zhong, W.; Xing, M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact. Mater. 2018, 3, 144–156. [Google Scholar] [CrossRef]
- Clark, C.C.; Yoo, K.M.; Sivakumar, H.; Strumpf, K.; Laxton, A.W.; Tatter, S.B.; Strowd, R.E.; Skardal, A. Immersion bioprinting of hyaluronan and collagen bioink-supported 3D patient-derived brain tumor organoids. Biomed. Mater. 2022, 18, 015014. [Google Scholar] [CrossRef]
- Yao, Y.; Molotnikov, A.; Parkington, H.C.; Meagher, L.; Forsythe, J.S. Extrusion 3D bioprinting of functional self-supporting neural constructs using a photoclickable gelatin bioink. Biofabrication 2022, 14, 035014. [Google Scholar] [CrossRef]
- Hsiao, S.H.; Hsu, S.H. Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting. ACS Appl. Mater. Interfaces 2018, 10, 29273–29287. [Google Scholar] [CrossRef] [PubMed]
- Fantini, V.; Bordoni, M.; Scocozza, F.; Conti, M.; Scarian, E.; Carelli, S.; Di Giulio, A.M.; Marconi, S.; Pansarasa, O.; Auricchio, F.; et al. Bioink Composition and Printing Parameters for 3D Modeling Neural Tissue. Cells 2019, 8, 830. [Google Scholar] [CrossRef]
- Keshavarz, M.; Jahanshahi, M.; Hasany, M.; Kadumudi, F.B.; Mehrali, M.; Shahbazi, M.A.; Alizadeh, P.; Orive, G.; Dolatshahi-Pirouz, A. Smart alginate inks for tissue engineering applications. Mater. Today Bio 2023, 23, 100829. [Google Scholar] [CrossRef] [PubMed]
- Zhe, M.; Wu, X.; Yu, P.; Xu, J.; Liu, M.; Yang, G.; Xiang, Z.; Xing, F.; Ritz, U. Recent Advances in Decellularized Extracellular Matrix-Based Bioinks for 3D Bioprinting in Tissue Engineering. Materials 2023, 16, 3197. [Google Scholar] [CrossRef]
- Abelseth, E.; Abelseth, L.; De la Vega, L.; Beyer, S.T.; Wadsworth, S.J.; Willerth, S.M. 3D Printing of Neural Tissues Derived from Human Induced Pluripotent Stem Cells Using a Fibrin-Based Bioink. ACS Biomater. Sci. Eng. 2019, 5, 234–243. [Google Scholar] [CrossRef]
- Lozano, R.; Stevens, L.; Thompson, B.C.; Gilmore, K.J.; Gorkin, R., 3rd; Stewart, E.M.; in het Panhuis, M.; Romero-Ortega, M.; Wallace, G.G. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials 2015, 67, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Joung, D.; Truong, V.; Neitzke, C.C.; Guo, S.Z.; Walsh, P.J.; Monat, J.R.; Meng, F.; Park, S.H.; Dutton, J.R.; Parr, A.M.; et al. 3D Printed Stem-Cell Derived Neural Progenitors Generate Spinal Cord Scaffolds. Adv. Funct. Mater. 2018, 28, 1801850. [Google Scholar] [CrossRef]
- Matai, I.; Kaur, G.; Seyedsalehi, A.; McClinton, A.; Laurencin, C.T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 2020, 226, 119536. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, B.; Tahmasebifar, A.; Baran, E.T. Bioprinting Technologies in Tissue Engineering. Adv. Biochem. Eng. Biotechnol. 2020, 171, 279–319. [Google Scholar]
- Hospodiuk, M.; Dey, M.; Sosnoski, D.; Ozbolat, I.T. The bioink: A comprehensive review on bioprintable materials. Biotechnol. Adv. 2017, 35, 217–239. [Google Scholar] [CrossRef]
- Tang, M.; Xie, Q.; Gimple, R.C.; Zhong, Z.; Tam, T.; Tian, J.; Kidwell, R.L.; Wu, Q.; Prager, B.C.; Qiu, Z.; et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Res. 2020, 30, 833–853. [Google Scholar] [CrossRef]
- Zhao, Y.; Liang, Y.; Ding, S.; Zhang, K.; Mao, H.Q.; Yang, Y. Application of conductive PPy/SF composite scaffold and electrical stimulation for neural tissue engineering. Biomaterials 2020, 255, 120164. [Google Scholar] [CrossRef]
- Naghieh, S.; Sarker, M.D.; Abelseth, E.; Chen, X. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J. Mech. Behav. Biomed. Mater. 2019, 93, 183–193. [Google Scholar] [CrossRef] [PubMed]
- van Pel, D.M.; Harada, K.; Song, D.; Naus, C.C.; Sin, W.C. Modelling glioma invasion using 3D bioprinting and scaffold-free 3D culture. J. Cell Commun. Signal. 2018, 12, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.H.; Niu, C.M.; Shi, J.Q.; Wang, Y.Y.; Yang, Y.M.; Wang, H.B. Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair. Neural Regen. Res. 2018, 13, 1455–1464. [Google Scholar]
- Sharma, R.; Smits, I.P.M.; De La Vega, L.; Lee, C.; Willerth, S.M. 3D Bioprinting Pluripotent Stem Cell Derived Neural Tissues Using a Novel Fibrin Bioink Containing Drug Releasing Microspheres. Front. Bioeng. Biotechnol. 2020, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Cui, H.; Nowicki, M.; Miao, S.; Lee, S.J.; Masood, F.; Harris, B.T.; Zhang, L.G. Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration. ACS Appl. Mater. Interfaces 2018, 10, 8993–9001. [Google Scholar] [CrossRef]
- Frank, J.A.; Antonini, M.J.; Anikeeva, P. Next-generation interfaces for studying neural function. Nat. Biotechnol. 2019, 37, 1013–1023. [Google Scholar] [CrossRef]
- McConnell, H.L.; Kersch, C.N.; Woltjer, R.L.; Neuwelt, E.A. The Translational Significance of the Neurovascular Unit. J. Biol. Chem. 2017, 292, 762–770. [Google Scholar] [CrossRef]
- da Fonseca, A.C.C.; Matias, D.; Garcia, C.; Amaral, R.; Geraldo, L.H.; Freitas, C.; Lima, F.R.S. The Impact of Microglial Activation on Blood-Brain Barrier in Brain Diseases. Front. Cell. Neurosci. 2014, 8, 362. [Google Scholar] [CrossRef]
- Sommer, K.N.; Bhurwani, M.M.S.; Tutino, V.; Siddiqui, A.; Davies, J.; Snyder, K.; Levy, E.; Mokin, M.; Ionita, C.N. Use of Patient Specific 3D Printed Neurovascular Phantoms to Simulate Mechanical Thrombectomy. 3D Print. Med. 2021, 7, 32. [Google Scholar] [CrossRef]
- Cogswell, P.M.; Rischall, M.A.; Alexander, A.E.; Dickens, H.J.; Lanzino, G.; Morris, J.M. Intracranial Vasculature 3D Printing: Review of Techniques and Manufacturing Processes to Inform Clinical Practice. 3D Print. Med. 2020, 6, 18. [Google Scholar] [CrossRef]
- McGuire, L.S.; Fuentes, A.; Alaraj, A. Three-Dimensional Modeling in Training, Simulation, and Surgical Planning in Open Vascular and Endovascular Neurosurgery: A Systematic Review of the Literature. World Neurosurg. 2021, 154, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Chopra, S.; Boro, A.K.; Sinha, V.D. 3D Printing-Assisted Skull Base Tumor Surgeries: An Institutional Experience. J. Neurosci. Rural. Pract. 2021, 12, 630–634. [Google Scholar] [CrossRef] [PubMed]
- Hudelist, B.; Prebot, J.; Lecarpentier, E.; Apra, C. A Realistic Aneurysm Clipping Simulation Combining 3D-Printed and Placenta-Based Models—How I Do It. Acta Neurochir. 2024, 166, 172. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-M.; Byun, Y.H.; Kang, H.; Kim, M.-S.; Kim, J.-W.; Kim, Y.H.; Park, C.-K.; Dho, Y.-S. Changes of Resection Goal After Using 3-Dimensional Printing Brain Tumor Model for Presurgical Planning. World Neurosurg. 2023, 177, e153–e160. [Google Scholar] [CrossRef]
- Li, S.; Lu, Z.; Wang, C.; Shang, C.; Yu, Y. Use of 3D-Printing Cerebral Aneurysm Model Assisting Microcatheter Shaping in Neurovascular Intervention Technique Training. J. Clin. Neurosci. 2023, 115, 29–32. [Google Scholar] [CrossRef]
- Pravdivtseva, M.S.; Peschke, E.; Lindner, T.; Wodarg, F.; Hensler, J.; Gabbert, D.; Voges, I.; Berg, P.; Barker, A.J.; Jansen, O.; et al. 3D-Printed, Patient-Specific Intracranial Aneurysm Models: From Clinical Data to Flow Experiments with Endovascular Devices. Med. Phys. 2021, 48, 1469–1484. [Google Scholar] [CrossRef]
- Saleh, Y.; Piper, R.; Richard, M.; Jeyaretna, S.; Cosker, T. Designing a 3D Printed Model of the Skull-Base: A Collaboration Between Clinicians and Industry. J. Med. Educ. Curric. Dev. 2022, 9, 23821205221080703. [Google Scholar] [CrossRef]
- Wang, S.; Bai, L.; Hu, X.; Yao, S.; Hao, Z.; Zhou, J.; Li, X.; Lu, H.; He, J.; Wang, L.; et al. 3D Bioprinting of Neurovascular Tissue Modeling with Collagen-Based Low-Viscosity Composites. Adv. Healthc. Mater. 2023, 12, 2300004. [Google Scholar] [CrossRef]
- Ye, X.; Wang, L.; Li, K.; Hao, Q.; Lu, J.; Chen, X.; Zhao, Y. A Three-Dimensional Color-Printed System Allowing Complete Modeling of Arteriovenous Malformations for Surgical Simulations. J. Clin. Neurosci. 2020, 77, 134–141. [Google Scholar] [CrossRef]
- Gupta, S.; Bit, A. 3D Bioprinting in Tissue Engineering and Regenerative Medicine. Cell Tissue Bank. 2022, 23, 199–212. [Google Scholar] [CrossRef]
- Chung, J.J.; Im, H.; Kim, S.H.; Park, J.W.; Jung, Y. Toward Biomimetic Scaffolds for Tissue Engineering: 3D Printing Techniques in Regenerative Medicine. Front. Bioeng. Biotechnol. 2020, 8, 586406. [Google Scholar] [CrossRef]
- Xiang, Y.; Miller, K.; Guan, J.; Kiratitanaporn, W.; Tang, M.; Chen, S. 3D Bioprinting of Complex Tissues in Vitro: State-of-the-Art and Future Perspectives. Arch. Toxicol. 2022, 96, 691–710. [Google Scholar] [CrossRef] [PubMed]
- Nitti, P.; Narayanan, A.; Pellegrino, R.; Villani, S.; Madaghiele, M.; Demitri, C. Cell-Tissue Interaction: The Biomimetic Approach to Design Tissue Engineered Biomaterials. Bioengineering 2023, 10, 1122. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-H.; Koh, U.H.; Yang, D.-Y.; Lee, N.-K.; Shin, J.H. Development of 3D Printed Biomimetic Scaffold for Tissue Engineering. In Proceedings of the 2015 15th International Conference on Control, Automation and Systems (ICCAS), Busan, Republic of Korea, 13–16 October 2015; pp. 1958–1960. [Google Scholar]
- Masel, B.E.; DeWitt, D.S. Traumatic Brain Injury: A Disease Process, Not an Event. J. Neurotrauma 2010, 27, 1529–1540. [Google Scholar] [CrossRef] [PubMed]
- Bahraminasab, M. Challenges on Optimization of 3D-Printed Bone Scaffolds. BioMed Eng. OnLine 2020, 19, 69. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, A.G.; Nageh, H.; Abdo, S.M.; Abdalla, M.S.; Amer, A.A.; Abdal-hay, A.; Barhoum, A. A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering 2023, 10, 204. [Google Scholar] [CrossRef] [PubMed]
- Tupone, M.G.; d’Angelo, M.; Castelli, V.; Catanesi, M.; Benedetti, E.; Cimini, A. A State-of-the-Art of Functional Scaffolds for 3D Nervous Tissue Regeneration. Front. Bioeng. Biotechnol. 2021, 9, 639765. [Google Scholar] [CrossRef]
- Jose, J.; Sultan, S.; Kalarikkal, N.; Thomas, S.; Mathew, A.P. Fabrication and Functionalization of 3D-Printed Soft and Hard Scaffolds with Growth Factors for Enhanced Bioactivity. RSC Adv. 2020, 10, 37928–37937. [Google Scholar] [CrossRef]
- Cao, D.; Ding, J. Recent Advances in Regenerative Biomaterials. Regen. Biomater. 2022, 9, rbac098. [Google Scholar] [CrossRef]
- Chen, C.; Xu, H.-H.; Liu, X.-Y.; Zhang, Y.-S.; Zhong, L.; Wang, Y.-W.; Xu, L.; Wei, P.; Chen, Y.-X.; Liu, P.; et al. 3D Printed Collagen/Silk Fibroin Scaffolds Carrying the Secretome of Human Umbilical Mesenchymal Stem Cells Ameliorated Neurological Dysfunction after Spinal Cord Injury in Rats. Regen. Biomater. 2022, 9, rbac014. [Google Scholar] [CrossRef]
- Darvishi, M.; Ghasemi Hamidabadi, H.; Sahab Negah, S.; Moayeri, A.; Tiraihi, T.; Mirnajafi-Zadeh, J.; Jahanbazi Jahan-Abad, A.; Shojaei, A. PuraMatrix Hydrogel Enhances the Expression of Motor Neuron Progenitor Marker and Improves Adhesion and Proliferation of Motor Neuron-like Cells. Iran. J. Basic Med. Sci. 2020, 23, 431–438. [Google Scholar]
- Elnaggar, M.A.; El-Fawal, H.A.N.; Allam, N.K. Biocompatible PCL-Nanofibers Scaffold with Immobilized Fibronectin and Laminin for Neuronal Tissue Regeneration. Mater. Sci. Eng. C 2021, 119, 111550. [Google Scholar] [CrossRef]
- Liu, X.-Y.; Chang, Z.-H.; Chen, C.; Liang, J.; Shi, J.-X.; Fan, X.; Shao, Q.; Meng, W.-W.; Wang, J.-J.; Li, X.-H. 3D Printing of Injury-Preconditioned Secretome/Collagen/Heparan Sulfate Scaffolds for Neurological Recovery after Traumatic Brain Injury in Rats. Stem Cell Res. Ther. 2022, 13, 525. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Feng, Y.-H.; Feng, Q.-B.; Zhang, J.-Y.; Zhong, L.; Liu, P.; Wang, S.; Huang, Y.-R.; Chen, X.-Y.; Zhou, L.-X. Low-Temperature 3D-Printed Collagen/Chitosan Scaffolds Loaded with Exosomes Derived from Neural Stem Cells Pretreated with Insulin Growth Factor-1 Enhance Neural Regeneration after Traumatic Brain Injury. Neural Regen. Res. 2023, 18, 1990–1998. [Google Scholar]
- Parikh, S.D.; Dave, S.; Huang, L.; Wang, W.; Mukhopadhyay, S.M.; Mayes, D.A. Multi-Walled Carbon Nanotube Carpets as Scaffolds for U87MG Glioblastoma Multiforme Cell Growth. Mater. Sci. Eng. C 2020, 108, 110345. [Google Scholar] [CrossRef] [PubMed]
- Rauti, R.; Secomandi, N.; Martín, C.; Bosi, S.; Severino, F.P.U.; Scaini, D.; Prato, M.; Vázquez, E.; Ballerini, L. Tuning Neuronal Circuit Formation in 3D Polymeric Scaffolds by Introducing Graphene at the Bio/Material Interface. Adv. Biosyst. 2020, 4, 1900233. [Google Scholar] [CrossRef] [PubMed]
- Heo, D.N.; Lee, S.J.; Timsina, R.; Qiu, X.; Castro, N.J.; Zhang, L.G. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 99, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Tomaskovic-Crook, E.; Lozano, R.; Chen, Y.; Kapsa, R.M.; Zhou, Q.; Wallace, G.G.; Crook, J.M. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells. Adv. Healthc. Mater. 2016, 5, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.; Hsu, S.H. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs. Acta Biomater. 2018, 70, 57–70. [Google Scholar] [CrossRef]
- Haring, A.P.; Thompson, E.G.; Tong, Y.; Laheri, S.; Cesewski, E.; Sontheimer, H.; Johnson, B.N. Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues. Biofabrication 2019, 11, 025009. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Su, Y.; Adam, C.D.; Deutschmann, A.U.; Pather, S.R.; Goldberg, E.M.; Su, K.; Li, S.; Lu, L.; Jacob, F.; et al. Sliced Human Cortical Organoids for Modeling Distinct Cortical Layer Formation. Cell Stem Cell 2020, 26, 766–781.e9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wolfes, A.C.; Li, Y.; Chan, D.C.W.; Ko, H.; Szele, F.G.; Bayley, H. Lipid-Bilayer-Supported 3D Printing of Human Cerebral Cortex Cells Reveals Developmental Interactions. Adv. Mater. 2020, 32, e2002183. [Google Scholar] [CrossRef] [PubMed]
- Hermida, M.A.; Kumar, J.D.; Schwarz, D.; Laverty, K.G.; Di Bartolo, A.; Ardron, M.; Bogomolnijs, M.; Clavreul, A.; Brennan, P.M.; Wiegand, U.K.; et al. Three dimensional in vitro models of cancer: Bioprinting multilineage glioblastoma models. Adv. Biol. Regul. 2020, 75, 100658. [Google Scholar] [CrossRef] [PubMed]
- Reginensi, D.; Ortiz, D.; Pravia, A.; Burillo, A.; Morales, F.; Morgan, C.; Jimenez, L.; Dave, K.R.; Perez-Pinzon, M.A.; Gittens, R.A. Role of Region-Specific Brain Decellularized Extracellular Matrix on In Vitro Neuronal Maturation. Tissue Eng. Part A 2020, 26, 964–978. [Google Scholar] [CrossRef]
- Datta, P.; Dey, M.; Ataie, Z.; Unutmaz, D.; Ozbolat, I.T. 3D bioprinting for reconstituting the cancer microenvironment. NPJ Precis. Oncol. 2020, 4, 18. [Google Scholar] [CrossRef] [PubMed]
- Watson, P.M.D.; Kavanagh, E.; Allenby, G.; Vassey, M. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation. Slas Discov. Adv. Sci. Drug Discov. 2017, 22, 583–601. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Ding, J.; Long, X.; Zhang, H.; Zhang, X.; Jiang, X.; Xu, T. 3D bioprinted glioma microenvironment for glioma vascularization. J. Biomed. Mater. Res. A 2021, 109, 915–925. [Google Scholar] [CrossRef] [PubMed]
- Louis, C.U.; Shohet, J.M. Neuroblastoma: Molecular pathogenesis and therapy. Annu. Rev. Med. 2015, 66, 49–63. [Google Scholar] [CrossRef]
- Joung, D.; Lavoie, N.S.; Guo, S.Z.; Park, S.H.; Parr, A.M.; McAlpine, M.C. 3D Printed Neural Regeneration Devices. Adv. Funct. Mater. 2020, 3, 30. [Google Scholar] [CrossRef]
- Duarte Campos, D.F.; Bonnin Marquez, A.; O’Seanain, C.; Fischer, H.; Blaeser, A.; Vogt, M.; Corallo, D.; Aveic, S. Exploring Cancer Cell Behavior In Vitro in Three-Dimensional Multicellular Bioprintable Collagen-Based Hydrogels. Cancers 2019, 11, 180. [Google Scholar] [CrossRef]
- Zia, U.A.; Muhammad, Y.K.; Ali, Z.; Mahdi, B. 4D bioprinting of smart polymers for biomedical applications: Recent progress, challenges, and future perspectives. React. Funct. Polym. 2022, 179, 105374. [Google Scholar]
- Samanipour, R.; Tahmooressi, H.; Rezaei Nejad, H.; Hirano, M.; Shin, S.R.; Hoorfar, M. A review on 3D printing functional brain model. Biomicrofluidics 2022, 16, 011501. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, M.; Rezvaninejad, R.; Rezvaninejad, R.; Franca, R. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies. Biomed. Phys. Eng. Express 2021, 7, 062001. [Google Scholar] [CrossRef] [PubMed]
- França, R.; Winkler, J.; Hsu, H.H.; Rahimnejad, M.; Abdali, Z. 3D Printing—Additive Manufacturing of Dental Biomaterials. In Dental Biomaterials; World Scientific Series: From Biomaterials Towards Medical Devices; World Scientific: Singapore, 2018; pp. 421–462. [Google Scholar]
- Rosset, J.; Olaniyanu, E.; Stein, K.; Almeida, N.D.; França, R. Exploring the Frontier of 3D Bioprinting for Tendon Regeneration: A Review. Eng 2024, 5, 1838–1849. [Google Scholar] [CrossRef]
- Almeida, N.D.; Carneiro, C.A.; de Marco, A.C.; Porto, V.C.; França, R. 3D Bioprinting Techniques and Bioinks for Periodontal Tissues Regeneration—A Literature Review. Biomimetics 2024, 9, 480. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, A.; Vakitbilir, N.; Almeida, N.; França, R. Advances in 3D Bioprinting for Neuroregeneration: A Literature Review of Methods, Bioinks, and Applications. Micro 2024, 4, 490-508. https://doi.org/10.3390/micro4030031
Islam A, Vakitbilir N, Almeida N, França R. Advances in 3D Bioprinting for Neuroregeneration: A Literature Review of Methods, Bioinks, and Applications. Micro. 2024; 4(3):490-508. https://doi.org/10.3390/micro4030031
Chicago/Turabian StyleIslam, Abrar, Nuray Vakitbilir, Nátaly Almeida, and Rodrigo França. 2024. "Advances in 3D Bioprinting for Neuroregeneration: A Literature Review of Methods, Bioinks, and Applications" Micro 4, no. 3: 490-508. https://doi.org/10.3390/micro4030031
APA StyleIslam, A., Vakitbilir, N., Almeida, N., & França, R. (2024). Advances in 3D Bioprinting for Neuroregeneration: A Literature Review of Methods, Bioinks, and Applications. Micro, 4(3), 490-508. https://doi.org/10.3390/micro4030031