Klotho Deficiency in Severe COVID-19: A Unifying Hypothesis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Evidence for Metformin
3.1.1. Preclinical Data for Metformin
3.1.2. Meta-Analysis of Observational Studies of Metformin
3.1.3. Meta-Analysis of Randomized Controlled Trials (RCTs) of Metformin
3.2. COVID-OUT RCT: Metformin Antiviral Effect in SARS-CoV-2 Infection and Prevention of Long COVID
3.3. GRADE Criteria for Metformin
NIH Evidence and Guidelines for Metformin Use in COVID-19
3.4. Evidence for Statins
3.4.1. Preclinical Data of Statins
3.4.2. Meta-Analysis of Observational Studies of Statins
3.4.3. Meta-Analysis of Randomized Controlled Trials (RCTs) for Statins
3.5. Statins in COVID-19: A Mendelian Randomization Analysis
NIH Guidelines for Statins
3.6. Evidence for Low Serum Levels of 25OH-Vitamin D and for Vitamin D Receptor Agonists
3.6.1. Preclinical Data for Vitamin D Receptor Agonists
3.6.2. Low 25OH-Vitamin D Levels and COVID-19 Infection and Severity: Meta-Analysis of Observational Studies
3.6.3. Meta-Analysis of Randomized Controlled Trials (RCTs) of Vitamin D Analogs in COVID-19
3.7. Vitamin D Supplementation and SARS-CoV-2 Viral Load in RCT
NIH Guidelines on Vitamin D on COVID-19
3.8. Evidence for Exogenous Klotho Therapy and Klotho-Related Peptides on COVID-19: Preclinical Data
3.8.1. Exogenous Full-Length Klotho Therapy and Mortality in COVID-19 Model Mice
3.8.2. Klotho-Derived Peptide 1 Therapy Decreases SARS-CoV-2-Induced Acute Kidney Injury (AKI) In Vitro and In Vivo
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- COVID-19 Epidemiological Update—15 July 2024. Available online: https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-169#:~:text=As%20of%2023%20June%202024,unit%20(ICU)%2C%20respectively (accessed on 15 November 2024).
- Mayo Clinic: Coronavirus Disease 2019 (COVID-19). Available online: https://www.mayoclinic.org/diseases-conditions/coronavirus/symptoms-causes/syc-20479963 (accessed on 15 November 2024).
- Alem, F.; Campos-Obando, N.; Narayanan, A.; Bailey, C.L.; Macaya, R.F. Exogenous Klotho extends survival in COVID-19 model mice. Pathogens 2023, 12, 1404. [Google Scholar] [CrossRef] [PubMed]
- Kuro-o, M.; Matsumura, Y.; Aizawa, H.; Kawaguchi, H.; Suga, T.; Utsugi, T.; Ohyama, Y.; Kurabayashi, M.; Kaname, T.; Kume, E.; et al. Mutation of the mouse Klotho gene leads to a syndrome resembling ageing. Nature 1997, 390, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Sun, Z. Molecular basis of Klotho: From gene to function in aging. Endocr. Rev. 2015, 36, 174–193. [Google Scholar] [CrossRef]
- Urakawa, I.; Yamazaki, Y.; Shimada, T.; Iijima, K.; Hasegawa, H.; Okawa, K.; Fujita, T.; Fukumoto, S.; Yamashita, T. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006, 444, 770–774. [Google Scholar] [CrossRef]
- Neyra, J.A.; Moe, O.W.; Pastor, J.; Gianella, F.; Sidhu, S.S.; Sarnak, M.J.; Ix, J.H.; Drew, D.A. Performance of soluble Klotho assays in clinical samples of kidney disease. Clin. Kidney J. 2020, 13, 235–244. [Google Scholar] [CrossRef]
- Prud‘homme, G.J.; Kurt, M.; Wang, Q. Pathobiology of the Klotho antiaging protein and therapeutic considerations. Front. Aging 2022, 3, 931331. [Google Scholar]
- Doi, S.; Zou, Y.; Togao, O.; Pastor, J.V.; John, G.B.; Wang, L.; Shiizaki, K.; Gotschall, R.; Schiavi, S.; Yorioka, N.; et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J. Biol. Chem. 2011, 286, 8655–8665. [Google Scholar] [CrossRef]
- Jin, M.; Lv, P.; Chen, G.; Wang, P.; Zuo, Z.; Ren, L.; Bi, J.; Yang, C.W.; Mei, X.; Han, D. Klotho ameliorates cyclosporine A-induced nephropathy via PDLIM2/NF-KBp65 signaling pathway. Biochem. Biophys. Res. Commun. 2017, 486, 451–457. [Google Scholar] [CrossRef]
- Zhou, Y.; Kuang, Y.; Zhou, J. Klotho protects against LPS-induced inflammation injury by inhibitng Wnt and NF-kappaB pathways in HK-2 cells. Pharmazie 2017, 72, 227–231. [Google Scholar]
- Tang, X.; Wang, Y.; Fan, Z.; Ji, G.; Wang, M.; Lin, J.; Huang, S.; Meltzer, S.J. Klotho: A tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma. Lab. Investig. 2016, 96, 197–205. [Google Scholar] [CrossRef]
- Decroix, V.; Maudit, O.; Tessier, N.; Montillaud, A.; Lesluyes, T.; Ducret, T.; Chibon, F.; Van Coppenolle, F.; Ducreux, S.; Vacher, P. The role of the anti-aging protein Klotho in IGF-1 signaling and reticular calcium link: Impact on the chemosensitivity of dedifferentiated liposarcomas. Cancers 2018, 20, 439. [Google Scholar] [CrossRef] [PubMed]
- Kurosu, H.; Yamamoto, M.; Clark, J.D.; Pastor, J.V.; Nandi, A.; Gurnani, P.; McGuinness, O.P.; Chikuda, H.; Yamaguchi, M.; Kawaguchi, H.; et al. Suppression of aging in mice by the hormone Klotho. Science 2005, 309, 1829–1833. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Zhang, Y.; Wu, L.; Lin, Y.; Lv, L.; Zhao, L.; Xu, B.; Huang, Y.; Li, M. Klotho’s impact on diabetic nephropathy and its emerging connection to diabetic retinopathy. Front. Endocrinol. 2023, 14, 1180169. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, S.; Lin, Q.; Shao, X.; Wu, J.; Zhang, W.; Cai, H.; Zhou, W.; Jiang, N.; Zhang, Z.; et al. αKlotho has therapeutic activity in contrast-induced acute kidney injury by limiting NLRP3 inflammasome-mediated pyroptosis and promoting autophagy. Pharmacol. Res. 2021, 167, 105531. [Google Scholar] [CrossRef]
- Zeng, C.Y.; Yang, T.T.; Zhou, H.J.; Zhao, Y.; Kuang, X.; Duan, W.; Du, J.R. Lentiviral vector-mediated overexpression of Klotho in the brain improves Alzheimer disease-like pathology and cognitive deficits in mice. Neurobiol. Aging 2019, 78, 18–28. [Google Scholar] [CrossRef]
- Lin, Y.; Kuro-o, M.; Sun, Z. Genetic deficiency of anti-aging gene Klotho exacerbates early nephropathy in STZ-induced diabetes in male mice. Endocrinology 2013, 154, 3855–3863. [Google Scholar] [CrossRef]
- Kuang, X.; Zhou, H.J.; Thorne, A.H.; Chen, X.N.; Li, L.J.; Du, J.R. Neuroprotective effect of ligustilide through induction of α-secretase processing of both APP and Klotho in a mouse model of Alzheimer s disease. Front. Aging Neurosci. 2017, 9, 353. [Google Scholar] [CrossRef]
- Mao, Q.; Deng, M.; Zhao, J.; Zhou, D.; Tong, W.; Xu, S.; Zhao, X. Klotho ameliorates angiotensin-II-induced endothelial senescence via restoration of autophagy by inhibiting Wnt3a/GSK-3β/mTOR signaling: A potential mechanism involved in prognostic performance of Klotho in coronary atherosclerothic disease. Mech. Ageing Dev. 2023, 211, 111789. [Google Scholar] [CrossRef]
- Sopjani, M.; Rinnerthaler, M.; Kruja, J.; Dermaku-Sopjani, M. Intracellular signaling of the aging suppressor protein Klotho. Curr. Mol. Med. 2015, 15, 27–37. [Google Scholar] [CrossRef]
- Holzenberger, M.; Dupont, J.; Ducos, B.; Leneuve, P.; Géloen, A.; Even, P.C.; Cervera, P.; Le Bouc, Y. IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 2003, 421, 182–187. [Google Scholar] [CrossRef]
- Ohnishi, M.; Razzaque, M.S. Dietary and genetic evidence for phosphate toxicity accelerating mammalian aging. FASEB J. 2010, 24, 3562–3571. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.C.; Shi, M.; Gillings, N.; Flores, B.; Takahashi, M.; Kuro-o, M.; Moe, O.W. Recombinant α-Klotho may be prophylactic and therapeutic for acute to chronic kidney disease progression and uremic cardiomyopathy. Kidney Int. 2017, 91, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, P.; Ye, J.; Zhang, J.; Pinch, S.N.; Hu, M.C.; Kuro-o, M.; Hsia, C.C.W.; Moe, O.W. α-Klotho protects against oxidative damage in pulmonary epithelia. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L566–L575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Nian, Q.; Chen, G.; Cui, S.; Han, Y.; Zhang, J. Klotho alleviates lung injury caused by paraquat via suppressing ROS/P38 MAPK-regulated inflammatory responses and apoptosis. Oxid. Med. Cell Longev. 2020, 2020, 1854206. [Google Scholar] [CrossRef] [PubMed]
- Dubal, D.B.; Yokoyama, J.S.; Zhu, L.; Broestl, L.; Worden, K.; Wang, D.; Sturm, V.E.; Kim, D.; Klein, E.; Yu, G.Q.; et al. Life extension factor Klotho enhances cognition. Cell Rep. 2014, 7, 1065–1076. [Google Scholar] [CrossRef]
- Castner, S.A.; Gupta, S.; Wang, D.; Moreno, A.J.; Park, C.; Chen, C.; Poon, Y.; Groen, A.; Greenberg, K.; David, N.; et al. Longevity factor Klotho enhances cognition in aged nonhuman primates. Nat. Aging 2023, 3, 931–937. [Google Scholar] [CrossRef]
- Christov, M.; Neyra, J.A.; Gupta, S.; Leaf, D.E. Fibroblast growth factor 23 and Klotho in AKI. Semin. Nephrol. 2019, 39, 57–75. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Imura, A.; Urakawa, I.; Shimada, T.; Murakami, J.; Aono, Y.; Hasegawa, H.; Yamashita, T.; Nakatani, K.; Saito, Y.; et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem. Biophys. Res. Commun. 2010, 398, 513–518. [Google Scholar] [CrossRef]
- Hu, M.C.; Shi, M.; Zhang, J.; Quiñones, H.; Kuro-o, M.; Moe, O.W. Klotho deficiency is an early biomarker of renal ischemia-reperfusion injury and its replacement is protective. Kidney Int. 2010, 78, 1240–1251. [Google Scholar] [CrossRef]
- Hu, M.C.; Moe, O.W. Klotho as a potential biomarker and therapy for acute kidney injury. Nat. Rev. Nephrol. 2012, 8, 423–429. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Shao, S.C.; Lai, E.C.C.; Hung, M.J.; Chen, Y.C. Mortality rate of acute kidney injury in SARS, MERS, and COVID-19 infection: A systematic review and meta-analysis. Crit. Care 2020, 24, 439. [Google Scholar] [CrossRef] [PubMed]
- Neyra, J.A.; Hu, M.C.; Moe, O.W. Klotho in clinical nephrology: Diagnostic and therapeutic implications. Clin. J. Am. Soc. Nephrol. 2020, 16, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Neyra, J.A.; Li, X.; Mescia, F.; Ortiz-Soriano, V.; Adams-Huet, B.; Pastor, J.; Hu, M.C.; Toto, R.D.; Moe, O.W.; Klotho and Acute Kidney Injury (KLAKI) Study Group. Urine Klotho is lower in critically ill patients with versus without acute kidney injury and associates with major adverse kidney events. Crit. Care Explor. 2019, 1, e0016. [Google Scholar] [CrossRef]
- Houssen, M.; El-Mahdy, R.; Samra, N.E.; Tera, Y.; Mostafa, K.N.; El-Desoky, M.M.; Hisham, F.A.; Hewidy, A.A.; Elmorsey, R.A.; Samaha, H.; et al. High mobility Group Box 1 gene polymorphism, and high mobility group Box 1, interleukin 1 beta, and alpha Klotho crosstalk in severe COVID-19 patients. Immunol. Investig. 2024, 53, 450–463. [Google Scholar] [CrossRef]
- Nakao, V.W.; Mazucanti, C.H.Y.; de Sá Lima, L.; de Mello, P.S.; de Souza Port’s, N.M.; Kinoshita, P.F.; Leite, J.A.; Kawamoto, E.M.; Scavone, C. Neuroprotective action of α-Klotho against LPS-activated glia conditioned medium in primary neuronal culture. Sci. Rep. 2022, 12, 18884. [Google Scholar] [CrossRef]
- He, T.; Xiong, J.; Huang, Y.; Zheng, C.; Liu, Y.; Bi, X.; Liu, C.; Han, W.; Yang, K.; Xiao, T.; et al. Klotho restrain RIG-1/NF-KB signaling activation and monocyte inflammatory factors release under uremic condition. Life Sci. 2019, 231, 116570. [Google Scholar] [CrossRef]
- Mitani, H.; Ishizaka, N.; Aizawa, T.; Ohno, M.; Usui, S.; Suzuki, T.; Amaki, T.; Mori, I.; Nakamura, Y.; Sato, M.; et al. In vivo Klotho gene transfer ameliorates angiotensin II induced renal damage. Hypertension 2002, 39, 838–843. [Google Scholar] [CrossRef]
- Bergmark, B.A.; Udell, J.A.; Morrow, D.A.; Jarolim, P.; Kuder, J.F.; Solomon, S.D.; Pfeffer, M.A.; Braunwald, E.; Sabatine, M.S. Klotho, fibroblast growth factor-23 and the renin-angiotensin system—An analysis from the PEACE trial. Eur. J. Heart Fail. 2019, 21, 462–470. [Google Scholar] [CrossRef]
- Morinelli, T.A.; Lee, M.H.; Kendall, R.T.; Luttrell, L.M.; Walker, L.P.; Ullian, M.E. Angiotensin II activates NF-κB through AT1A receptor recruitment of β-arrestin in cultured rat vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 2013, 304, C1176–C1186. [Google Scholar] [CrossRef]
- Okamoto, H.; Ichikawa, N. The pivotal role of the angiotensin II- NF-κB axis in the development of COVID -19 pathophysiology. Hypertens. Res. 2021, 44, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Olejnik, A.; Radajewska, A.; Krzywonos-Zawadzka, A.; Bil-Lula, I. Klotho inhibits IGF1R/PI3K/AKT signalling pathway and protects the heart from oxidative stress during ischemia/reperfusion injury. Sci. Rep. 2023, 13, 20312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Feng, X.; Li, B.; Sha, J.; Wang, C.; Yang, T.; Cui, H.; Fan, H. Dexmedetomidine protects against lipopolysaccharide-induced acute kidney injury by enhancing autophagy through inhibition of the PI3K/AKT/mTOR pathway. Front. Pharmacol. 2020, 11, 128. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Wu, Z.; Yang, K.; Han, Y.; Chen, Y.; Zhao, W.; Huang, F.; Jin, Y.; Jin, W. BMI1 promotes cardiac fibrosis in ischemia-induced heart failure vita the PTEN-PI3K/Akt-mTOR signaling pathway. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H61–H69. [Google Scholar] [CrossRef]
- Maiese, K. The mechanistic target of rapamycin (mTOR): Novel considerations as an antiviral treatment. Curr. Neurovasc. Res. 2020, 17, 332–337. [Google Scholar]
- Khalid, T.; Hasan, A.; Fatima, J.E.; Faridi, S.A.; Khan, A.F.; Mir, S.S. Therapeutic role of mTOR inhibitors in control of SARS-CoV-2 viral replication. Mol. Biol. Rep. 2023, 50, 2701–2711. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Li, B.; Zhu, X.; Lai, X. Klotho improves diabetic cardiomyopathy by suppressing the NLRP3 inflammasome pathway. Life Sci. 2019, 234, 116773. [Google Scholar] [CrossRef]
- Zhao, N.; Di, B.; Xu, L.L. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor. Rev. 2021, 61, 2–15. [Google Scholar] [CrossRef]
- Mora-Fernández, C.; Sánchez-Niño, M.D.; Donate-Correa, J.; Martín-Núñez, E.; Pérez-Delgado, N.; Valiño-Rivas, L.; Fernández-Fernández, B.; Ortiz, A.; Navarro-González, J.F. Sodium-glucose co-transporter-2 inhibitors increase Klotho in patients with diabetic kidney disease: A clinical and experimental study. Biomed. Pharmacother. 2022, 154, 113677. [Google Scholar] [CrossRef]
- Sanderson, E.; Glymour, M.M.; Holmes, M.V.; Kang, H.; Morrison, J.; Munafo, M.R.; Palmer, T.; Schooling, C.M.; Wallace, C.; Zhao, Q.; et al. Mendelian Randomization. Nat. Rev. Methods Primers 2022, 2, 6. [Google Scholar] [CrossRef]
- Xue, J.; Wang, L.; Sun, Z.; Xing, C. Basic research in diabetic nephropathy health care: A study of the renoprotective mechanism of metformin. J. Med. Syst. 2019, 43, 266. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.R.; Morrison, V.L.; Levin, D.; Mohan, M.; Forteath, C.; Beall, C.; McNeilly, A.D.; Balfour, D.J.K.; Savinko, T.; Wong, A.K.F.; et al. Anti-inflammatory effects of metformin irrespective of diabetes status. Circ. Res. 2016, 119, 652–665. [Google Scholar] [CrossRef] [PubMed]
- Schultheiβ, C.; Willscher, E.; Paschold, L.; Gottschick, C.; Klee, B.; Henkes, S.S.; Bosurgi, L.; Dutzmann, J.; Sedding, D.; Frese, T.; et al. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep. Med. 2022, 3, 100663. [Google Scholar] [CrossRef]
- Howell, J.J.; Hellberg, K.; Turner, M.; Talbott, G.; Kolar, M.J.; Ross, D.S.; Hoxhaj, G.; Saghatelian, A.; Shaw, R.J.; Manning, B.D. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 2017, 25, 463–471. [Google Scholar] [CrossRef]
- Singh, S.; Singh, P.K.; Suhail, H.; Arumugaswami, V.; Pellett, P.E.; Giri, S.; Kumar, A. AMP-activated protein kinase restricts Zika virus replication in endothelial cells by potentiating innate antiviral responses and inhibiting glycolysis. J. Immunol. 2020, 204, 1810–1824. [Google Scholar] [CrossRef]
- Del Campo, J.A.; García-Valdecasas, M.; Gil-Gómez, A.; Rojas, A.; Gallego, P.; Ampuero, J.; Gallego-Durán, R.; Pastor, H.; Grande, L.; Padillo, F.J.; et al. Simvastatin and metformin inhibit cell growth in hepatitis C virus infected cells via mTOR increasing PTEN and autophagy. PLoS ONE 2018, 13, e0191805. [Google Scholar] [CrossRef]
- Landis, D.; Sutter, A.; Khemka, S.; Songtanin, B.; Nichols, J.; Nugent, K. Metformin as adjuvant treatment in hepatitis C virus infections and associated complications. Am. J. Med. Sci. 2024, 368, 90–98. [Google Scholar] [CrossRef]
- Schaller, M.A.; Sharma, Y.; Dupee, Z.; Nguyen, D.; Urueña, J.; Smolchek, R.; Loeb, J.C.; Machuca, T.N.; Lednicky, J.A.; Odde, D.J.; et al. Ex vivo SARS-CoV-2 infection of human lung reveals heterogeneoeuos host defense and therapeutic responses. JCI Insight 2021, 6, e148003. [Google Scholar] [CrossRef]
- Lee, J.; Tsogbadrakh, B.; Yang, S.H.; Ryu, H.; Kang, E.; Kang, M.; Kang, H.G.; Ahn, C.; Oh, K.H. Klotho ameliorates diabetic nephropathy via LKB1-AMPK-PGC1α-mediated renal mitochondrial protection. Biochem. Biophys. Res. Commun. 2021, 534, 1040–1046. [Google Scholar] [CrossRef]
- Zhou, S.; Hum, J.; Taskintuna, K.; Olaya, S.; Steinman, J.; Ma, J.; Golestaneh, N. The anti-aging hormone Klotho promotes retinal pigment epithelium cell viability and metabolism by activating the AMPK/PGC-1α pathway. Antioxidants 2023, 12, 385. [Google Scholar] [CrossRef]
- Wiernsperger, N.F.; Bailey, C.J. The antihyperglycaemic effect of metformin: Therapeutic and cellular mechanisms. Drugs 1999, 58 (Suppl. S1), 31–39. [Google Scholar] [CrossRef] [PubMed]
- Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Investig. 2000, 106, 473–481. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liu, C.; Peng, J.; Li, Z.; Li, F.; Wang, J.; Hu, A.; Peng, M.; Huang, K.; Fan, D.; et al. COVID-19 induces new-onset insulin resistance and lipid metabolic dysregulation via regulation of secreted metabolic factors. Signal Transduct. Target. Ther. 2021, 6, 427. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhu, B.; Chen, D.; Hu, X.; Xu, X.; Shen, W.J.; Hu, C.; Li, J.; Qu, S. COVID-19 may increase the risk of insulin resistance in adult patients without diabetes: A 6-months prospective study. Endocr. Pract. 2021, 27, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Utsugi, T.; Ohno, T.; Ohyama, Y.; Uchiyama, T.; Saito, Y.; Matsumura, Y.; Aizawa, H.; Itoh, H.; Kurabayashi, M.; Kawazu, S.; et al. Decreased insulin production and increased insulin senstitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 2000, 49, 1118–1123. [Google Scholar] [CrossRef]
- Yan, L.; Hu, X.; Wu, S.; Zhao, S. Serum Klotho and insulin resistance: Insights from a cross-sectional analysis. Medicine 2024, 103, e37971. [Google Scholar] [CrossRef]
- Nguyen, N.N.; Ho, D.S.; Nguyen, H.S.; Ho, D.K.N.; Li, H.Y.; Lin, C.Y.; Chiu, H.Y.; Chen, Y.C. Preadmission use of antidiabetic medications and mortality among patients with COVID-19 having type 2 diabetes: A meta-analysis. Metabolism 2022, 131, 155196. [Google Scholar] [CrossRef]
- Bramante, C.T.; Buse, J.; Tamaritz, L.; Palacio, A.; Cohen, K.; Vojta, D.; Liebovitz, D.; Mitchell, N.; Nicklas, J.; Lingvay, I.; et al. Outpatient metformin use is associated with reduced severity of COVID-19 disease in adults with overweight or obesity. J. Med. Virol. 2021, 93, 4273–4279. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Yan, P.; Sun, T.; Zeng, Z.; Li, S. Metformin in patients with COVID-19: A systematic review and meta-analysis. Front. Med. 2021, 8, 704666. [Google Scholar] [CrossRef]
- Petrelli, F.; Grappasonni, I.; Nguyen, C.T.T.; Tesauro, M.; Pantanetti, P.; Xhafa, S.; Cangelosi, G. Metformin and COVID-19: A systematic review of systematic reviews with meta-analysis. Acta Biomed. 2023, 94, e2023138. [Google Scholar]
- Ganesh, A.; Randall, M.D. Does metformin affect outcomes in COVID-19 patients with new or preexisting diabetes mellitus? A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2022, 88, 2642–2656. [Google Scholar] [CrossRef] [PubMed]
- Bramante, C.T.; Huling, J.D.; Tignanelli, C.J.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Cohen, K.; Puskarich, M.A.; Belani, H.K.; Proper, J.L.; et al. Randomized trial of metformin, ivermectin and fluvoxamine for COVID 19. N. Eng. J. Med. 2022, 387, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Pulse Oximeter Accuracy and Limitations. FDA Safety Communication. Available online: https://public4.pagefreezer.com/content/FDA/20-02-2024T15:13/https://www.fda.gov/medical-devices/safety-communications/pulse-oximeter-accuracy-and-limitations-fda-safety-communication (accessed on 15 November 2024).
- Bramante, C.T.; Beckman, K.B.; Mehta, T.; Karger, A.B.; Odde, D.J.; Tignanelli, C.J.; Buse, J.B.; Johnson, D.M.; Watson, R.H.B.; Daniel, J.J.; et al. Favorable antiviral effect of metformin on SARS-CoV-2 viral load in a randomized, placebo-controlled clinical trial of COVID-19. Clin. Infect Dis. 2024, 79, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Bramante, C.T.; Buse, J.B.; Liebovitz, D.M.; Nicklas, J.M.; Puskarich, M.A.; Cohen, K.; Belani, H.K.; Anderson, B.J.; Huling, J.D.; Tignanelli, C.J.; et al. Outpatient treatment of COVID-19 and incidence of post-COVID-19 condition over 10 months (COVID-OUT): A multicentre, randomised, quadruple-blind, parallel-group, phase 3 trial. Lancet Infect. Dis. 2023, 23, 1119–1129. [Google Scholar] [CrossRef]
- Reis, G.; Dos Santos Moreira Silva, E.A.; Medeiros Silva, D.C.; Thabane, L.; Cruz Milagres, A.; Ferreira, T.S.; Quirino Dos Santos, C.V.; de Figueiredo Neto, A.D.; Diniz Callegari, E.; Monteiro Savassi, L.C.; et al. Effect of early treatment with metformin on risk of emergency care and hospitalization among patients with COVID-19: The TOGETHER randomized platform clinical trial. Lancet Reg. Health Am. 2022, 6, 100142. [Google Scholar] [CrossRef]
- Legro, R.S.; Barnhart, H.X.; Schlaff, W.D.; Carr, B.R.; Diamond, M.P.; Carson, S.A.; Steinkampf, M.P.; Coutifaris, C.; McGovern, P.G.; Cataldo, N.A.; et al. Clomiphene, metformin, or both in the polycystic ovary syndrome. N. Eng. J. Med. 2007, 356, 551–566. [Google Scholar] [CrossRef]
- Gusler, G.; Gorsline, J.; Levy, G.; Zhang, S.Z.; Weston, I.E.; Naret, N.; Berner, B. Pharmacokinetics of metformin gastric-retentive tablets on healthy volunteers. J. Clin. Pharmacol. 2001, 41, 655–661. [Google Scholar] [CrossRef]
- Erickson, S.M.; Fenno, S.L.; Barzilai, N.; Kuchel, G.; Bartley, J.M.; Justice, J.N.; Buse, J.B.; Bramante, C.T. Metformin for treatment of acute COVID-19: Systematic review of clinical trial data against SARS-CoV-2. Diabetes Care 2023, 46, 1432–1442. [Google Scholar] [CrossRef]
- Guyyat, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schunemann, H.J.; GRADE Working Group. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Johnson, S.G.; Abedian, S.; Stürmer, T.; Huling, J.D.; Lewis, V.C.; Buse, J.B.; Brosnahan, S.B.; Mudumbi, P.C.; Erlandson, K.M.; McComsey, G.A.; et al. Prevalent metformin use in adults with diabetes and the incidence of long COVID: An HER-Based Cohort study from the RECOVER PROGRAM. Diabetes Care 2024, 47, 1930–1940. [Google Scholar] [CrossRef]
- Use of Metformin in Adults with Diabetes Linked to Lower Risk of Long COVID. Available online: https://www.nih.gov/news-events/news-releases/use-metformin-adults-diabetes-linked-lower-risk-long-covid#:~:text=Adults%20who%20use%20the%20prescription,Institutes%20of%20Health%20(NIH) (accessed on 15 November 2024).
- Bell, S.; Soto-Pedre, E.; Connelly, P.; Livingstone, S.; Pearson, E. Clarifying the relationship between metformin, acute kidney injury and lactic acidosis. Nat. Rev. Nephrol. 2017, 14, 70. [Google Scholar] [CrossRef] [PubMed]
- Graham, G.G.; Punt, J.; Arora, M.; Day, R.O.; Doogue, M.P.; Duong, J.K.; Furlong, T.J.; Greenfield, J.R.; Greenup, L.C.; Kirkpatrick, C.M.; et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 2011, 50, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.E.; Lim, S.W.; Piao, S.G.; Song, J.H.; Kim, J.; Yang, C.W. Statin upregulates the expression of Klotho, and anti-aging gene, in experimental cyclosporine nephropathy. Nephron Exp. Nephrol. 2012, 120, e123–e133. [Google Scholar] [CrossRef] [PubMed]
- Narumiya, H.; Sasaki, S.; Kuwahara, N.; Irie, H.; Kusaba, T.; Kameyama, H.; Tamagaki, K.; Hatta, T.; Takeda, K.; Matsubara, H. HMG-CoA reductase inhibitors up-regulate anti-aging Klotho mRNA via RhoA inactivation in IMCD3 cells. Cardiovasc. Res. 2004, 64, 331–336. [Google Scholar] [CrossRef]
- Poursistany, H.; Azar, S.T.; Azar, M.T.; Raeisi, S. The current and emerging Klotho-enhancement strategies. Biochem. Biophys. Res. Commun. 2024, 693, 149357. [Google Scholar] [CrossRef]
- Teixeira, L.; Temerozo, J.R.; Pereira-Dutra, F.S.; Ferreira, A.C.; Mattos, M.; Gonçalves, B.S.; Sacramento, C.Q.; Palhinha, L.; Cunha-Fernandes, T.; Dias, S.S.G.; et al. Simvastatin downregulates the SARS-CoV-2–induced inflammatory response and impairs viral infection through disruption of lipid rafts. Front. Immunol. 2022, 13, 820131. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, A.; Jia, Z.; Gu, J.; Chen, H. Klotho contributes to pravastatin effect on suppressing IL-6 production in endothelial cells. Mediat. Inflamm. 2016, 2016, 2193210. [Google Scholar] [CrossRef]
- Zapata-Cardona, M.I.; Flórez-Alvarez, L.; Zapata-Builes, W.; Guerra-Sandoval, A.L.; Guerra-Almonacid, C.M.; Hincapié-García, J.; Rugeles, M.T.; Hernandez, J.C. Atorvastatin effectively inhibits ancestral and two emerging variants of SARS-CoV-2 in vitro. Front. Microbiol. 2022, 13, 721103. [Google Scholar] [CrossRef]
- Rodrigues-Diez, R.R.; Tejera-Muñoz, A.; Marquez-Exposito, L.; Rayego-Mateos, S.; Sánchez, L.S.; Marchant, V.; Santamaría, L.T.; Ramos, A.M.; Ortiz, A.; Egido, J.; et al. Statins: Could an old friend help in the fight against COVID-19? Br. J. Pharmacol. 2020, 177, 4873–4886. [Google Scholar] [CrossRef]
- Dalton, G.; An, S.W.; Al-Juboori, S.I.; Nischan, N.; Yoon, J.; Dobrinskikh, E.; Hilgemann, D.W.; Xie, J.; Luby-Phelps, K.; Kohler, J.J.; et al. Soluble Klotho binds monosialogangloside to regulate membrane microdomains and growth factor signaling. Proc. Natl. Acad. Sci. USA 2017, 114, 752–757. [Google Scholar] [CrossRef]
- Pal, R.; Banerjee, M.; Yadav, U.; Bhattacharjee, S. Statin use and clinical outcomes in patients with COVID-19: An updated systematic review and meta-analysis. Postgrad. Med. J. 2022, 98, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Lao, U.S.; Law, C.F.; Baptista-Hon, D.T.; Tomlinson, B. Systematic review and meta-analysis of statin use and mortality, intensive care unit admission and requirement for mechanical ventilation in COVID-19 patients. J. Clin. Med. 2022, 11, 5454. [Google Scholar] [CrossRef] [PubMed]
- Kollias, A.; Kyriakoulis, K.G.; Kyriakoulis, I.G.; Nitsotolis, T.; Poulakou, G.; Stergiou, G.S.; Syrigos, K. Statin use and mortality in COVID-19 patients: Updated systematic review and meta-analysis. Atherosclerosis 2021, 330, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Arocutipa, C.; Melgar-Talavera, B.; Alvarado-Yarasca, A.; Saravia-Bartra, M.M.; Cazorla, P.; Belzusarri, I.; Hernández, A.V. Statins reduce mortality in patients with COVID-19: An updated meta-analysis of 147824 patients. Int. J. Infect. Dis. 2021, 110, 374–381. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, G.; Han, D. Statins in hospitalized COVID-19 patients: A systematic review and meta-analysis of randomized controlled trials. J. Med. Virol. 2023, 95, e28823. [Google Scholar] [CrossRef]
- de Mesquita, C.F.; Rivera, A.; Araújo, B.; Durães, V.L.; Queiroz, I.; Carvalho, V.H.; Haque, T.; Bes, T.M. Adjunctive statin therapy in patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. Am. J. Med. 2024, 137, 966–973.e11. [Google Scholar] [CrossRef]
- Huang, W.; Xiao, J.; Ji, J.; Chen, L. Association of lipid lowering drugs with COVID-19 outcomes from a Mendelian Randomization study. eLife 2021, 10, e73873. [Google Scholar] [CrossRef]
- COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 pandemic. Eur. J. Hum. Genet. 2020, 28, 715–718. [Google Scholar] [CrossRef]
- Vuorio, A.; Kovanen, P.T. Statins as adjuvant therapy for COVID-19 to calm the stormy immunothrombosis and beyond. Front. Pharmacol. 2021, 11, 579548. [Google Scholar] [CrossRef]
- Ghaseminejad-Raeini, A.; Ghaderi, A.; Sharafi, A.; Nematollahi-Sani, B.; Moossavi, M.; Derakhshani, A.; Sarab, G.A. Immunomodulatory actions of vitamin D in various immune-related disorders: A comprehensive review. Front. Immunol. 2023, 14, 950465. [Google Scholar] [CrossRef]
- Monlezun, D.J.; Bittner, E.A.; Christopher, K.B.; Camargo, C.A.; Quraishi, S.A. Vitamin D status and acute respiratory infection: Cross-sectional results from the United States National Health and Nutrition Examination Survey, 2001–2006. Nutrients 2015, 7, 1933–1944. [Google Scholar] [CrossRef] [PubMed]
- Beard, J.A.; Bearden, A.; Striker, R. Vitamin D and the anti-viral state. J. Clin. Virol. 2011, 50, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.L.; Leaf, E.M.; Hu, M.C.; Takeno, M.M.; Kuro-o, M.; Moe, O.W.; Giachelli, C.M. Vitamin D receptor agonists increase Klotho and osteopontin while decreasing aortic calcification in mice with chronic kidney disease fed a high phosphate diet. Kidney Int. 2012, 82, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Lisse, T.S.; Hewison, M. Vitamin D: A new player in the world of mTOR signaling. Cell Cycle 2011, 10, 1888–1889. [Google Scholar] [CrossRef]
- D’Ecclesiis, O.; Gavioli, C.; Martinoli, C.; Raimondi, S.; Chiocca, S.; Miccolo, C.; Bossi, P.; Cortinovis, D.; Chiaradonna, F.; Palorini, R.; et al. Vitamin D and SARS-CoV-2 infection, severity and mortality: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0268396. [Google Scholar] [CrossRef]
- Kazemi, A.; Mohammadi, V.; Aghababaee, S.K.; Golzarand, M.; Clark, C.C.T.; Babajafari, S. Association of vitamin D status with SARS-CoV-2 infection or COVID-19 severity: A systematic review and meta-analysis. Adv. Nutr. 2021, 12, 1636–1658. [Google Scholar] [CrossRef]
- Varikasuvu, S.R.; Thangappazham, B.; Vykunta, A.; Duggina, P.; Manne, M.; Raj, H.; Aloori, S. COVID-19 and vitamin D (CO-VIVID study): A systematic review and meta-analysis of randomized controlled trials. Expert. Rev. Anti Infect. Ther. 2022, 20, 907–913. [Google Scholar] [CrossRef]
- Hosseini, B.; El Abd, A.; Ducharme, F.M. Effects of vitamin D supplementation on COVID-19 related outcomes: A systematic review and meta-analysis. Nutrients 2022, 14, 2134. [Google Scholar] [CrossRef]
- Kümmel, L.S.; Krumbein, H.; Fragkou, P.C.; Hünerbein, B.L.; Reiter, R.; Papathanasiou, K.A.; Thölken, C.; Weiss, S.T.; Renz, H.; Skevaki, C. Vitamin D supplementation for the treatment of COVID-19: A systematic review and meta-analysis of randomized controlled trials. Front. Immunol. 2022, 13, 1023903. [Google Scholar] [CrossRef]
- Meng, J.; Li, X.; Liu, W.; Xiao, Y.; Tang, H.; Wu, Y.; Xiong, Y.; Gao, S. The role of vitamin D in the prevention and treatment of SARS-CoV-2 infection; a meta-analysis of randomized controlled trials. Clin. Nutr. 2023, 42, 2198–2206. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhao, L.; Zhao, Y.; Xia, S. High-dose vitamin D supplementation in patients with COVID-19: A meta-analysis of randomized controlled trials. Food Sci. Nutr. 2023, 12, 1808–1817. [Google Scholar] [CrossRef] [PubMed]
- Sobczak, M.; Pawliczak, R. Effect of vitamin D3 supplementation in severe COVID-19: A meta-analysis of randomized clinical trials. Nutrients 2024, 16, 1402. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sun, W.; Yang, F.; Zhang, G.; Li, X.; Sun, S.; Xing, Y. Therapeutic effects of vitamin D supplementation on COVID-19 aggravation: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2024, 15, 1367686. [Google Scholar] [CrossRef]
- Dietary Supplements in the Time of COVID-19. Available online: https://ods.od.nih.gov/factsheets/COVID19-HealthProfessional/ (accessed on 15 November 2024).
- Schaubroeck, H.; Vandenberghe, W.; Boer, W.; Boonen, E.; Dewulf, B.; Bourgeois, C.; Dubois, J.; Dumoulin, A.; Fivez, T.; Gunst, J.; et al. Acute kidney injury in critical COVID-19: A multicenter cohort analysis in seven large hospitals in Belgium. Crit. Care 2022, 26, 225. [Google Scholar] [CrossRef]
- Aklilu, A.M.; Kumar, S.; Nugent, J.; Yamamoto, Y.; Coronel-Moreno, C.; Kadhim, B.; Faulkner, S.C.; O’Connor, K.D.; Yasmin, F.; Greenberg, J.H.; et al. COVID-19-associated acute kidney injury and longitudinal outcomes. JAMA Intern. Med. 2024, 184, 414–423. [Google Scholar] [CrossRef]
- Puelles, V.G.; Lütgehetmann, M.; Lindenmeyer, M.T.; Sperhake, J.P.; Wong, M.N.; Allweiss, L.; Chilla, S.; Heinemann, A.; Wanner, N.; Liu, S.; et al. Multiorgan and renal tropism of SARS-CoV-2. N. Eng. J. Med. 2020, 383, 590–592. [Google Scholar] [CrossRef]
- Motavalli, R.; Abdelbasset, W.K.; Rahman, H.S.; Achmad, M.H.; Sergeevna, N.K.; Zekiy, A.O.; Adili, A.; Khiavi, F.M.; Marofi, F.; Yousefi, M.; et al. The lethal internal face of coronaviruses: Kidney tropism of SARS, MERS and COVID-19 viruses. IUBMB Life 2021, 73, 1005–1015. [Google Scholar] [CrossRef]
- Xu, J.; Lin, E.; Hong, X.; Li, L.; Gu, J.; Zhao, J.; Liu, Y. Klotho-derived peptide KP1 ameliorates SARS-CoV-2 associated acute kidney injury. Front. Pharmacol. 2024, 14, 1333389. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Hu, D.; Pan, P.; Liang, L.; Wu, W.; Tang, Y.; Huang, X.R.; Yu, X.; Wu, J.; et al. SARS-CoV-2 N protein induces acute kidney injury vis Smad3-dependent G1 cell cycle arrest mechanism. Adv. Sci. 2022, 9, e2103248. [Google Scholar] [CrossRef]
- Liang, L.; Wang, W.; Chen, J.; Wu, W.; Huang, X.R.; Wei, B.; Zhong, Y.; Ma, R.C.W.; Yu, X.; Lan, H.Y. SARS-CoV-2 N protein induces acute kidney injury in diabetic mice via the Smad3-Ripk3/MLKL necroptosis pathway. Sig. Transduct. Target. Ther. 2023, 8, 147. [Google Scholar] [CrossRef]
- Yuan, Q.; Ren, Q.; Li, L.; Tan, H.; Lu, M.; Tian, Y.; Huang, L.; Zhao, B.; Fu, H.; Hou, F.F.; et al. A Klotho-derived peptide protects agains kidney fibrosis by targeting TGF-β signaling. Nat. Commun. 2022, 13, 438. [Google Scholar] [CrossRef] [PubMed]
- Niedrig, D.F.; Pyra, M.; Lussmann, R.; Serra, A.; Russmann, S. Rosuvastatin-induced rhabdomyolysis: Case report and call for proactive multifactorial risk assessment and preventive management of statin therapy on high-risk patients. Eur. J. Hosp. Pharm. 2024, 31, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Radovic, S.; Meng, W.; Chen, L.; Mondolfi, A.E.P.; Bryce, C.; Grimes, Z.; Sordillo, E.M.; Cordon-Cardo, C.; Guo, H.; Huang, Y.; et al. SARS-CoV-2 infection of kidney tissues from severe COVID-19 patients. J. Med. Virol. 2023, 95, e28566. [Google Scholar] [CrossRef] [PubMed]
- Pairo-Castineira, E.; Rawlik, K.; Bretherick, A.D.; Qi, T.; Wu, Y.; Nassiri, I.; McConkey, G.A.; Zechner, M.; Klaric, L.; Griffiths, F.; et al. GWAS and metaanalysis identifies 49 genetic variants underlying critical COVID-19. Nature 2023, 617, 764–768. [Google Scholar] [CrossRef]
Therapeutic Agent | Evidence of Preclinical Benefit as Antiviral Agents | RCT Evidence as Antiviral Agent/Anti-SARS-CoV-2 | RCT Evidence of COVID-19 Mortality Benefit | NIH Guidelines |
---|---|---|---|---|
Metformin | Zika, hepatitis C, and SARS-CoV-2. Probable mechanism: AMPK activation/ inhibition of mTOR at low doses. Ref: [56,57,58,59,60] | 3.6-fold decrease in mean viral load (COVID-OUT RCT) Ref: [76] | Mortality reduction in 42% as secondary outcome after excluding oximeters (COVID-OUT RCT) Ref: [74] | Metformin decreases death and long COVID in diabetic patients [84] |
Statins | Hepatitis C and SARS-CoV-2. Probable mechanism: displacement of ACE2 on lipid rafts and inhibition of mTOR Ref: [90,92,93] | Not available | Mortality reduction in 12% summarized in a meta-analysis of RCTs Ref: [100] | Continued chronic use of statins recommended during acute COVID-19 [103] |
Vitamin D analogs | Possible benefit against enveloped viruses. Mechanisms not fully elucidated, but increased autophagy via inhibition of mTOR has been postulated. Ref: [106,108] | Meta-analysis of RCTs has shown a decrease in RT-PCR SARS-CoV-2 positivity Ref: [111] | Mortality reduction in 48% Ref: [112] Mortality reduction in 24% in subgroup with 25OH-vitamin D deficiency Ref: [114] Mortality reduction in 44% in COVID-19-specific mortality Ref: [116] However, no significant results in references [113,115,117] | Insufficient data for the use of vitamin D analogs in COVID-19. [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Obando, N.; Zillikens, M.C.; Macaya, R.F. Klotho Deficiency in Severe COVID-19: A Unifying Hypothesis. COVID 2024, 4, 1833-1850. https://doi.org/10.3390/covid4120129
Campos-Obando N, Zillikens MC, Macaya RF. Klotho Deficiency in Severe COVID-19: A Unifying Hypothesis. COVID. 2024; 4(12):1833-1850. https://doi.org/10.3390/covid4120129
Chicago/Turabian StyleCampos-Obando, Natalia, M. Carola Zillikens, and Roman F. Macaya. 2024. "Klotho Deficiency in Severe COVID-19: A Unifying Hypothesis" COVID 4, no. 12: 1833-1850. https://doi.org/10.3390/covid4120129
APA StyleCampos-Obando, N., Zillikens, M. C., & Macaya, R. F. (2024). Klotho Deficiency in Severe COVID-19: A Unifying Hypothesis. COVID, 4(12), 1833-1850. https://doi.org/10.3390/covid4120129