Neural Network Approach for Modelling and Compensation of Local Surface-Tilting-Dependent Topography Measurement Errors in Coherence Scanning Interferometry
Abstract
:1. Introduction
2. Method for Direct Evaluation of the Surface-Tilting-Dependent Measurement Error in CSI
2.1. Micro-Rod-like Reference Artefacts
2.2. Traceable Topography Measurement of Reference Artefact Using MEMS-SPM
2.3. Artificial Neural Network Approach for Modelling of Surface-Tilting-Induced Topography Measurement Errors in an Interference Microscope
3. Results
3.1. Top Surface Topography of Reference Cylindrical Artefacts Measured by MEMS-SPM
3.2. Top Surface Topography of Reference Cylindrical Artefacts Measured by a CSI Using a Mirau Objective with NA = 0.55
3.3. Modelling and Compensation of the Surface Tilting Induced Measurement Errors in Interference Microscopy
3.4. Further Validation of the Trained FF-NN for Compensation of the Surface-Tilting-Induced Measurement Error in Interference Microscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilson, T.; Juskaitis, R. Scanning interference microscopy. Bioimaging 1994, 2, 36–40. [Google Scholar] [CrossRef]
- De Groot, P.J. Interference microscopy for surface structure analysis. In Handbook of Optical Metrology Principles and Applications; Yoshizawa, T., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 791–828. [Google Scholar]
- de Lega, X.C.; de Groot, P.J. Characterization of materials and film stacks for accurate surface topography measurement using a white-light optical profiler. In Proceeding of the Optical Micro- and Nanometrology in Microsystems Technology II, SPIE, Strasbourg, France, 7–11 April 2008; Volume 6995, p. 69950P. [Google Scholar]
- Thian, S.C.H.; Feng, W.; Wong, Y.S.; Fuh, J.Y.H.; Loh, H.T.; Tee, K.H.; Tang, Y.; Lu, L. Dimensional measurement of 3D microstructure based on white light interferometer. J. Phys. Conf. Ser. 2007, 48, 1435–1446. [Google Scholar] [CrossRef]
- Schmit, J.; Reed, J.; Novak, E.; Gimzewski, J.K. Performance advances in interferometric optical profilers for imaging and testing. J. Opt. A Pure Appl. Opt. 2008, 10, 064001. [Google Scholar] [CrossRef]
- Lehmann, P.; Niehues, J.; Tereschenko, S. 3-D Optical Interference Microscopy at the Lateral Resolution. Int. J. Optomechatron. 2014, 8, 231–241. [Google Scholar] [CrossRef]
- de Groot, P.J.; Biegen, J.F. Interference microscope objectives for wide-field areal surface topography measurements. Opt. Eng. 2016, 55, 074110. [Google Scholar] [CrossRef]
- Lehmann, P.; Hüser, L.; Stelter, A.; Kusserow, T. Lateral resolution enhanced interference microscopy using virtual annular apertures. J. Phys. Photonics 2023, 5, 015001. [Google Scholar] [CrossRef]
- Leong-Hoi, A.; Hairaye, C.; Perrin, S.; Lecler, S.; Pfeiffer, P.; Montgomery, P. High Resolution Microsphere-Assisted Interference Microscopy for 3D Characterization of Nanomaterials. Phys. Status Solidi A 2018, 215, 1700858. [Google Scholar] [CrossRef]
- Gleadall, A.; Visscher, D.; Yang, J.; Thomas, D.; Segal, J. Review of additive manufactured tissue engineering scaffolds: Relationship between geometry and performance. Burns Trauma 2018, 6, 19. [Google Scholar] [CrossRef]
- Gomez, C.; Su, R.; Thompson, A.; DiSciacca, J.; Lawes, S.; Leach, R. Optimization of surface measurement for metal additive manufacturing using coherence scanning interferometry. Opt. Eng. 2017, 56, 111714. [Google Scholar] [CrossRef]
- Lee, J.; Hossain, M.S.; Taheri, M.; Jameel, A.; Lakshmipathy, M.; Taheri, H. Characterization of Surface Topography Features for the Effect of Process Parameters and Their Correlation to Quality Monitoring in Metal Additive Manufacturing. Metrology 2022, 2, 73–83. [Google Scholar] [CrossRef]
- Zolfaghari, A.; Chen, T.; Yi, A.Y. Additive manufacturing of precision optics at micro and nanoscale. Int. J. Extrem. Manuf. 2019, 1, 012005. [Google Scholar] [CrossRef]
- Su, R.; Thomas, M.; Liu, M.; Drs, J.; Bellouard, Y.; Pruss, C.; Coupland, J.; Leach, R. Lens aberration compensation in interference microscopy. Opt. Lasers Eng. 2020, 128, 106015. [Google Scholar] [CrossRef]
- Biegen, J.F. Calibration requirements for Mirau and Linnik microscope interferometers. Appl. Opt. 1989, 29, 1972–1974. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, P. Vertical scanning white-light interference microscopy on curved microstructures. Opt. Lett. 2010, 35, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Wang, Y.; Coupland, J.; Leach, R. On tilt and curvature dependent errors and the calibration of coherence scanning interferometry. Opt. Express 2017, 25, 3297–3310. [Google Scholar] [CrossRef]
- Gao, F.; Leach, R.K.; Petzing, J.; Coupland, J.M. Surface measurement errors using commercial scanning white light interferometers. Meas. Sci. Technol. 2007, 19, 015303. [Google Scholar] [CrossRef]
- Lehmann, P.; Tereschenko, S.; Xie, W. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry. Surf. Topogr. Metrol. Prop. 2016, 4, 024004. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, D.; Qiu, J.; Ke, C.; Su, R.; Shi, Y. Simulation-driven machine learning approach for high-speed correction of slope-dependent error in coherence scanning interferometry. Opt. Express 2023, 31, 36048. [Google Scholar] [CrossRef]
- Thomas, M.; Su, R.; de Groot, P.; Leach, R.K. Optical topography measurement of steeply-sloped surfaces beyond the specular numerical aperture limit. Proc. SPIE 2020, 11352, 1135207. [Google Scholar]
- Thomas, M.; Su, R.; de Groot, P.; Coupland, J.; Leach, R. Surface measuring coherence scanning interferometry beyond the specular reflection limit. Opt. Express 2021, 29, 36121–36131. [Google Scholar] [CrossRef]
- Gao, S.; Felgner, A.; Hüser, D.; Wyss, S.; Brand, U. Characterization of the maximum measurable slope of optical topography measuring instruments. In Proceedings of the Optical Measurement Systems for Industrial Inspection XIII, Munich, Germany, 26–29 June 2023; pp. 576–582. [Google Scholar]
- Song, H.; Li, Q.W.; Shi, Z.Y. Maximum Acceptable Tilt Angle for Point Autofocus Microscopy. Sensors 2023, 23, 9655. [Google Scholar] [CrossRef]
- Li, Z.; Gao, S.; Brand, U.; Hiller, K.; Wolff, H. A MEMS nanoindenter with an integrated AFM cantilever gripper for nanomechanical characterization of compliant materials. Nanotechnology 2020, 31, 305502. [Google Scholar] [CrossRef]
- Tang, W.C.; Nguyen, T.-C.H.; Judy, M.W.; Howe, R.T. Electrostatic comb-drive of lateral polysilicon resonators. Sens. Actuators A 1990, 21, 328–331. [Google Scholar] [CrossRef]
- Gao, S.; Zhang, Z.; Wu, Y.; Herrmann, K. Towards quantitative determination of the spring constant of a scanning force microscope cantilever with a microelectromechanical nano-force actuator. Meas. Sci. Technol. 2010, 21, 015103. [Google Scholar] [CrossRef]
- Brand, U.; Gao, S.; Engl, W.; Sulzbach, T.; Stahl, S.W.; Milles, L.F.; Nesterov, V.; Li, Z. Comparing AFM cantilever stiffness measured using the thermal vibration and the improved thermal vibration methods with that of an SI traceable method based on MEMS. Meas. Sci. Technol. 2017, 28, 034010. [Google Scholar] [CrossRef]
- Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 1962, 160, 106–154. [Google Scholar] [CrossRef]
- Stinchcombe, M. Neural network approximation of continuous functionals and continuous functions on compactifications. Neural Netw. 1999, 12, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, Y. Development of convolutional neural network and its application in image classification: A survey. Opt. Eng. 2019, 58, 040901. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Wiliamowski, B.M.; Yu, H. Improved Computation for Levenberg–Marquardt Training. IEEE Trans. Neural Netw. Learn. Syst. 2010, 21, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Beale, M.H.; Hagan, M.T.; Demuth, H.B. Neural Network ToolboxTM 6 for use with MATLAB®, User’s Guide; MathWorks Inc.: Natick, MA, USA, 2010. [Google Scholar]
- Nouira, H.; Bourdet, P. Evaluation of roundness error using a new method based on a small displacement screw. Meas. Sci. Technol. 2014, 25, 044012. [Google Scholar] [CrossRef]
- Xu, Y.; Goodacre, R. On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning. J. Anal. Test. 2018, 2, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Udupa, G.; Singaperumal, M.; Sirohi, R.S.; Kothiyal, M.P. Characterization of surface topography by confocal microscopy: I. Principles and the measurement system. Meas. Sci. Technol. 2000, 11, 305–314. [Google Scholar] [CrossRef]
- Newton, L.; Senin, N.; Gomez, C.; Danzl, R.; Helmli, F.; Blunt, L.; Leach, R. Areal topography measurement of metal additive surfaces using focus variation microscopy. Addit. Manuf. 2019, 25, 365–389. [Google Scholar] [CrossRef]
Reference Cylindrical Artefact | Measured Radius, µm | ||
---|---|---|---|
MEMS-SPM | CSI | CSI with Trained FF-NN Compensation | |
SM-Fiber 1# | 62.77 ± 0.05 | 64.13 ± 0.36 | 62.73 ± 0.28 |
SM-Fiber 2# | 62.79 ± 0.05 | 64.63 ± 0.18 | 62.94 ± 0.17 |
SM-Fiber 3# | 64.09 ± 0.05 | 65.78 ± 0.27 | 64.18 ± 0.22 |
Reference samples | Diameters (nominal value) | 125 ± 1.5 µm | |
length | 10 mm | ||
Surface topography measurement methods | MEMS-SPM | Minimum measurable curvature, Rmin | 34.1 µm for θtip = 45o |
Line scan range | 100 µm | ||
Data acquisition rate | 10 samples/s | ||
Line scan speed | 512 s/line | ||
Resolution | 11.7 nm | ||
CSI | Areal image size | 350 µm × 264 µm | |
Pixels | 1024 × 1360 | ||
Artificial NN modelling | NN model | Feed-through neural network: configuration | Single hidden layer |
Training period | ≤20 neurons | <1 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Li, Z.; Brand, U. Neural Network Approach for Modelling and Compensation of Local Surface-Tilting-Dependent Topography Measurement Errors in Coherence Scanning Interferometry. Metrology 2024, 4, 446-456. https://doi.org/10.3390/metrology4030027
Gao S, Li Z, Brand U. Neural Network Approach for Modelling and Compensation of Local Surface-Tilting-Dependent Topography Measurement Errors in Coherence Scanning Interferometry. Metrology. 2024; 4(3):446-456. https://doi.org/10.3390/metrology4030027
Chicago/Turabian StyleGao, Sai, Zhi Li, and Uwe Brand. 2024. "Neural Network Approach for Modelling and Compensation of Local Surface-Tilting-Dependent Topography Measurement Errors in Coherence Scanning Interferometry" Metrology 4, no. 3: 446-456. https://doi.org/10.3390/metrology4030027
APA StyleGao, S., Li, Z., & Brand, U. (2024). Neural Network Approach for Modelling and Compensation of Local Surface-Tilting-Dependent Topography Measurement Errors in Coherence Scanning Interferometry. Metrology, 4(3), 446-456. https://doi.org/10.3390/metrology4030027