Novel Bioactive Extraction and Nano-Encapsulation
Definition
:1. Introduction
2. Bioactive Compounds from Plant Materials
2.1. Glycosides
2.2. Tannins
2.3. Mono/Sesqui-Terpenoids and Phenylpropanoids
2.4. Resins
2.5. Alkaloids
2.6. Proteins
3. Novel Strategies for the Extraction of Bioactive Compounds from Plant Matrix
3.1. Individual Strategies
3.1.1. Ultrasound-Assisted Extraction (UAE)
3.1.2. Microwave-Assisted Extraction (MAE)
3.1.3. Enzyme-Assisted Extraction (EAE)
3.1.4. Pulse Electric Field-Assisted Extraction (PEF)
3.1.5. Moderate Pressure Application
Supercritical-Assisted Extraction (SFE)
3.1.6. High-Pressure Application
High Hydrostatic Pressure-Assisted Extraction (HHPAE)
3.2. Combination of Novel Stategies
4. Nanoencapsulation of Bioactive Compounds
4.1. Encapsulating Carriers for Bioactive Compounds
4.1.1. Polymeric Nano-Carriers
4.1.2. Lipid-Based Nano-Carriers
4.1.3. Hybrid Nano-Carriers
4.2. Nanoencapsulation Techniques for Encapsulation of Bioactive Compounds
4.2.1. Electrospinning
4.2.2. Electrospraying
4.2.3. Nano-Spray Dryer
4.2.4. Micro-/Nano-Fluidics
4.2.5. High-Pressure Homogenization
4.2.6. Ultrasonication
4.2.7. Supercritical-Based Technologies
4.2.8. Polymerization
4.2.9. Coacervation or Ionic Gelation
5. Physicochemical Properties of Encapsulated Bioactive Compounds
5.1. Particle Size
5.2. Stability of Encapsulated Bioactive Compound
5.3. Encapsulation Efficiency and Loading Capacity
5.4. Control Release
6. Application of Nanoencapsulation in Food Industries
7. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
Entry Link on the Encyclopaedia Platform
References
- Talmaciu, A.I.; Ravber, M.; Volf, I.; Knez, Z.; Popa, V.I. Isolation of bioactive compounds from spruce bark waste using sub- and supercritical fluids. J. Supercrit. Fluids 2016, 117, 243–251. [Google Scholar] [CrossRef]
- Perinelli, D.R.; Palmieri, G.F.; Cespi, M.; Bonacucina, G. Encapsulation of flavours and fragrances into polymeric capsules and cyclodextrins inclusion complexes: An update. Molecules 2020, 25, 5878. [Google Scholar] [CrossRef]
- Barbosa, R.F.S.; de Souza, A.G.; Rangari, V.; dos Santos Rosa, D. The influence of PBAT content in the nano-capsules preparation and its effect in essential oils release. Food Chem. 2021, 344, 128611. [Google Scholar] [CrossRef]
- Gupta, S.; Khan, S.; Muzafar, M.; Kushwaha, M.; Yadav, A.K.; Gupta, A.P. 6-Encapsulation: Entrapping essential oil/flavors/aromas in food. Encapsulations 2016, 2, 229–268. [Google Scholar] [CrossRef]
- Coelho, S.C.; Estevinho, B.N.; Rocha, F. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and Electrospraying—A review. Food Chem. 2020, 339, 127850. [Google Scholar] [CrossRef]
- Vinatoru, M. An overview of the ultrasonically assisted extraction of bioactiveprinciples from herbs. Ultrason. Sonochem. 2001, 8, 303–313. [Google Scholar] [CrossRef]
- Paulsen, B.S. Highlights through the history of plant medicine. In Proceedings of the Symposium Held at the Norwegian Academy of Science and Letters, Oslo, Norway, 13–14 November 2010; Available online: C:/Users/shaba.noore/Downloads/31110_Bioactive_compounds_in_plants%20(1).pdf (accessed on 11 June 2021).
- Croteau, R.; Kutchan, T.M.; Lewis, N.G. Natural products (secondary metabolites). In Biochemistry and Molecular Biology of Plants; Buchanan, B., Gruissem, W., Jones, R., Eds.; American Society of Plant Physiologists: Rockville, MD, USA, 2000; pp. 1250–1318. [Google Scholar]
- Wink, M. Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 2003, 64, 3–19. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.-G.; Meullemiestre, A.; Fabiano-Tixier, A.-S.; Abert-Vian, M. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Kovačević, D.B.; Maras, M.; Barba, F.J.; Granato, D.; Roohinejad, S.; Mallikarjunan, K.; Montesano, D.; Lorenzo, J.M.; Putnik, P. Innovative technologies for the recovery of phytochemicals from stevia rebaudiana bertoni leaves: A review. Food Chem. 2018, 268, 513–521. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Enginr. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Chemat, F.; Huma, Z.-e.; Khan, M.K. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrason. Sonochem. 2011, 18, 813–835. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A clean, green extraction technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Rostagno, M.A.; Prado, J.M. Natural Product Extraction: Principles and Applications; The Royal Society of Chemistry’s: London, UK, 2013. [Google Scholar]
- Alexandru, L.; Cravotto, G.; Giordana, L.; Binello, A.; Chemat, F. Ultrasound-assisted extraction of clove buds using batch-and flow-reactors: A comparative study on a pilot scale. Innov. Food Sci. Emerg. Technol. 2013, 20, 167–172. [Google Scholar] [CrossRef]
- Wen, C.; Zhang, J.; Zhang, H.; Dzah, C.; Zandile, M.; Duan, Y.; Ma, H.; Luo, X. Advances in ultrasound assisted extraction of bioactive compounds from cash crops—A review. Ultrason. Sonochem. 2018, 48, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Capelo-Martínez, J. (Ed.) Ultrasound in Chemistry: Analytical Applications; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Marić, M.; Grassino, A.N.; Zhu, Z.; Barba, F.J.; Brnčić, M.; Brnčić, S.R. An overview of the traditional and innovative approaches for pectin extraction from plant food wastes and by-products: Ultrasound-, microwaves-, and enzyme-assisted extraction. Trends Food Sci. Technol. 2018, 76, 28–37. [Google Scholar] [CrossRef]
- Shirsath, S.; Sonawane, S.; Gogate, P. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. Process. Intensif. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Rastogi, N.K. Opportunities and challenges in application of ultrasound in food processing. Crit. Rev. Food Sci. Nutr. 2012, 51, 705–722. [Google Scholar] [CrossRef] [PubMed]
- Sharayei, P.; Azarpazhooh, E.; Zomorodi, S.; Ramaswamy, H.S. Ultrasound assisted extraction of bioactive compounds from pomegranate (Punica granatum L.) peel. LWT 2019, 101, 342–350. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Saputro, I.E.; Carrera, C.A.; Palma, M. Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chem. 2019, 288, 221–227. [Google Scholar] [CrossRef]
- Song, J.; Yang, Q.; Huang, W.; Xiao, Y.; Li, D.; Liu, C. Optimization of translutein from pumpkin (cucurbita moschata) peel by ultrasound-assisted extraction. Food Bioprod. Process. 2018, 107, 104–112. [Google Scholar] [CrossRef]
- Pan, Z.; Qu, W.; Ma, H.; Atungulu, G.G.; McHugh, T.H. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 2011, 18, 1249–1257. [Google Scholar] [CrossRef] [PubMed]
- Assami, K.; Pingret, D.; Chemat, S.; Meklati, B.Y.; Chemat, F. Ultrasound induced intensification and selective extraction of essential oil from Carum carvi L. Seeds. Chem. Enginr Process. Process. Intensif. 2012, 62, 99–105. [Google Scholar] [CrossRef]
- Jacotet-navarro, M.; Rombaut, N.; Fabiano-Tixier, A.-S.; Danguien, M.; Bily, A.; Chemat, F. Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary. Ultrason. Sonochem. 2015, 27, 102–109. [Google Scholar] [CrossRef]
- Sereshti, H.; Heidari, R.; Samadi, S. Determination of volatile components of saffron by optimised ultrasound-assisted extraction in tandem with dispersive liquid–liquid microextraction followed by gas chromatography–mass spectrometry. Food Chem. 2014, 143, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Brunton, N.P.; Patras, A.; Tiwari, B.; O’Donnell, C.P.; Martin-Diana, A.B.; Barry-Ryan, C. Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) Using response surface methodology. Ultrason. Sonochem. 2012, 19, 582–590. [Google Scholar] [CrossRef]
- Kaderides, K.; Papaoikonomou, L.; Serafim, M.; Goula, A.M. Microwave-assisted extraction of phenolics from pomegranate peels: Optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. Process. Intensif. 2019, 137, 1–11. [Google Scholar] [CrossRef]
- Pettinato, M.; Casazza, A.A.; Perego, P. The role of heating step in microwave-assisted extraction of polyphenols from spent coffee grounds. Food Bioprod. Process. 2019, 114, 227–234. [Google Scholar] [CrossRef]
- Pimentel-Moral, S.; Borrás-Linares, I.; Lozano-Sánchez, J.; Arráez-Román, D.; Martínez-Férez, A.; Segura-Carretero, A. Microwave-assisted extraction for hibiscus sabdariffa bioactive compounds. J. Pharm. Biomed. Anal. 2018, 156, 313–322. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Biosci. 2019, 28, 66–73. [Google Scholar] [CrossRef]
- Vinatoru, M.; Mason, T.J.; Calinescu, I. Ultrasonically assisted extraction (uae) and microwave assisted extraction (mae) of functional compounds from plant materials. TrAC Trends Anal. Chem. 2017, 97, 159–178. [Google Scholar] [CrossRef]
- Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave assisted extraction—An innovative and promising extraction tool for medicinal plant research. Pharmacogn. Rev. 2007, 1, 7–18. [Google Scholar]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F.W.-L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. 2011, 1218, 6213–6225. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Weller, C.L. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Ajila, C.M.; Brar, S.K.; Verna, M.; Tyagi, R.D.; Valero, J.R. Solid-state fermentation of apple pomace using phanerocheate chrysosporium—Liberation and extraction of phenolic antioxidants. Food Chem. 2011, 126, 1071–1080. [Google Scholar] [CrossRef]
- Shu, Y.Y.; Ko, M.Y.; Chang, Y.S. Microwave-assisted extraction of ginsenosides from ginseng root. Microchem. J. 2003, 74, 131–139. [Google Scholar] [CrossRef]
- Dhobi, M.; Mandal, V.; Hemalatha, S. Optimization of microwave assisted extraction of bioactive flavonolignan-silybinin. J. Chem. Metrol. 2009, 3, 13. [Google Scholar]
- Asghari, J.; Ondruschka, B.; Mazaheritehrani, M. Extraction of bioactive chemical compounds from the medicinal asian plants by microwave irradiation. J. Med. Plants Res. 2011, 5, 495–506. [Google Scholar]
- Puri, M.; Sharma, D.; Barrow, C.J. Enzyme-assisted extraction of bioactives from plants. Trends Biotechnol. 2012, 30, 37–44. [Google Scholar] [CrossRef]
- Laroze, L.; Soto, C.; Zúñiga, M.E. Phenolic antioxidants extraction from raspberry wastes assisted by-enzymes. Electron. J. Biotechnol. 2010, 13, 11–12. [Google Scholar] [CrossRef]
- Gómez-García, R.; Martínez-Avila, G.C.G.; Aguilar, C.N. Enzyme-assisted extraction of antioxidative phenolics from grape (Vitis vinifera L.) Residues. Biotechnology 2012, 2, 297–300. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, S.; He, J.; Thirumdas, R.; Montesano, D.; Barba, F.J. Enzyme-assisted extraction of polyphenol from edible lotus (nelumbo nucifera) rhizome knot: Ultra-filtration performance and hplc-ms2 profile. Food Res. Int. 2018, 111, 291–298. [Google Scholar] [CrossRef]
- Nadar, S.S.; Rao, P.; Rathod, V.K. Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review. Food Res. Inter. 2018, 108, 309–330. [Google Scholar] [CrossRef] [PubMed]
- de Moura, J.M.L.N.; Campbell, K.; Mahfuz, A.; Jung, S.; Glatz, C.E.; Johnson, L. Enzyme-assisted aqueous extraction of oil and protein from soybeans and cream de-emulsification. J. Am. Oil Chem. Soc. 2008, 85, 985–995. [Google Scholar] [CrossRef]
- Dominguez, H.; Nunez, M.; Lema, J.M. Enzyme-assisted hexane extraction of soya bean oil. Food Chem. 1995, 54, 223–231. [Google Scholar] [CrossRef]
- Marathe, S.J.; Jadhav, S.B.; Bankar, S.B.; Dubey, K.K.; Singhal, R.S. Improvements in the extraction of bioactive compounds by enzymes. Curr. Opin. Food Sci. 2019, 25, 62–72. [Google Scholar] [CrossRef]
- Choudhari, S.M.; Ananthanarayan, L. Enzyme aided extraction of lycopene from tomato tissues. Food Chem. 2007, 102, 77–81. [Google Scholar] [CrossRef]
- Passos, C.P.; Yilmaz, S.; Silva, C.M.; Coimbra, M.A. Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chem. 2009, 115, 48–53. [Google Scholar] [CrossRef]
- Haider, W.; Sultana, B.; Mushtaq, M.; Bhatti, I.A. Multi-response optimization of enzyme-assisted maceration to enhance the yield and antioxidant activity of cassia fistula pods extracts. J. Food Meas. Charact. 2018, 12, 2685–2694. [Google Scholar] [CrossRef]
- Oh, M.J.; Lee, J.; Seo, S.; Yoon, S.; Seo, M.; Park, S.; Kim, H.-S.; Ha, D.-W.; Lee, S.; Jo, Y.J. Vortex pinning in artificially layered ba(fe,co)2as2 film. Cryogenics 2018, 92, 1–4. [Google Scholar] [CrossRef]
- Eduardo, P.; Iñigo, M.d.M. Olive oil pilot-production assisted by pulsed electric field: Impact on extraction yield, chemical parameters and sensory properties. Food Chem. 2015, 167, 497–502. [Google Scholar]
- Rastogi, N.K. Application of high-intensity pulsed electrical fields in food processing. Food Rev. Int. 2003, 19, 229–251. [Google Scholar] [CrossRef]
- Knoor, D.; Geulen, M.; Grahl, T.; Sitzmann, W. Food application of high electric field pulses. Trends Food Sci. Technol. 1994, 5, 71–75. [Google Scholar] [CrossRef]
- Barbosa, H.M.A.; de Melo, M.M.R.; Coimbra, M.A.; Passos, C.P.; Silva, C.M. Optimization of the supercritical fluid coextraction of oil and diterpenes from spent coffee grounds using experimental design and response surface methodology. J. Supercrit. Fluids 2014, 85, 165–172. [Google Scholar] [CrossRef]
- Brunner, G. Supercritical gases as solvents: Phase equilibria. In Gas Extraction; Springer: Berlin/Heidelberg, Germany, 1994; pp. 59–146. [Google Scholar]
- Jesus, S.P.; Calheiros, M.N.; Hense, H.; Meireles, M.A.A. A simplified model to describe the kinetic behavior of supercritical fluid extraction from a rice bran oil byproduct. Food Public Health 2013, 3, 215–222. [Google Scholar] [CrossRef]
- Mezzomo, N.; Martínez, J.; Ferreira, S.R. Supercritical fluid extraction of peach (prunus persica) almond oil: Kinetics, mathematical modeling and scale-up. J. Supercrit. Fluids 2009, 51, 10–16. [Google Scholar] [CrossRef]
- Minozzo, M.; Popiolski, A.; Prá, V.D.; Treichel, H.; Cansian, R.L.; Oliveira, J.V.; Mossi, A.; Mazutti, M.A. Modeling of the overal kinetic extraction from maytenus aquifolia using compressed CO2, braz. J. Chem. Eng. 2012, 29, 835–843. [Google Scholar]
- Rui da Silva, R.P.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef]
- Mesomo, M.C.; Corazza, M.L.; Ndiaye, P.; Santa, O.R.D.; Cardozo, L.; Scheer, A.D.P. Supercritical CO2 extracts and essential oil of ginger (zingiber officinale r.): Chemical composition and antibacterial activity. J. Supercrit. Fluids 2013, 80, 44–49. [Google Scholar] [CrossRef]
- Lindy, J. Supercritical Fluid Extraction (Technology, Applications and Limitations); Nova Science: New York, NY, USA, 2014. [Google Scholar]
- Sovilj, M.N.; Nikolovski, B.G.; Spasojević, M.Đ. Critical review of supercritical fluid extraction of selected spice plant materials. Maced. J. Chem. Chem. Eng. 2011, 30, 197–220. [Google Scholar] [CrossRef]
- Joo, C.G.; Lee, K.H.; Park, C.; Joo, I.W.; Choe, T.B.; Lee, B.C. Correlation of increased antioxidation with the phenolic compound and amino acids contents of camellia sinensis leaf extracts following ultra-high pressure extraction. J. Ind. Eng. Chem 2012, 18, 623–628. [Google Scholar] [CrossRef]
- Xi, J.; Wang, B.S. Optimization of ultrahigh-pressure extraction of polyphenolic antioxidants from green tea by response surface methodology. Food Bioprocess Technol. 2013, 6, 2538–2546. [Google Scholar] [CrossRef]
- Lee, H.S.; Lee, H.J.; Yu, H.J.; Ju, D.W.; Kim, Y.; Kim, C.-T.; Kim, C.-J.; Cho, Y.-J.; Kim, N.; Choi, S.-Y.; et al. A comparison between high hydrostatic pressure extraction and heat extraction of ginsenosides from ginseng (panax ginseng ca meyer). J. Sci. Food Agric. 2011, 8, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.T.; Wang, Z.Y.; Cheng, C.H.; Wang, T.S.; Ni, Z.; Lin, J.M. Optimization for ultra-high pressure extraction of scutellaria barbata by central composite designresponse surface methodology. Afr. J. Biotechnol. 2011, 10, 14637–14643. [Google Scholar]
- Chen, R.; Meng, F.; Zhang, S.; Liu, Z. Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. Sep. Purif. Technol. 2009, 66, 340–346. [Google Scholar] [CrossRef]
- Xi, J.; Shen, D.J.; Ye, L.; Rui, Z. Micromechanism of ultrahigh pressure extraction of active ingredients from green tea leaves. Food Control. 2011, 22, 1473–1476. [Google Scholar]
- Knorr, D. Process assessment of high pressure processing of foods: An overview. In Processing Foods: Quality Optimisation and Process Assessment; Oliveira, F.A.R., Oliveira Jorge, C., Eds.; CRC Press: Boca Raton, FL, USA, 1999; pp. 249–267. [Google Scholar]
- Sanchez-Moreno, C.; Plaza, L. Effect of combined treatments of high-pressure and natural additives on carotenoid extractability and antioxidant activity of tomato puree (Lycopersicum esculentum mill.). Eur. Food Res. Technol. 2004, 219, 151–160. [Google Scholar] [CrossRef]
- Prasad, K.N.; Yang, B.; Zhao, M.; Wei, X.; Jiang, Y.; Chen, F. High pressure extraction of corilagin from longan (Dimocarpus longan Lour.) Fruit Pericarp. Sep. Purif Technol. 2009, 70, 41–45. [Google Scholar] [CrossRef]
- Zhang, S.T.; Wang, Z.Y.; Wang, T.S.; Zheng, N. Optimization of central composite design-response surface methodology in ultra-high pressure extraction of scutellaria baicalensis. J. Medicina. Plant. Res. 2012, 6, 373–378. [Google Scholar]
- Liu, F.; Wang, D.; Liu, W.; Wang, X.; Bai, A.; Huang, L. Ionic liquid-based ultrahigh pressure extraction of five tanshinones from salvia miltiorrhiza bunge. Sep. Purif. Technol. 2013, 110, 86–92. [Google Scholar] [CrossRef]
- Xi, J.; Zhao, S.; Lu, B.; Zhang, R.; Li, Y.; Shen, D.; Zhou, G. Separation of major catechins from green tea by ultrahigh pressure extraction. Int. J. Pharmaceut. 2010, 386, 229–231. [Google Scholar]
- Corrales, M.; García, A.F.; Butz, P.; Tauscher, B. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng. 2009, 90, 415–421. [Google Scholar] [CrossRef]
- Rastogi, N.K.; Raghavarao, K.S.M.S.; Balasubramaniam, V.; Niranjan, K.; Knorr, D. Opportunities and challenges in high pressure processing of foods. Crit. Rev. Food Sci. Nutri. 2007, 47, 69–112. [Google Scholar] [CrossRef]
- Khan, S.A.; Aslam, R.; Makroo, H.A. High pressure extraction and its application in the extraction of bioactive coumounds: A review. J. Food Process. Engr. 2018, 42, e12896. [Google Scholar] [CrossRef]
- Zhang, S.; Xi, J.; Wang, C. High hydrostatic pressure extraction of flavonoids from propolis. J. Chem. Technol. Biot. 2005, 80, 50–54. [Google Scholar]
- Le Noble, W.J. Organic High Pressure Chemistry; Elsevier: Amsterdam, The Netherlands, 1988; Volume 37, 489p. [Google Scholar]
- Richard, J.S. High Pressure Phase Behaviour of Multicomponent Fluid Mixtures; Elsevier: Amsterdam, The Netherlands, 1992. [Google Scholar]
- Ganeva, V.; Galutzov, B. Electropulsation as an alternative method for protein extraction from yeast. Fems. Microbiol. Lett. 1999, 174, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Cui, Y.; Ding, H. Optimization of betulin extraction process from inonotus obliquus with pulsed electric fields. Innov. Food Sci. Emerg. 2008, 9, 306–310. [Google Scholar] [CrossRef]
- Luo, X.; Bai, R.; Zhen, D.; Yang, Z.; Huang, D.; Mao, H.; Li, X.; Zou, H.; Xiang, Y.; Liu, K.; et al. Response surface optimization of the enzyme-based ultrasound-assisted extraction of acorn tannins and their corrosion inhibition properties. Ind. Crop. Prod. 2019, 129, 405–413. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Q.; Gu, H.; Yang, L. An approach for extraction of kernel oil from pinus pumila using homogenate-circulating ultrasound in combination with an aqueous enzymatic process and evaluation of its antioxidant activity. J. Chromatogr. A 2016, 1471, 68–79. [Google Scholar] [CrossRef]
- Amiri-rigi, A.; Abbasi, S.; Scanlon, M.G. Enhanced lycopene extraction from tomato industrial waste using microemulsion technique: Optimization of enzymatic and ultrasound pre-treatments. Innov. Food Sci. Emerg. Technol. 2016, 35, 160–167. [Google Scholar] [CrossRef]
- Ladole, M.R.; Nair, R.R.; Bhutada, Y.D.; Amritkar, V.D.; Pandit, A.B. Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. Ultrason. Sonochem. 2018, 48, 453–462. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Qi, W.; Xie, J.; Cui, X. Saponins extracted by ultrasound from zizyphus jujuba mil var. Spinosa leaves exert resistance to oxidative damage in caenorhabditis elegans. Food Meas. 2021, 15, 541–554. [Google Scholar] [CrossRef]
- Navarro Del Hierro, J.; Herrera, T.; García-Risco, M.R.; Fornari, T.; Reglero, G.; Martin, D. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: Quinoa, lentil, fenugreek, soybean and lupin. Food Res. Interna. 2018, 109, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Ibarz, A.; Pagan, J. Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (medicago sativa) and its bioaccessibility using the response surface methodology. Food Chem. 2020, 309, 125786. [Google Scholar] [CrossRef]
- Hu, T.; Guo, Y.-Y.; Zhou, Q.-F.; Zhong, X.-K.; Zhu, L.; Piao, J.-H.; Chen, J.; Jiang, J.-G. Optimization of ultrasonic-assisted extraction of total saponins from Eclipta prostrasta L. using response surface methodology. J. Food Sci. 2012, 77, 975–982. [Google Scholar] [CrossRef] [PubMed]
- Nafiunisa, A.; Aryanti, N.; Wardhani, D.H. Kinetic study of saponin extraction from sapindus rarak dc by ultrasound-assisted extraction methods. Bull. Chem. React. Eng. Catal. 2019, 14, 468–477. [Google Scholar] [CrossRef]
- Rohilla, S.; Mahanta, C.L. Optimization of extraction conditions for ultrasound-assisted extraction of phenolic compounds from tamarillo fruit (Solanum betaceum) using response surface methodology. Food Meas. 2021, 15, 1763–1773. [Google Scholar] [CrossRef]
- Ali, M.C.; Chen, J.; Zhang, H.; Li, Z.; Zhao, L.; Qiu, H. Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 2019, 203, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Nachiappan, G.; Mishra, H.N. Ultrasound-assisted extraction of flavonoids and phenolic compounds from Ocimum tenuiflorum leaves. Food Sci. Biotechnol. 2015, 24, 1951–1958. [Google Scholar] [CrossRef]
- Tomšik, A.; Pavlić, B.; Vladić, J.; Ramić, M.; Brindza, J.; Vidović, S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem. 2016, 29, 502–511. [Google Scholar] [CrossRef]
- Altemimi, A.; Watson, D.G.; Choudhary, R.; Dasari, M.R.; Lightfoot, D. Ultrasound assisted extraction of phenolic compounds from peaches and pumpkins. PLoS ONE 2016, 11, e0148758. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Chen, G.; Yue, W.; Liang, Q.; Wu, Q. Optimisation of ultrasound assisted extraction of phenolic compounds from Sparganii rhizoma with response surface methodology. Ultrason. Sonochem. 2013, 20, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Qu, J.; Luo, S.; Feng, S.; Li, T.; Yuan, M.; Huang, Y.; Liao, J.; Yang, R.; Ding, C. Optimization of ultrasound-assisted extraction of flavonoids from olive (Olea europaea) leaves, and evaluation of their antioxidant and anticancer activities. Molecules 2018, 23, 2513. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.; Conidi, C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Ramli, N.H.; Yusup, S.; Quitain, A.T.; Johari, K.; Bin Kueh, B.W. Optimization of saponin extracts using microwave-assisted extraction as a sustainable biopesticide to reduce pomacea canaliculata population in paddy cultivation. Sustain. Chem. Pharm. 2019, 11, 23–35. [Google Scholar] [CrossRef]
- Gao, W.; Chen, F.; Li, H.; Wang, X.; Meng, Q. Microwave-assisted extraction of total saponins from Physalis alkekengi L. var. Franchetii (mast.) Makino and their in vitro anti-inflammatory activity. Food Meas. 2019, 13, 2921–2934. [Google Scholar] [CrossRef]
- Dahmoune, B.; Houma-Bachari, F. Microwave assisted extraction of bioactive saponins from the starfish echinaster sepositus: Optimization by response surface methodology and comparison with ultrasound and conventional solvent extraction. Chem. Eng. Process. Process. Intensif. 2021, 163, 108359. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Microwave-assisted extraction as an advanced technique for optimization of saponin yield and antioxidant potential from phyllanthus amarus. Sep. Sci. Technol. 2017, 52, 1–11. [Google Scholar] [CrossRef]
- Tian, Y.; Zhao, H. Comparison of different extraction techniques and optimization of the microwave-assisted extraction of saponins from aralia elata (miq.) Seem fruits and rachises. Chem. Pap. 2020, 74, 3077–3087. [Google Scholar] [CrossRef]
- Le, A.V.; Parks, S.E.; Nguyen, M.H.; Roach, P.D. Optimisation of the microwave-assisted ethanol extraction of saponins from gac (momordica cochinchinensis spreng.) Seeds. Medicines 2018, 5, 70. [Google Scholar] [CrossRef]
- Chen, Y.; Xie, M.-Y.; Gong, X.-F. Microwave-assisted extraction used for the isolation of total triterpenoid saponins from ganoderma atrum. J. Food Engr. 2007, 81, 162–170. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Lee, G.-D.; Bélanger, J.M.R.; Paré, J.R.J. Effect of ethanol concentration on the efficiency of extraction of ginseng saponins when using a microwave-assisted process (maptm). Int. J. Food Sci. Technol. 2003, 38, 615–622. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Le, M.D.; Nguyen, T.T.T.; Khong, T.T.; Nguyen, H.N.; Huynh, B.N.D.; Tran, H.T.M.; Trang, T.S. Microwave-assisted extraction for optimizing saponin yield and antioxidant capacity from cacao pod husk (Theobroma cacao L.). J. Food Process. Preserv. 2021, 45, e15134. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Vuong, Q.V.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Microwave-assisted extraction for saponins and antioxidant capacity from xao tam phan (paramignya trimera) root. J. Food Process. Preserv. 2016, 41, e12851. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, X.; Liu, C.; Sun, Y.; Lin, Z.; Liu, H. Extraction characteristics and optimal parameters of anthocyanin from blueberry powder under microwave-assisted extraction conditions. Sep. Purif. Technol. 2013, 104, 17–25. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC–MS. Innov. Food Sci. Emerg. Technol. 2010, 11, 470–476. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, Y.; Su, P.; Guo, Z. Microwave-assisted extraction of rutin and quercetin from the stalks of Euonymus alatus (Thunb.) sieb. Phytochem. Anal. 2008, 20, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Yen, N.T.; Quoc, L.P. Chemical composition and cellulase-assisted extraction of total saponins from gomphrena celosioides mart. Biotechnologia 2020, 101, 361–367. [Google Scholar] [CrossRef]
- Huy, T.B.; Phuong, N.T.L.; Nga, B.K.; Oanh, H.N.; Hieu, N.H. Enzyme-assisted extraction of triterpenoid saponins from pseuderanthemum palatiferum (nees) radlk. Dry leaf powder and bioactivities examination of extracts. Chem. Sel. 2019, 4, 8129–8134. [Google Scholar] [CrossRef]
- Tomaz, I.; Maslov, L.; Stupić, D.; Preiner, D.; Ašperger, D.; Kontić, J.K. Recovery of flavonoids from grape skins by enzyme-assisted extraction. Sep. Sci. Technol. 2016, 51, 255–268. [Google Scholar] [CrossRef]
- Boulila, A.; Hassen, I.; Haouari, L.; Mejri, F.; Ben Amor, I.; Casabianca, H.; Hosni, K. Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Ind. Crop. Prod. 2015, 74, 485–493. [Google Scholar] [CrossRef]
- Abhari, H.; Rad, A.H.; Abhari, A.; Karajian, H. Extracting of saponin from acanthophyllum roots using pulsed electric field (pef) pretreatment and comparing it with thermal method and studying of its antioxidant and foaming properties. J. Biochem. Technol. 2018, 2, 166–176. [Google Scholar]
- Ji, H.; Zhang, L.; Li, J.; Yang, M.; Liu, X. Optimization of ultrahigh pressure extraction of momordicosides from bitter melon. Int. J. Food Eng. 2010, 6. [Google Scholar] [CrossRef]
- Wang, Q.-Y.; Dong, X. Vesicle based ultrasonic-assisted extraction of saponins in panax notoginseng. Food Chem. 2020, 303, 125394. [Google Scholar] [CrossRef]
- Kai, T.; Jie, Y.; Xin, H. A technological research on synergetic extraction of Momordica charantia L. Saponin using microwave-surfactant. Appl. Mech. Mater. 2014, 563, 384–390. [Google Scholar] [CrossRef]
- Lu, C.-W.; Yin, Y.-G.; Yu, Q. Optimized extraction of ginsenosides from ginseng root (panax ginsengc.a. meyer) by pulsed electric field combined with commercial enzyme. J. Food Process. Preserva. 2016, 41, e12766. [Google Scholar] [CrossRef]
- Tzima, K.; Brunton, N.P.; Lyng, J.G.; Frontuto, D.; Rai, D.K. The effect of pulsed electric field as a pre-treatment step in ultrasound assisted extraction of phenolic compounds from fresh rosemary and thyme by-products. Innov. Food Sci. Emerg. Technol. 2021, 69, 102644. [Google Scholar] [CrossRef]
- Sunwoo, H.H.; Gujral, N.; Huebl, A.C.; Kim, C.-T. Application of high hydrostatic pressure and enzymatic hydrolysis for the extraction of ginsenosides from fresh ginseng root (panax ginseng c.a. myer). Food Bioprocess. Techn. 2013, 7, 1246–1254. [Google Scholar] [CrossRef]
- Machado, A.P.D.F.; Reátegui, J.L.P.; Barbero, G.F.; Martínez, J. Pressurized liquid extraction of bioactive compounds from blackberry (Rubus fruticosus L.) residues: A comparison with methods. Food Res. Int. 2015, 77, 675–683. [Google Scholar] [CrossRef]
- Kiss, E. Nano-technology in food systems: A review. Acta Aliment. 2020, 49, 460–474. [Google Scholar] [CrossRef]
- Shimoni, E. Nano-technology for foods: Delivery systems. Glob. Issues Food Sci. Technol. 2009, 411–424. [Google Scholar] [CrossRef]
- Liu, T.; Liu, L.; Gong, X.; Chi, F.; Ma, Z. Fabrication and comparison of active films from chitosan incorporating different spice extracts for shelf life extension of refrigerated pork. LWT 2021, 135, 110181. [Google Scholar] [CrossRef]
- Katouzian, I.; Jafari, S.M. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamin. Trends Food Sci. Technol. 2016, 53, 34–48. [Google Scholar] [CrossRef]
- Ravi, H.; Kurrey, N.; Manabe, Y.; Sugawara, T.; Baskaran, V. Polymeric chitosan-glycolipid nano-carriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (caco-2 cells). Mater. Sci. Engr. 2018, 91, 785–795. [Google Scholar] [CrossRef]
- Gagliardi, A.; Paolino, D.; Costa, N.; Fresta, M.; Cosco, D. Zein- vs plga-based nano-particles containing rutin: A comparative investigation. Mater. Sci. Eng. C 2020, 118, 111538. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.R.; Xavier, M.; Amado, I.R.; Gonçalves, C.; Castro, P.M.; Tonon, R.V.; Cabral, L.M.; Pastrana, L.; Pintado, M.E. Polymeric nano-particles as oral delivery systems for a grape pomace extract towards the improvement of biological activities. Mater. Sci. Eng. C 2021, 119, 111551. [Google Scholar] [CrossRef] [PubMed]
- Zare, M.; Norouzi Roshan, Z.; Assadpour, E.; Jafari, S.M. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Crit. Rev. Food Sci. Nutr. 2020, 61, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Seyedabadi, M.M.; Rostami, H.; Jafari, S.M.; Fathi, M. Development and characterization of chitosan-coated nano-liposomes for encapsulation of caffeine. Food Biosci. 2021, 40, 100857. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.M. Nano-encapsulation: Techniques and developments for food applications. Nano Mater. Food Appl. 2019, 35–61. [Google Scholar] [CrossRef]
- Chaudhari, A.K.; Singh, V.K.; Das, S.; Dubey, N.K. Nano-encapsulation of essential oils and their bioactive constituents: A novel strategy to control mycotoxin contamination in food system. Food Chem. Toxicol. 2021, 149, 112019. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elhakeem, E.; El-Nabarawi, M.; Shamma, R. Lipidbased nano-formulation platform for eplerenone oral delivery as a potential treatment of chronic central serous chorioretinopathy: In-vitro optimization and ex-vivo assessment. Drug Deliv. 2021, 28, 642–654. [Google Scholar] [CrossRef]
- Bhushani, J.A.; Kurrey, N.K.; Anandharamakrishnan, C. Nano-encapsulation of green tea catechins by electrospraying technique and its effect on controlled release and in-vitro permeability. J. Food Engr. 2017, 199, 82–92. [Google Scholar] [CrossRef]
- Ghorani, B.; Tucker, N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nano-technology. Food Hydrocoll. 2015, 51, 227–240. [Google Scholar] [CrossRef]
- Torres-Giner, S.; Perez-Masia, R.; Lagaron, J.M. A review on electrospun polymer nano-structures as advanced bioactive platforms. Polym. Engr. Sci. 2016, 56, 500–527. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H. Formation and stability of core-shell nano-fibers by electrospinning of gel-like corn oil-in-water emulsions stabilized by gelatin. J. Agri. Food Chem. 2018, 66, 11681–11690. [Google Scholar] [CrossRef]
- Vyslouzilova, L.; Buzgo, M.; Pokorný, P.; Chvojka, J.; Míčková, A.; Rampichová, M.; Kula, J.; Pejchar, K.; Bilek, M.; Lukáš, D.; et al. Needleless coaxial electrospinning: A novel approach to mass production of coaxial nano-fibers. Int. J. Pharm. 2017, 516, 293–300. [Google Scholar] [CrossRef]
- Kutzli, I.; Gibis, M. Formation of whey protein isolate (WPI)-maltodextrin conjugates in fibers produced by needleless electrospinning. J. Agric. Food Chem. 2018, 66, 10283–10291. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Lim, L.-T. Pullulan-alginate fibers produced using free surface electrospinning. Int. J. Biol. Macromol. 2018, 112, 809–817. [Google Scholar] [CrossRef]
- Moreira, J.B.; Lim, L.-T. Microalgae protein heating in acid/basic solution for nano-fibers production by free surface electrospinning. J. Food Eng. 2018, 230, 49–54. [Google Scholar] [CrossRef]
- Poornima, B.; Korrapati, P.S. Fabrication of chitosan-polycaprolactone composite nano-fibrous scaffold for simultaneous delivery of ferulic acid and resveratrol. Carbohydr. Polym. 2017, 157, 1741–1749. [Google Scholar] [CrossRef] [PubMed]
- Leena, M.; Yoha, K.S. Edible coating with resveratrol loaded electrospun zein nano-fibers with enhanced bioaccessibility. Food Biosci. 2020, 36, 100669. [Google Scholar] [CrossRef]
- Jayan, H.; Maria Leena, M.; Sundari, S.S.; Moses, J.; Anandharamakrishnan, C. Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. J. Funct. Foods 2019, 57, 417–424. [Google Scholar] [CrossRef]
- Maa, Y.-F.; Nguyen, P.-A.; Sit, K.; Hsu, C.C. Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation. Biotech. Bioengr. 2000, 60, 301–309. [Google Scholar] [CrossRef]
- Adel, I.M.; ElMeligy, M.F.; Abdelrahim, M.E.; Maged, A.; Abdelkhalek, A.A.; Abdelmoteleb, A.M.; Elkasabgy, N.A. Design and characterization of spray-dried proliposomes for the pulmonary delivery of curcumin. Int. J. Nano Med. 2021, 16, 2667–2687. [Google Scholar] [CrossRef] [PubMed]
- Mozaffar, S.; Radi, M. A new approach for drying of nano-structured lipid carriers (NLC) by spray-drying and using sodium chloride as the excipient. J. Drug Deliv. Sci. Technol. 2021, 61, 102212. [Google Scholar] [CrossRef]
- Datta, S.S.; Abbaspourrad, A.; Amstad, E.; Fan, J.; Kim, S.-H.; Romanowsky, M.; Shum, H.C.; Sun, B.; Utada, A.S.; Windbergs, M.; et al. 25th anniversary article: Double emulsion templated solid microcapsules: Mechanics and controlled release. Adv. Mater. 2014, 26, 2205–2218. [Google Scholar] [CrossRef]
- Jafari, S.M.; He, Y.; Bhandari, B. Optimization of nano-emulsions production by microfluidization. Eur. Food Res. Technol. 2007, 225, 733–741. [Google Scholar] [CrossRef]
- Wang, S.; Ye, X.; Sun, Y.; Liang, J.; Yue, P.; Gao, X. Nano-complexes derived from chitosan and whey protein isolate enhance the thermal stability and slow the release of anthocyanins in simulated digestion and prepared instant coffee. Food Chem. 2021, 336, 127707. [Google Scholar] [CrossRef] [PubMed]
- Donsi, F.; Ferrari, G.; Maresca, P. High-pressure homogenization for food sanitization. Glob. Issues Food Sci. Technol. 2009, 309–352. [Google Scholar] [CrossRef]
- Georget, E.; Miller, B.; Aganovic, K.; Callanan, M.; Heinz, V.; Mathys, A. Bacterial spore inactivation by ultra-high pressure homogenization. Innov. Food Sci. Emerg. Technol. 2014, 26, 116–123. [Google Scholar] [CrossRef]
- Fernandez-Avila, C.; Trujillo, A. Ultra-high pressure homogenization improves oxidative stability and interfacial properties of soy protein isolate stabilized emulsions. Food Chem. 2016, 209, 104–113. [Google Scholar] [CrossRef]
- Lorimer, J.P.; Mason, T.J. Sonochemistry. Part 1—The physical aspects. Chem. Soc. Rev. 1987, 16, 239–274. [Google Scholar] [CrossRef]
- Bermudez-Aguirre, D.; Mobbs, T.; Barbosa-Cánovas, G.V. Ultrasound Applications in Food Processing; Springer: New York, NY, USA, 2011; pp. 65–105. [Google Scholar] [CrossRef]
- Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S.M. Application of different nano-carriers for encapsulation of curcumin. Crit. Rev. Food Sci. Nutr. 2019, 59, 1–77. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, A.; Fathi, M.; Jafari, S.M. Nano-encapsulation of hydrophobic and low- soluble food bioactive compounds within different nano-carriers. Food Hydrocoll. 2019, 88, 146–162. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Falsafi, S.R.; Jafari, S.M. Nano-encapsulation of carotenoids within lipid-based nano-carriers. J. Control. Release 2019, 298, 38–67. [Google Scholar] [CrossRef]
- Thote, A.J.; Gupta, R.B. Formation of nano-particles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Reverchon, E.; Adami, R. Nano-materials and supercritical fluids. J. Supercrit. Fluids 2006, 37, 1–22. [Google Scholar] [CrossRef]
- Lee, L.Y.; Wang, C.H.; Smith, K.A. Supercritical antisolvent production of biodegradable micro- and nanoparticles for controlled delivery of paclitaxel. J. Control. Release 2008, 125, 96–106. [Google Scholar] [CrossRef]
- Lee, L.Y.; Smith, K.A.; Wang, C.-H. Fabrication of controlled release devices for anticancer agents using supercritical antisolvent method. In Proceedings of the AIChE Annual Meeting, Cincinnati, OH, USA, 30 October–4 November 2005. [Google Scholar]
- Zhang, Q.; Shen, Z.; Nagai, T. Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nano-particles after pulmonary administration to normal rats. Int. J. Pharm. 2001, 218, 75–80. [Google Scholar] [CrossRef]
- Boudad, H.; Legrand, P.; Lebas, G.; Cheron, M.; Duchêne, D.; Ponchel, G. Combined hydroxypropyl-[beta]- cyclodextrin and poly(alkylcyanoacrylate) nano-particles intended for oral administration of saquinavir. Int. J. Pharm. 2001, 218, 113–124. [Google Scholar] [CrossRef]
- Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J.L.; Alonso, M.J. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nano-particles as novel carriers for proteins and vaccines. Pharm. Res. 1997, 14, 1431–1436. [Google Scholar] [CrossRef]
- Panyam, J.; Labhasetwar, V. Biodegradable nano-particles for drug and gene delivery to cells and tissue. Adv. Drug Deliv Rev. 2003, 55, 329–347. [Google Scholar] [CrossRef]
- Desai, M.P.; Labhasetwar, V.; Walter, E.; Levy, R.J.; Amidon, G.L. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res. 1997, 14, 1568–1573. [Google Scholar] [CrossRef]
- Alexander, M.; Dalgleish, D.G. Dynamic light scattering techniques and their applications in food science. Food Biophys. 2006, 1, 2–13. [Google Scholar] [CrossRef]
- Couvreur, P.; Barratt, G.; Fattal, E.; Legrand, P.; Vauthier, C. Nano-capsule technology: A review. Crit. Rev. Ther. Drug Carrier Syst. 2002, 19, 99–134. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.P.; Labhasetwar, V.; Amidon, G.L.; Levy, R.J. Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm. Res. 1996, 13, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Comunian, T.A.; Jafari, S.M. Production of food bioactive-loaded nano-structures by micro-/nano-fluidics. Nano Encap. Food Ingr. Speci. Equip. 2019, 3, 213–250. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation efficiency of food flavours and oils during spray drying. Drying Technol. 2008, 26, 816–835. [Google Scholar] [CrossRef]
- Panyam, J.; Williams, D.; Dash, A.; Leslie-Pelecky, D.; Labhasetwar, V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nano-particles. J. Pharm. Sci. 2004, 93, 1804–1814. [Google Scholar] [CrossRef] [PubMed]
- Magenheim, B.; Levy, M.Y.; Benita, S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers—Ultrafiltration technique at low pressure. Int. J. Pharm. 1993, 94, 115–123. [Google Scholar] [CrossRef]
- Puglisi, G.; Fresta, M.; Giammona, G.; Ventura, C.A. Influence of the preparation conditions on poly(ethylcyanoacrylate) nano-capsule formation. Int. J. Pharm. 1995, 125, 283–287. [Google Scholar] [CrossRef]
- Cai, Z.-Y.; Li, X.-M.; Liang, J.-P.; Xiang, L.-P.; Wang, K.-R.; Shi, Y.-L.; Yang, R.; Shi, M.; Ye, J.-H.; Lu, J.-L.; et al. Bioavailability of tea catechins and its improvement. Molecules 2018, 23, 2346. [Google Scholar] [CrossRef] [PubMed]
- Zanin, R.C.; Smrke, S.; Kurozawa, L.E.; Yamashita, F.; Yeretzian, C. Modulation of aroma release of instant coffees through microparticles of roasted coffee oil. Food Chem. 2021, 341, 128193. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.; Rana, S.; Kumar, S. Phytotherapy with active tea constituents: A review. Environ. Chem. Lett. 2021, 19, 2031–2041. [Google Scholar] [CrossRef]
- Ahmad, M.; Mudgil, M.; Gani, A.; Hamed, F.; Masoodi, F.A.; Maqsood, S. Nano-encapsulation of catechin in starch nano-particles: Characterization; release behavior and bioactivity retention during in-vitro digestion. Food Chem. 2019, 270, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Effect of natural antibrowning agents on color and related enzymes in fresh-cut fuji apples as an alternative to the use of ascorbic acid. J. Food Sci. 2008, 73, 267–672. [Google Scholar] [CrossRef]
- Zheng, Z.-P.; Cheng, K.-W.; To, J.T.-K.; Li, H.; Wang, M. Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent. Mol. Nutr. Food Res. 2008, 52, 1530–1538. [Google Scholar] [CrossRef]
- Tang, C.-H. Strategies to utilize naturally occurring protein architectures as nano-vehicles for hydrophobic nutraceuticals. Food Hydrocoll. 2021, 112, 106344. [Google Scholar] [CrossRef]
- Hao, T.; Wang, K.; Zhang, S.; Yang, S.; Wang, P.; Gao, F.; Zhao, Y.; Guo, N.; Yu, P. Preparation, characterization, antioxidant evaluation of new curcumin derivatives and effects of forming HSA-bound nano-particles on the stability and activity. Eur. J. Med. Chem. 2020, 207, 112798. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Lin, M.; Zhang, C.; Shi, J.; Zhang, S.; Chen, Q.; Hu, Y.; Zhang, M.; Zhang, J.; Gao, F. Genipin-crosslinked human serum albumin coating using a tannic acid layer for enhanced oral administration of curcumin in the treatment of ulcerative colitis. Food Chem. 2020, 330, 127241. [Google Scholar] [CrossRef]
- Hadiya, S.; Radwan, R.; Zakaria, M.; El-Sherif, T.; Hamad, M.A.; Elsabahy, M. Nano-particles integrating natural and synthetic polymers for in vivo insulin delivery. Pharm. Dev. Technol. 2021, 26, 30–40. [Google Scholar] [CrossRef]
- Cruz-Romero, M.; Murphy, T.V.; Morris, M.; Cummins, E.; Kerry, J. Antimicrobial activity of chitosan, organic acids and nano-sized solubilisates for potential use in smart antimicrobially-active packaging for potential food applications. Food Control. 2013, 34, 393–397. [Google Scholar] [CrossRef]
- Pan, J.; Ai, F.; Shao, P.; Chen, H.; Gao, H. Development of polyvinyl alcohol/β-cyclodextrin antimicrobial nano-fibers for fresh mushroom packaging. Food Chem. 2019, 300, 125249. [Google Scholar] [CrossRef] [PubMed]
- Adel, A.M.; Ibrahim, A.A.; El-Shafei, A.M.; Al-Shemy, M.T. Inclusion complex of clove oil with chitosan/β-cyclodextrin citrate/oxidized nano-cellulose biocomposite for active food packaging. Food Packag. Shelf Life 2019, 20, 100307. [Google Scholar] [CrossRef]
- Xiao, N.-Y.; Zhang, X.-Q.; Ma, X.-Y.; Luo, W.-H.; Li, H.-Q.; Zeng, Q.-Y.; Zhong, L.; Zhao, W.-H. Construction of EVA/chitosan based PEG-PCL micelles nano-composite films with controlled release of iprodione and its application in pre-harvest treatment of grapes. Food Chem. 2020, 331, 127277. [Google Scholar] [CrossRef] [PubMed]
Strategies | Bioactive Compounds | Matrix | Solvent | Dilution Ratio | Extraction Parameters | Time/Temp | Yield | Ref. |
---|---|---|---|---|---|---|---|---|
Individual Strategies | ||||||||
Ultrasound-assisted Extraction | Saponins | Zizyphus jujuba | Ethanol 50% | 1:36 | 38 W | 50 min | 15.54% | [90] |
Quinoa | Ethanol | 1:10 | 60% A | 15 min | 5.51 g/100 g | [91] | ||
Lentil | 10.63 g/100 g | |||||||
Fenugreek | 12.90 g/100 g | |||||||
Soyaben | 4.08 g/100 g | |||||||
Lupin | 4.55 g/100 g | |||||||
Alfalfa (Medicago sativa) | Ethanol 78.2% | 1:11.4 | 112.0 W | 2.84 h/76.8 °C | 1.61% | [92] | ||
Eclipta prostrasta L. | Ethanol 50% | 1:14 | 100 W | 3 h/70 °C | 2.096% | [93] | ||
Total phenolic compounds | pomegranate (Punica granatum L.) peel | Distilled water | 1:4 | 400 W/60% A | 10 min | 69 mg/g | [94] | |
Total phenolic compounds | Tamarillo fruit (Solanum betaceum) | Acetone 80 % | 1:50 | 50% A | 12 min | 23.96 mg/g | [95] | |
Flavonoids | Lycium barbarum L. fruits | Mixture of choline chloride and p-toluene sulfonic acid | 1:2 M | 60% A | 1.5 h | Myricetin (57.2 mg/g)Morin (12.7 mg/g)Rutin (9.1 mg/g) | [96] | |
Flavonoids and phenolic compounds | Ocimum tenuiflorum leaves | Ethanol 55. 34% | 1:40 | 50 W/0.26 W/cm3 | 11.71 min | Gallic acid (6.81 μg/mL) Vanillic acid (8.52 μg/mL) Rutin (14.21 μg/mL) Sinapic acid (11.37 μg/mL) Quercetin (3.49 μg/mL) Luteolin (1.76 μg/mL) Apigenin (8.66 μg/mL) | [97] | |
Total flavonoids (TF) and total phenolic (TP) compounds | wild garlic (Allium ursinum L.) | Ethanol 50% | 1:5 | 28.8 W/L | 80 min/80 °C | TP 1.61 g GAE/100 DW; TF 0.41 g CE/100 g DW | [98] | |
Total phenolic compounds | Peaches and Pumpkins | Ethanol 100% | 1:10 | 44.60% A | 27.86 min/41.45 °C | Gallic acid 55 mg/100 g | [99] | |
Phenolic compounds | Sparganii rhizoma | Ethanol 80% | 1:22.74 | 300 W | 33.54 min | ρ-Hydroxybenzaldehyde (2.12 μg/g) Vanillic acid (21.66 μg/g) ρ-Coumaric acid (4.32 μg/g) Ferulic acid (2.08 μg/g) Rutin (10.06 μg/g) Kaempferol (106.35 μg/g) | [100] | |
Flavonoids | Olive (Olea europaea) Leaves | Distilled water | 1:41 | 270 W | 50 °C/50 min | 74.95 mg RE/g dm | [101] | |
Flavonoids | Grapefruit (Citrus paradisi L.) | Ethanol | 1:8 | 100 W | 25 °C/3 min | 75 mg gallic acid equivalents/g dw | [102] | |
Microwave-assisted Extraction | Saponins | Furcraeaselloa var. marginata | Water | 23.54 mL/g | 2.45 GHz/1000 W | 9 min/90 °C | 5.77% | [103] |
Physalis alkekengi L. var. franchetii (Mast.) Makino | Ethanol 80 % | 1:32 | 300 W | 29 min | 6.41 mg/g | [104] | ||
starfish Echinaster sepositus | Ethanol 50 % | 1:40 | 200 W | 3 min | 60.3 mg/g | [105] | ||
Phyllanthus amarus | Methanol 100% | 1:50 | 360 W/4 s/Min Irradiation time | 50 min | 227.9 mg/g | [106] | ||
Aralia elata (Miq.) | Ethanol 100% | 1:20 | 560 W/3 cycles | 50 min/40 °C | 1.22 mg/g | [107] | ||
Gac (Momordica cochinchinensis Spreng.) Seeds | Ethanol 100% | 1:30 | 360 W/Irradiation cycle 10 s on 15 s off/cycle/3 cycles | 75 S | 26 mg/100 g | [108] | ||
Ganoderma atrum | Ethanol 95% | 1:25 | 33 kHz | 5 min/90 °C | 0.968% | [109] | ||
P. ginseng | Ethanol 45% | 1:20 | 88 W | 180 s/83.7 °C | 1.31% | [110] | ||
Cacao pod husk | Methanol 85% | 1:50 | 600 W 6 s/min irradiation time | 40 min | 69.9 mg EE/g (Escin Equivalant) | [111] | ||
Paramignya trimera root | Methanol 100% | 1:100 | 360 W/5 s/2 min Irradiation time | 40 min | 520.5 mg escin equivalents (EE)/g | [112] | ||
Anthocyanin | Blueberry powder | Ethanol 55.5% | 1:34 | 7 min Irradiation time | 47 °C | 73.73 % | [113] | |
Anthocyanins | Purple corn (Zea mays L.) cob | 1.5 M HCl–95% Ethanol | 1:20 | 555 W/19 min | 55 °C | 185.1 mg/100 g | [114] | |
Rutin and Quercetin | Stalks of Euonymus alatus (Thunb.) Sieb | Ethanol 50% | 1:40 | 170 W/6 min | Room Temperature | Rutin 0.225 mg/g; Quercetin 0.012 mg/g | [115] | |
Enzyme-assisted Extraction | Saponins | Gomphrena celosioides Mart | Water | 1:25 | Cellulose 0.7% (v/w) | 4 h/60 °C/5 | 1.550% | [116] |
Pseuderanthemum palatiferum (Nees) Radlk. Dry Leaf Powder | Water | 1:7.5 | Viscozyme 7.5% | 75 min/55 °C | 2.267 mg/g | [117] | ||
Flavonoids | Grape skins | Water | 1:10 | Lallzyme EX-V (10.52 mg/g) pH 2.0 | 3 h/45 °C | 0.012 mg/g | [118] | |
Total flavonoids and total phenolic compounds | Bay leaves (Laurus nobilis L.) | Methanol 100% | 1:5 | 30 mg of the ternary enzyme mixture (cellulase: hemicellulase: xylanase; 1:1:1 | 1 h at 40 °C | TPC 5.87 mg GAE/g; TFC 5.18 mg QE/g | [119] | |
Flavonoid compounds | Stevia rebaudiana | n-hexane | 6:1 | pectinases and β-glucanases | 100 W/140 °C | Luteolin 0.657 mg/g | [120] | |
Pulse electric field-assisted extraction | Saponins | Acanthophyllum Roots | Water | 1: 6 | 7 kV/60 | - | 9.1% | [121] |
High-pressure processing extraction | Saponins | Bitter Melon | Ethanol 70% | 1:45.3 | 423.1 MPa | 7 min/30 °C | 3.270 g Rg1 equivalents/100 g (Ginsenoside standard) | [122] |
Combine Techniques | ||||||||
Ultrasound-assisted surfactant Extraction | Saponins | Panax notoginseng | ethanol | 1:6.25 | 1% (w/v) of DTAB/SDS vesicle | 20 min | [123] | |
Microwave-assisted surfactant extraction | Saponins | Momordica charantia L. | Water | 1:12 | 400 W/SDS 0.05 concentration | 5 min | 4.69% | [124] |
Pulse electric field-assisted enzyme extraction | Saponins | Panax ginseng | Water/β-glucosidase 2% (4.7 pH/50 °C) | 1:50 | 15 kV/2 μs/10 | 38.15 mg/g | [125] | |
High-pressure-processing-assisted enzyme extraction | Saponins | Ginseng Root | Ethanol 70%/Cellulose 60 µL/30 mL | 1:5 | 100 MPa | 12 h/50 °C | 40.02 mg/g | [126] |
Conventional Extraction | ||||||||
Reflux extraction | Saponins | Bitter Melon | Ethanol 70% | 1:35 | - | 3 h | 2.478 g/100 g | [127] |
Solvent extraction | starfish Echinaster sepositus | Methanol 70% | 1:50 | Magnetic agitator | 24 h/RoomTemperature | 7.7 mg/g | [105] | |
Maceration | Total Phenolics | Blackberry (Rubus fruticosus L.) residues | Ethanol 50% | 1:40 | - | 80 °C | 3.66 mg GAE/g FR | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noore, S.; Rastogi, N.K.; O’Donnell, C.; Tiwari, B. Novel Bioactive Extraction and Nano-Encapsulation. Encyclopedia 2021, 1, 632-664. https://doi.org/10.3390/encyclopedia1030052
Noore S, Rastogi NK, O’Donnell C, Tiwari B. Novel Bioactive Extraction and Nano-Encapsulation. Encyclopedia. 2021; 1(3):632-664. https://doi.org/10.3390/encyclopedia1030052
Chicago/Turabian StyleNoore, Shaba, Navin Kumar Rastogi, Colm O’Donnell, and Brijesh Tiwari. 2021. "Novel Bioactive Extraction and Nano-Encapsulation" Encyclopedia 1, no. 3: 632-664. https://doi.org/10.3390/encyclopedia1030052
APA StyleNoore, S., Rastogi, N. K., O’Donnell, C., & Tiwari, B. (2021). Novel Bioactive Extraction and Nano-Encapsulation. Encyclopedia, 1(3), 632-664. https://doi.org/10.3390/encyclopedia1030052