L-Asparaginase-Based Biosensors
Definition
:1. Introduction
2. Types and Applications of L-Asparaginase-Based Biosensors
2.1. ASNase from Bacteria for the Development of Biosensors
2.1.1. Pharmaceutical Industry
2.1.2. Food Industry
2.2. ASNase from Plant Species for the Development of Biosensors
3. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Entry Link on the Encyclopedia Platform
References
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification 1 International Union of Pure and Applied Chemistry: Physical Chemistry Division, Commission I.7 (Biophysical Chemistry); Analytical Chemistry Division, Commission V.5 (Electroanalytical). Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Bahadır, E.B.; Sezgintürk, M.K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 2015, 478, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Karube, I.; Wilson, G.S. Biosensors: Fundamentals and Applications, 1st ed.; Oxford University Press: Oxford, UK, 1987; ISBN 0198547242. [Google Scholar]
- Songa, E.A.; Okonkwo, J.O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta 2016, 155, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Zhilei, W.; Zaijun, L.; Xiulan, S.; Yinjun, F.; Junkang, L. Synergistic contributions of fullerene, ferrocene, chitosan and ionic liquid towards improved performance for a glucose sensor. Biosens. Bioelectron. 2010, 25, 1434–1438. [Google Scholar] [CrossRef]
- Nunes, J.C.F.; Cristóvão, R.O.; Freire, M.G.; Santos-Ebinuma, V.C.; Faria, J.L.; Silva, C.G.; Tavares, A.P.M. Recent strategies and applications for L-asparaginase confinement. Molecules 2020, 25, 5827. [Google Scholar] [CrossRef]
- Brena, B.; González-Pombo, P.; Batista-Viera, F. Immobilization of enzymes: A literature survey. In Ebolaviruses; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2013; Volume 1051, pp. 15–31. ISBN 9781627035491. [Google Scholar]
- Kidd, J.G. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. I. Course of transplanted cancers of various kinds in mice and rats given guinea pig serum, horse serum, or rabbit serum. J. Exp. Med. 1953, 98, 565–582. [Google Scholar] [CrossRef] [PubMed]
- Kidd, J.G. Regression of transplanted lymphomas induced in vivo by means of normal guinea pig serum. II. Studies on the nature of the active serum constituent: Histological mechanism of the regression: Tests for effects of guinea pig serum on lymphoma cells in vitro. J. Exp. Med. 1953, 98, 583–606. [Google Scholar] [CrossRef]
- Ando, M.; Sugimoto, K.; Kitoh, T.; Sasaki, M.; Mukai, K.; Ando, J.; Egashira, M.; Schuster, S.M.; Oshimi, K. Selective apoptosis of natural killer-cell tumours by L-asparaginase. Br. J. Haematol. 2005, 130, 860–868. [Google Scholar] [CrossRef]
- Sandeep, P.; Raman, K.; Kuldeep, K. Enzyme based asparagine biosensor for the detection of asparagine levels in leukemic samples. Int. J. Appl. Biol. Pharm. Technol. 2015, 6, 40–43. [Google Scholar]
- Avramis, V.I.; Panosyan, E.H. Pharmacokinetic/pharmacodynamic relationships of asparaginase formulations: The past, the present and recommendations for the future. Clin. Pharmacokinet. 2005, 44, 367–393. [Google Scholar] [CrossRef]
- Paillassa, J.; Leguay, T.; Thomas, X.; Huguet, F.; Audrain, M.; Lheritier, V.; Vianey-Saban, C.; Acquaviva-Bourdain, C.; Pagan, C.; Dombret, H.; et al. Monitoring of asparagine depletion and anti-L-asparaginase antibodies in adult acute lymphoblastic leukemia treated in the pediatric-inspired GRAALL-2005 trial. Blood Cancer J. 2018, 8, 45. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. IARC monographs on the evaluation of carcinogenic risks to humans—Volume 63. Dry cleaning, some chlorinated solvents and other industrial chemicals. Anal. Chim. Acta 1996, 336, 229–230. [Google Scholar] [CrossRef]
- Joint Food and Agriculture Organization; World Health Organization. Health Implications of Acrylamide in Food: Report of a Joint FAO/WHO Consultation, WHO Headquarters, Geneva, Switzerland, 25–27 June 2002; World Health Organization: Geneva, Switzerland, 2002; ISBN 9241562188. [Google Scholar]
- Abt, E.; Robin, L.P.; McGrath, S.; Srinivasan, J.; DiNovi, M.; Adachi, Y.; Chirtel, S. Acrylamide levels and dietary exposure from foods in the United States, an update based on 2011–2015 data. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2019, 36, 1475–1490. [Google Scholar] [CrossRef] [PubMed]
- Tardiff, R.G.; Gargas, M.L.; Kirman, C.R.; Leigh Carson, M.; Sweeney, L.M. Estimation of safe dietary intake levels of acrylamide for humans. Food Chem. Toxicol. 2010, 48, 658–667. [Google Scholar] [CrossRef]
- Xu, F.; Oruna-Concha, M.-J.; Elmore, J.S. The use of asparaginase to reduce acrylamide levels in cooked food. Food Chem. 2016, 210, 163–171. [Google Scholar] [CrossRef]
- Parker, J.K.; Balagiannis, D.P.; Higley, J.; Smith, G.; Wedzicha, B.L.; Mottram, D.S. Kinetic model for the formation of acrylamide during the finish-frying of commercial french fries. J. Agric. Food Chem. 2012, 60, 9321–9331. [Google Scholar] [CrossRef]
- Zubavichus, Y.; Fuchs, O.; Weinhardt, L.; Heske, C.; Umbach, E.; Denlinger, J.D.; Grunze, M. Soft X-ray-induced decomposition of amino acids: An XPS, mass spectrometry, and NEXAFS study. Radiat. Res. 2004, 161, 346–358. [Google Scholar] [CrossRef]
- Kumar, K.; Kataria, M.; Verma, N. Plant asparaginase-based asparagine biosensor for leukemia. Artif. Cells Nanomed. Biotechnol. 2013, 41, 184–188. [Google Scholar] [CrossRef]
- Fraticelli, Y.M.; Meyerhoff, M.E. On-Line gas dialyzer for automated enzymatic analysis with potentiometric ammonia detection. Anal. Chem. 1983, 55, 359–364. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, G.M.; Bae, Y.J.; Lee, E.Y.; Hur, M.H.; Ahn, M.K. Determination of L-asparagine using a garlic tissue electrode. Yakhak Hoeji 1995, 39, 113–117. [Google Scholar]
- Ren, J.; He, F.; Zhang, L. The construction and application of a new PPY-MSPQC for L-asparaginase activity assay. Sens. Actuators B Chem. 2010, 145, 272–277. [Google Scholar] [CrossRef]
- Verma, N.; Kumar, K.; Kaur, G.; Anand, S. E. coli K-12 asparaginase-based asparagine biosensor for leukemia. Artif. Cells Blood Substit. Biotechnol. 2007, 35, 449–456. [Google Scholar] [CrossRef]
- Verma, N.; Bansal, M.; Kumar, S. Whole cell based miniaturized fiber optic biosensor to monitor L-asparagine. Adv. Appl. Sci. Res. 2012, 3, 809–814. [Google Scholar]
- Li, J.; Wang, J.; Bachas, L.G. Biosensor for asparagine using a thermostable recombinant asparaginase from Archaeoglobus fulgidus. Anal. Chem. 2002, 74, 3336–3341. [Google Scholar] [CrossRef] [PubMed]
- Kotzia, G.A.; Labrou, N.E. Engineering substrate specificity of E. carotovora L-asparaginase for the development of biosensor. J. Mol. Catal. B Enzym. 2011, 72, 95–101. [Google Scholar] [CrossRef]
- Labrou, N.E.; Muharram, M.M. Biochemical characterization and immobilization of Erwinia carotovora L-asparaginase in a microplate for high-throughput biosensing of L-asparagine. Enzym. Microb. Technol. 2016, 92, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Walia, S. L-asparaginase extracted from Capsicum annum L and development of asparagine biosensor for leukemia. Sens. Transducers 2012, 144, 192–200. [Google Scholar]
- Kumar, K.; Punia, S.; Kaur, J.; Pathak, T. Development of plant asparagine biosensor for detection of leukemia. J. Pharm. Biomed. Sci. 2013, 35, 1796–1801. [Google Scholar]
- Teena, P.; Raman, K.; Jagjit, K.; Kuldeep, K. Isolation of L-asparaginase from Cannabis Sativa and development of biosensor for detection of asparagine in leukemic serum samples. Res. J. Pharm. Technol. 2014, 7, 850–855. [Google Scholar]
- Cachumba, J.J.M.; Antunes, F.A.F.; Peres, G.F.D.; Brumano, L.P.; Dos Santos, J.C.; Da Silva, S.S. Current applications and different approaches for microbial L-asparaginase production. Braz. J. Microbiol. 2016, 47, 77–85. [Google Scholar] [CrossRef]
- Castro, D.; Marques, A.S.C.; Almeida, M.R.; de Paiva, G.B.; Bento, H.B.S.; Pedrolli, D.B.; Freire, M.G.; Tavares, A.P.M.; Santos-Ebinuma, V.C. L-asparaginase production review: Bioprocess design and biochemical characteristics. Appl. Microbiol. Biotechnol. 2021, 105, 4515–4534. [Google Scholar] [CrossRef] [PubMed]
- Sokolov, N.N.; Eldarov, M.A.; Pokrovskaya, M.V.; Aleksandrova, S.S.; Abakumova, O.Y.; Podobed, O.V.; Melik-Nubarov, N.S.; Kudryashova, E.V.; Grishin, D.V.; Archakov, A.I. Bacterial recombinant L-asparaginases: Properties, structure, and anti-proliferative activity. Biochem. Moscow Suppl. Ser. B 2015, 9, 325–338. [Google Scholar] [CrossRef]
- Xu, J.; Lee, H. Anti-biofouling strategies for long-term continuous use of implantable biosensors. Chemosensors 2020, 8, 66. [Google Scholar] [CrossRef]
- Wisniewski, N.; Moussy, F.; Reichert, W.M. Characterization of implantable biosensor membrane biofouling. Fresenius J. Anal. Chem. 2000, 366, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Rocchitta, G.; Spanu, A.; Babudieri, S.; Latte, G.; Madeddu, G.; Galleri, G.; Nuvoli, S.; Bagella, P.; Demartis, M.I.; Fiore, V.; et al. Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids. Sensors 2016, 16, 780. [Google Scholar] [CrossRef]
- Lin, P.-H.; Li, B.-R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst 2020, 145, 1110–1120. [Google Scholar] [CrossRef]
Industry | Application | Detection Methodology | ASNase 1 Source | Immobilization Supports | Ref. |
---|---|---|---|---|---|
__ | Ammonia sensing | Potentiometric ammonia gas detector | Escherichia coli | ― | [22] |
__ | Ammonia sensing | Ammonia gas electrode | Garlic tissue cells | ― | [23] |
__ | Ammonia sensing | Polypyrrole probe | E. coli | ― | [24] |
Pharmaceutical | L-asparagine monitoring in ALL 2 patients | Phenol red | Nitrocellulose membrane; silicone gel; calcium alginate beads | [25] | |
Food | L-asparagine concentration analysis in foods | Phenol red | Coliform bacterial cells | Tetramethyl orthosilicate sol-gel | [26] |
Ammonia sensing | Ammonium-selective glass electrode | Archaeoglobus fulgidus | ― | [27] | |
Food; pharmaceutical | L-asparagine concentration analysis in foods; L-asparagine monitoring in ALL 2 patients | Nessler’s reagent | Erwinia carotovora | Plastic cuvette | [28] |
96-well microplate | [29] | ||||
Pharmaceutical | L-asparagine monitoring in ALL 2 patients | Phenol red | Capsicum annum | Gelatin; polyacrylamide; agar; calcium alginate beads | [30] |
Citrus limon | Agar; agarose; gelatin; polyacrylamide; calcium alginate beads | [31] | |||
Withania somnifera | Gelatin; agarose; agar; calcium alginate beads | [21] | |||
Cannabis sativa | Gelatin; agarose; agar; calcium alginate beads; Whatman filter paper; hydrosol gel on nylon membrane | [32] | |||
Catharanthus roseus | Agar; soil; clay; k-carrageenan | [11] |
Detection Methodologies | Medium Conditions | Color Change | Ref. | ||
---|---|---|---|---|---|
Phenol Red | ↑ pH | [11,21,25,26,30,31,32] | |||
Nessler’s reagent | ↑ NH4+ | [28,29] |
Plant-ASNase 1-Based Biosensors | Immobilization Supports | L-Asparagine Detection Limit (M) | Response Time Range (s) | Response Time for Leukemic Blood Serum Samples (s) | Biocomponent Stability | Ref |
---|---|---|---|---|---|---|
C. annum-based biosensor | Gelatin | 10−9–10−1 | 10–21.6 | 20 | >15 days | [30] |
Polyacrylamide | 10–20 | 18.7 | >1 month | |||
Agar | 7.5–14.2 | 12.5 | >15 days | |||
Calcium alginate beads | 7.1–12.3 | 11.2 | >4 months | |||
C. limon-based biosensor | Agar | 10−10–10−1 | 6–14.2 | 13 | 1 month | [31] |
Agarose | 9–16.4 | 16 | 25 days | |||
Gelatin | 10–22 | 20 | 9 days | |||
Polyacrylamide | 10–20 | 18 | 25 days | |||
Calcium alginate beads | 7–12 | 11 | 3 months | |||
W. somnifera-based biosensor | Gelatin | 10−10–10−1 | 10–22 | 19 ± 0.5 | >4 days | [21] |
Agarose | 10–17 | 15 | >12 days | |||
Agar | 7–14 | 12 | >4 days | |||
Calcium alginate beads | 7–12 | 11 | >2 months | |||
C. sativa-based biosensor | Gelatin | 10−10–10−1 | 8–21 | 19 | ― | [32] |
Agarose | 9.17–16 | 15.8 | ― | |||
Agar | 7.3–15 | 13.3 | ― | |||
Calcium alginate beads | 7–11 | 11.1 | ― | |||
Whatman filter paper | 11–23 | 21 | ― | |||
Hydrosol gel on nylon membrane | 5–10 | 9 | >4 months | |||
C. roseus-based biosensor | Agar | 10−10–10−1 | 7–14 | ― | ― | [11] |
Soil | 4–12 | ― | ― | |||
Clay | 3–11 | ― | ― | |||
k-carrageenan | 3–10 | 7 | ― |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, J.C.F.; Cristóvão, R.O.; Santos-Ebinuma, V.C.; Faria, J.L.; Silva, C.G.; Neves, M.C.; Freire, M.G.; Tavares, A.P.M. L-Asparaginase-Based Biosensors. Encyclopedia 2021, 1, 848-858. https://doi.org/10.3390/encyclopedia1030065
Nunes JCF, Cristóvão RO, Santos-Ebinuma VC, Faria JL, Silva CG, Neves MC, Freire MG, Tavares APM. L-Asparaginase-Based Biosensors. Encyclopedia. 2021; 1(3):848-858. https://doi.org/10.3390/encyclopedia1030065
Chicago/Turabian StyleNunes, João C. F., Raquel O. Cristóvão, Valéria C. Santos-Ebinuma, Joaquim L. Faria, Cláudia G. Silva, Márcia C. Neves, Mara G. Freire, and Ana P. M. Tavares. 2021. "L-Asparaginase-Based Biosensors" Encyclopedia 1, no. 3: 848-858. https://doi.org/10.3390/encyclopedia1030065
APA StyleNunes, J. C. F., Cristóvão, R. O., Santos-Ebinuma, V. C., Faria, J. L., Silva, C. G., Neves, M. C., Freire, M. G., & Tavares, A. P. M. (2021). L-Asparaginase-Based Biosensors. Encyclopedia, 1(3), 848-858. https://doi.org/10.3390/encyclopedia1030065