Adverse Events Profile of COVID-19 Preventative Strategies
Definition
:1. Introduction
2. COVID-19 Etiopathology
3. Prevention Strategies
3.1. Primary Prevention
Post-Vaccination Adverse Events
3.2. Secondary Prevention
4. Conclusions and Prospects
5. Summary
- The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 is a novel RNA β-coronavirus that has caused millions of deaths and has affected most people across the world, either directly or indirectly.
- Primary prevention of the disease is mainly possible due to the rapid advancement of the vaccines, whereas secondary prevention mostly aims at identifying the disease in the early stages and preventing the advancement of the disease with the help of the monoclonal antibodies, or through the use of the interleukin-6 (IL-6), such as tocilizumab.
- With global mass vaccination, we are also learning more about adverse events related to vaccines and other preventative strategies.
- Vaccines and other measures to counter this deadly condition are safe in general and the benefits certainly outweigh the harms. However, growing evidence suggests autoimmunity as an independent risk factor in the development of a higher incidence of various adverse events post-COVID-19-vaccination. It is of utmost importance to develop guidelines regarding COVID-19 vaccination such as the total number of required doses including booster doses, duration between two doses, and post-vaccination monitoring in this group.
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Entry Link on the Encyclopedia Platform
References
- Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1953–1966. [Google Scholar]
- Domenico, C.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Bio Med. Atenei Parm. 2020, 91, 157. [Google Scholar]
- WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 3 December 2021).
- COVID Data Tracker. United States COVID-19 Cases, Deaths, and Laboratory Testing (NAATs) by State, Territory, and Jurisdiction. Available online: https://covid.cdc.gov/covid-data-tracker (accessed on 3 December 2021).
- Xia, B.; Shen, X.; He, Y.; Pan, X.; Liu, F.L.; Wang, Y.; Yang, F.; Fang, S.; Wu, Y.; Duan, Z.; et al. SARS-CoV-2 envelope protein causes acute respiratory distress syndrome (ARDS)-like pathological damages and constitutes an antiviral target. Cell Res. 2021, 31, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, K.M. COVID-19 and Its Association with New-Onset Diabetes. Arch. Clin. Med. Case Rep. 2021, 5, 855–861. [Google Scholar] [CrossRef]
- Spinoni, E.G.; Mennuni, M.; Rognoni, A.; Grisafi, L.; Colombo, C.; Lio, V.; Renda, G.; Foglietta, M.; Petrilli, I.; D’Ardes, D. Contribution of atrial fibrillation to in-hospital mortality in patients with COVID-19. Circ. Arrhythmia Electrophysiol. 2021, 14, e009375. [Google Scholar] [CrossRef]
- Buckholz, A.P.; Kaplan, A.; Rosenblatt, R.E.; Wan, D. Clinical Characteristics, Diagnosis, and Outcomes of 6 Patients With COVID-19 Infection and Rhabdomyolysis. Mayo Clin. Proc. 2020, 95, 2557–2559. [Google Scholar] [CrossRef]
- Valente-Acosta, B.; Moreno-Sanchez, F.; Fueyo-Rodriguez, O.; Palomar-Lever, A. Rhabdomyolysis as an initial presentation in a patient diagnosed with COVID-19. BMJ Case Rep. 2020, 13, e236719. [Google Scholar] [CrossRef]
- Alquisiras-Burgos, I.; Peralta-Arrieta, I.; Alonso-Palomares, L.A.; Zacapala-Gómez, A.E.; Salmerón-Bárcenas, E.G.; Aguilera, P. Neurological Complications Associated with the Blood-Brain Barrier Damage Induced by the Inflammatory Response During SARS-CoV-2 Infection. Mol. Neurobiol. 2021, 58, 520–535. [Google Scholar] [CrossRef]
- Ajmera, K.M. Fatal case of rhabdomyolysis post-covid-19 vaccine. Infect. Drug Resist. 2021, 14, 3929. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Ma, Y.-T.; Zhang, J.-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef]
- Meo, S.A.; Bukhari, I.A.; Akram, J.; Meo, A.S.; Klonoff, D.C. COVID-19 vaccines: Comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and moderna vaccines. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 1663–1669. [Google Scholar] [PubMed]
- Livingston, E.H.; Malani, P.N.; Creech, C.B. The Johnson & Johnson Vaccine for COVID-19. AMA 2021, 325, 1575. [Google Scholar]
- Priya, S.A.D.; Kavitha, S.; Venugopal, P.; Sriram, D.K.; George, M. Can mRNA Vaccines Turn the Tables During the COVID-19 Pandemic? Current Status and Challenges. Clin. Drug Investig. 2021, 41, 499–509. [Google Scholar]
- Pfizer and BioNTech Provide Data from German Phase 1/2 Study Further Characterizing Immune Response Following Immunization with Lead COVID-19 Vaccine Candidate BNT162b2. Pfizer. Available online: https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-provide-data-german-phase-12-study (accessed on 20 February 2021).
- Centers for Disease Control and Prevention (CDC). Understanding Viral Vector COVID-19 Vaccines. Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/viralvector.html (accessed on 3 December 2021).
- Nassar, M.; Chung, H.; Dhayaparan, Y.; Nyein, A.; Acevedo, B.J.; Chicos, C.; Zheng, D.; Barras, M.; Mohamed, M.; Alfishawy, M. COVID-19 vaccine induced rhabdomyolysis: Case report with literature review. Diabetes Metab. Syndr. 2021, 15, 102170. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.; Nichols, L.; Guerrero, D.M. Rhabdomyolysis secondary to COVID-19 vaccination. Cureus 2021, 13, e15004. [Google Scholar] [CrossRef]
- Tan, A.; Stepien, K.M.; Narayana, S.T.K. Carnitine palmitoyltransferase II deficiency and post-COVID vaccination rhabdomyolysis. QJM Int. J. Med. 2021, 114, 596–597. [Google Scholar] [CrossRef]
- Zager, R.A. Rhabdomyolysis and myohemoglobinuric acute renal failure. Kidney Int. 1996, 49, 314–326. [Google Scholar] [CrossRef]
- United States Department of Health and Human Services (DHHS), Public Health Service (PHS), Centers for Disease Control (CDC)/Food and Drug Administration (FDA), Vaccine Adverse Event Reporting System (VAERS) 1990—12/10/2021, CDC WONDER On-Line Database. Available online: http://wonder.cdc.gov/vaers.html (accessed on 16 December 2021).
- Nattel, S.; Burstein, B.; Dobrev, D. Atrial remodeling and atrial fibrillation: Mechanisms and implications. Circ. Arrhythmia Electrophysiol. 2008, 1, 62–73. [Google Scholar] [CrossRef]
- Lazzerini, P.E.; Capecchi, P.L.; Laghi-Pasini, F.; Boutjdir, M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. Nat. Rev. Cardiol. 2017, 14, 521–535. [Google Scholar] [CrossRef]
- Scheen, A.J. Pathophysiology of type 2 diabetes. Acta Clin. Belg. 2003, 58, 335–341. [Google Scholar] [CrossRef]
- Greenberg, A.S.; McDaniel, M.L. Identifying the links between obesity, insulin resistance, and beta-cell function: Potential role of adipocyte-derived cytokines in the pathogenesis of type 2 diabetes. Eur. J. Clin. Investig. 2002, 32 (Suppl. S3), 24–34. [Google Scholar] [CrossRef] [PubMed]
- Marchand, L.; Pecquet, M.; Luyton, C. Type 1 diabetes onset triggered by COVID-19. Acta Diabetol. 2020, 57, 1265–1266. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.S.; Merkler, A.E.; Iadecola, C. Inflammation, autoimmunity, infection, and stroke: Epidemiology and lessons from therapeutic intervention. Stroke 2020, 513, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Chong, B.H.; Ho, S.J. Autoimmune thrombocytopenia. J. Thromb. Haemost. 2005, 3, 1763–1772. [Google Scholar] [CrossRef]
- Weetman, A.P. Autoimmune thyroid disease. Autoimmunity 2004, 37, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Stravitz, R.T.; Lefkowitch, J.H.; Fontana, R.J.; Gershwin, M.E.; Leung, P.S.C.; Sterling, R.K.; Manns, M.P.; Norman, G.L.; Lee, W.M.; Acute Liver Failure Study Group. Autoimmune acute liver failure: Proposed clinical and histological criteria. Hepatology 2011, 53, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Nath, K.A.; Wu, Y.; Daoud, T.M.; Sethi, S. Hemolysis and acute kidney failure. Am. J. Kidney Dis. 2010, 56, 780–784. [Google Scholar] [CrossRef]
- Deb, P.; Molla, M.M.A.; Saif-Ur-Rahman, K.M. An update to monoclonal antibody as therapeutic option against COVID-19. Biosaf. Health 2021, 3, 87–91. [Google Scholar] [CrossRef]
- NIH. Anti-SARS-CoV-2 Monoclonal Antibodies—COVID 19 Treatment. 2020. Available online: https://www.covid19treatmentguidelines.nih.gov/anti-sars-cov-2-antibody-products/anti-sars-cov-2-monoclonal-antibodies/ (accessed on 3 December 2021).
- The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19—Preliminary report. N. Engl. J. Med. 2020, 7, 17. [Google Scholar]
- Pettit, N.N.; Nguyen, C.T.; Mutlu, G.M.; Wu, D.; Kimmig, L.; Pitrak, D.; Pursell, K. Late onset infectious complications and safety of tocilizumab in the management of COVID-19. J. Med. Virol. 2021, 93, 1459–1464. [Google Scholar] [CrossRef]
- Baum, A.; Fulton, B.O.; Wloga, E.; Copin, R.; Pascal, K.E.; Russo, V.; Giordano, S.; Lanza, K.; Negron, N.; Ni, M.; et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 2020, 369, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Both, L.; Banyard, A.C.; van Dolleweerd, C.; Wright, E.; Ma, J.K.; Fooks, A.R. Monoclonal antibodies for prophylactic and therapeutic use against viral infections. Pediatr. Pol. 2013, 88, T15–T23. [Google Scholar] [CrossRef] [PubMed]
- Ajmera, K.M.; Heather, W. Spontaneous Lower Gastrointestinal Bleeding Following Casirivimab/Imdevimab Treatment for COVID-19 Infection: A Case Presentation and Short Literature Review. Arch. Clin. Biomed. Res. 2021, 5, 756–762. [Google Scholar]
- Mauro, A.; De Grazia, F.; Lenti, M.V.; Penagini, R.; Frego, R.; Ardizzone, S.; Savarino, E.; Radaelli, F.; Bosani, M.; Orlando, S.; et al. upper gastrointestinal bleeding in COVID-19 inpatients: Incidence and management in a multicenter experience from Northern Italy. Clin. Res. Hepatol. Gastroenterol. 2021, 45, 101521. [Google Scholar] [CrossRef]
- Rojo, M.; Cano-Valderrama, O.; Picazo, S.; Saez, C.; Gómez, L.; Sánchez, C.; Sanz-Ortega, G.; Torres, A.J. Gastrointestinal Perforation after Treatment with Tocilizumab: An Unexpected Consequence of COVID-19 Pandemic. Am. Surg. 2020, 86, 565–566. [Google Scholar] [CrossRef] [PubMed]
- Watad, A.; Sharif, K.; Shoenfeld, Y. The ASIA syndrome: Basic concepts. Mediterr. J. Rheumatol. 2017, 28, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.H.; Beiss, V.; Fiering, S.N.; Steinmetz, N.F. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano 2020, 14, 12522–12537. [Google Scholar] [CrossRef] [PubMed]
Vaccine | Sex | Myocarditis | Pericarditis | Ventricular Tachycardia | Ventricular Fibrillation | Cardiac Arrest |
---|---|---|---|---|---|---|
JANSSEN | Female | 23 | 33 | 07 | 04 | 34 |
Male | 28 | 47 | 11 | 15 | 57 | |
Unknown | 7 | 8 | - | - | 1 | |
MODERNA | Female | 273 | 314 | 46 | 40 | 145 |
Male | 521 | 374 | 59 | 41 | 217 | |
Unknown | 15 | 14 | 1 | - | 08 | |
PFIZER-BioNTech | Female | 460 | 422 | 63 | 50 | 211 |
Male | 1090 | 694 | 66 | 52 | 263 | |
Unknown | 27 | 10 | 1 | 03 | 20 | |
Total | 2444 | 1916 | 254 | 205 | 956 | |
Deaths | 47 | 13 | 28 | 53 | 626 |
Vaccine | Sex | Event Reported | Deaths |
---|---|---|---|
JANSSEN | Female | 268 | 12 |
Male | 211 | 17 | |
Unknown | 15 | 1 | |
MODERNA | Female | 1560 | 39 |
Male | 998 | 62 | |
Unknown | 24 | 1 | |
PFIZER-BioNTech | Female | 2625 | 41 |
Male | 1572 | 64 | |
Unknown | 69 | 3 | |
Total | 7342 | 240 |
Vaccine | Renal Failure | CVA (Stroke) | Respiratory Failure | Liver Failure | Thrombocyto-Penia | Hypothroid |
---|---|---|---|---|---|---|
JANSSEN | 68 | 816 | 267 | 31 | 177 | 28 |
MODERNA | 272 | 2567 | 903 | 80 | 344 | 40 |
PFIZER-BioNTech | 333 | 3305 | 1372 | 127 | 569 | 389 |
Total | 673 | 6688 | 2542 | 238 | 1090 | 462 |
Deaths | 227 | 379 | 806 | 79 | 119 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ajmera, K.M. Adverse Events Profile of COVID-19 Preventative Strategies. Encyclopedia 2022, 2, 457-465. https://doi.org/10.3390/encyclopedia2010028
Ajmera KM. Adverse Events Profile of COVID-19 Preventative Strategies. Encyclopedia. 2022; 2(1):457-465. https://doi.org/10.3390/encyclopedia2010028
Chicago/Turabian StyleAjmera, Kunal M. 2022. "Adverse Events Profile of COVID-19 Preventative Strategies" Encyclopedia 2, no. 1: 457-465. https://doi.org/10.3390/encyclopedia2010028
APA StyleAjmera, K. M. (2022). Adverse Events Profile of COVID-19 Preventative Strategies. Encyclopedia, 2(1), 457-465. https://doi.org/10.3390/encyclopedia2010028